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Abstract: The natural element aluminum possesses a number of unique biochemical and biophysical
properties that make this highly neurotoxic species deleterious towards the structural integrity,
conformation, reactivity and stability of several important biomolecules. These include aluminum’s
(i) small ionic size and highly electrophilic nature, having the highest charge density of any metallic
cation with a Z2/r of 18 (ionic charge +3, radius 0.5 nm); (ii) inclination to form extremely stable
electrostatic bonds with a tendency towards covalency; (iii) ability to interact irreversibly and/or
significantly slow down the exchange-rates of complex aluminum–biomolecular interactions; (iv)
extremely dense electropositive charge with one of the highest known affinities for oxygen-donor
ligands such as phosphate; (v) presence as the most abundant metal in the Earth’s biosphere and
general bioavailability in drinking water, food, medicines, consumer products, groundwater and
atmospheric dust; and (vi) abundance as one of the most commonly encountered intracellular and
extracellular metallotoxins. Despite aluminum’s prevalence and abundance in the biosphere it is
remarkably well-tolerated by all plant and animal species; no organism is known to utilize aluminum
metabolically; however, a biological role for aluminum has been assigned in the compaction of
chromatin. In this Communication, several examples are given where aluminum has been shown
to irreversibly perturb and/or stabilize the natural conformation of biomolecules known to be
important in energy metabolism, gene expression, cellular homeostasis and pathological signaling in
neurological disease. Several neurodegenerative disorders that include the tauopathies, Alzheimer’s
disease and multiple prion disorders involve the altered conformation of naturally occurring cellular
proteins. Based on the data currently available we speculate that one way aluminum contributes
to neurological disease is to induce the misfolding of naturally occurring proteins into altered
pathological configurations that contribute to the neurodegenerative disease process.

Keywords: aluminum; Alzheimer’s disease (AD); biomolecules; adenosine triphosphate (ATP);
histone linker proteins (H1 class); prion disease (PrD); protein folding disease

1. Introduction

The biosphere-abundant element aluminum [Al3+; Al(III)] is a pervasive, pro-inflammatory,
metallic toxin that is being increasingly mobilized into our environment [1–3]. The high
positive charge density, small atomic and ionic size, unchanging valence of 3+, ubiquity
in the biosphere and the extreme affinity of aluminum for electronegative targets and/or
oxygen-donor ligands appears to underlie the basis for aluminum’s toxicological properties
and the generation of oxidative stress. Pathologically, aluminum: (i) is associated with
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the induction and production of reactive free radicals and reactive oxygen species (ROS)
which can overwhelm the antioxidant defenses of the cell and so can both initiate and
perpetuate cellular damage; (ii) as a native or hydroxylated species can interact directly
with cellular components resulting in the generation of functionally stabilized and/or
altered or modified biomolecules that impart defective operational capabilities towards
cellular homeostasis; (iii) appears to interact selectively with cellular components only
where the three-dimensional configurations are favorable with compartmentalization into
specific regions of the cell and nucleus; and (iv) preferentially interacts wherever the co-
ordination chemistry is energetically the most favorable. For example, it has been shown
that the extremely high positive charge density aluminum species specifically targets cer-
tain accessible, polyphosphate- and adenine + thymine (A+T)-rich, highly electronegative
open or ‘euchromatic’ regions of brain cell nuclei to disrupt gene expression patterns [2–7].
Importantly, aluminum appears to be compartmentalized into specific molecular, cellular
and/or nuclear structures and its concentration may actually be highly localized, and
at a higher concentration than those found on average and at random determinations
throughout the entire biological or tissue samples under study [8–10]. Conversely, very
small amounts of aluminum are required to elicit profound neurotoxic effects, so the over-
all determination of aluminum in bulk biological samples may not provide an accurate
indicator of aluminum’s potential involvement in any particular disease process. Many
of the cellular, genetic, epigenetic, molecular, nuclear and systemic mechanisms by which
aluminum exerts selective neurotoxicity and/or genotoxicity remains incompletely un-
derstood [8–32]. This Communication illustrates three important, interrelated and fairly
well characterized molecular and cellular nodes at which aluminum significantly inter-
acts and perturbs normal cellular function. These include: (i) preferential interactions
with the phosphates and/or polyphosphates of adenosine triphosphate (ATP), that along
with other nucleoside triphosphates are the main molecular energy carriers of the cell; (ii)
the cross-linking of certain linker histone-DNA-associated chromatin domains; and (iii)
aluminum’s remarkable capability to support altered protein conformations that drive
the misfolding of susceptible and potentially pathogenic proteins. This latter property of
aluminum may be important for pathological protein aggregation and in “conformational
disease’, ‘protein misfolding disease’ or ‘protein aggregation disease’ [32–38]. These types
of interactions appear to be the basis for an expanding list of progressive and lethal human
neurodegenerative disorders that include the tauopathies, frontotemporal dementia (FTD),
Alzheimer’s disease (AD) and multiple prion disorders (PrD) [34–41].

2. Aluminum (Al3+) and Adenosine Triphosphate (ATP)

In most cases the mode of aluminum [Al3+; Al(III); atomic mass 26.9815; neutral
atom electron configuration: 1s22s22p63s23p1] interaction with commonly encountered
biomolecules remains incompletely understood, but a recurring theme is a strong aluminum
interaction with oxygen-donor ligands such as phosphate groups [3–5]. Phosphate groups
can be available as free species, for example as nucleotide triphosphates such as adenosine
triphosphate (ATP), as phosphoproteins involving amino acids with phosphate attached
to their side chain (R) groups, such as in cytoskeletal and synaptic proteins, and as a
major structural component of nucleic acids including all forms of ribonucleic acid (RNA)
and deoxyribonucleic acid (DNA), the genetic material contained within all cell types.
Similar in size to the abundant and natural activator magnesium (Mg2+), Al3+ may act by
substituting for Mg2+ in vital energy-dependent processes. Virtually all ATP-associated
reactions utilize Mg2+, and the presence of Al3+ potentially irreversibly interferes with these
reaction processes and has been shown to limit the availability of ATP in energy-requiring
reactions and functions within both the cellular and nuclear compartments (Figure 1) [1–6].
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Figure 1. Aluminum (Al3+) and adenosine triphosphate (ATP): (A) atomic and electronic structure 
of aluminum; distribution of electrons (red spheres) in aluminum [Al3+; Al(III); atomic mass 26.9815; 
neutral atom electron configuration: 1s22s22p63s23p1]; (B) potential interaction of highly electroposi-
tive trivalent aluminum [Al3+; Al(III)] with the α-, β-, and γ-phosphate of adenosine triphosphate 
(ATP); this interaction strongly stabilizes ATP making it unusable for other biological reactions 
and/or functions; Al3+ undergoes ligand exchange reactions much more slowly than most metal ions 
and about ~105 times slower than Mg2+ [3–5]; other Al-ATP, aluminum–adenosine–diphosphate (Al-
ADP) and/or aluminum–adenosine–monophosphate (Al-AMP) and/or other coordination struc-
tures may be possible under defined physiological situations [3–8,23–26]. 

3. Al3+, DNA and Linker Histone H1°  
In aqueous solutions, aluminum [Al3+; Al(III)] salts and hydroxides are exceptionally 

potent aggregators of organic/biological molecules, often coalescing molecular species to 
the point that they precipitate out of solution. In fact aluminum, as alum [potassium alu-
minum sulfate; KAS; KAl(SO4)2·12 H2O] is used globally to aggregate organic/biological 
impurities in turbid drinking water in order to precipitate them and to clarify an unap-
pealing cloudy water product into a clear, finished water product [3,7,11–13]. To accom-
plish this, raw waters are treated with alum that serves as a flocculant; raw water often 
holds tiny suspended particles that are very difficult to filter and remove, and alum causes 
them to clump together so that they can settle out of the water and be easily trapped by 
standard filtration methods [12–14]. Interestingly, the speciation of aluminum is often 
transformed during the processes of coagulation, flocculent formation, filtration and sed-
imentation and the use of aluminum in the purification of drinking water has long been 
criticized due to potentially toxic and especially neurotoxic effects on human biology and 
physiology, and particularly neurobiology and neurophysiology [13–15]. 

At the molecular level aluminum has a remarkable effect on the compaction of DNA 
and chromatin misfolding into higher order structures, effects that are not observed when 
natural chromatin is treated with other bioavailable divalent or trivalent metals such as 
Mg2+, Cu2+, Ca2+, Mn2+, Fe2+, Fe3+ or Cr3+ [16–19]. Chromatin is essentially the assembly of 
genomic DNA, DNA-binding proteins and other nucleoproteins packaged into the nu-
cleus of eukaryotic cells which together are crucial in regulating a myriad of gene expres-
sion programs and essential cellular processes unique to each cell type. It should be kept 
in mind that the human genome has a very complex organization and the genetic material 
within chromatin is in a constant dynamic motion, in part because genes are being con-
tinuously activated or deactivated with biologically useful divalent metal ions including 

Figure 1. Aluminum (Al3+) and adenosine triphosphate (ATP): (A) atomic and electronic structure of
aluminum; distribution of electrons (red spheres) in aluminum [Al3+; Al(III); atomic mass 26.9815;
neutral atom electron configuration: 1s22s22p63s23p1]; (B) potential interaction of highly electroposi-
tive trivalent aluminum [Al3+; Al(III)] with the α-, β-, and γ-phosphate of adenosine triphosphate
(ATP); this interaction strongly stabilizes ATP making it unusable for other biological reactions and/or
functions; Al3+ undergoes ligand exchange reactions much more slowly than most metal ions and
about ~105 times slower than Mg2+ [3–5]; other Al-ATP, aluminum–adenosine–diphosphate (Al-ADP)
and/or aluminum–adenosine–monophosphate (Al-AMP) and/or other coordination structures may
be possible under defined physiological situations [3–8,23–26].

3. Al3+, DNA and Linker Histone H1◦

In aqueous solutions, aluminum [Al3+; Al(III)] salts and hydroxides are exceptionally
potent aggregators of organic/biological molecules, often coalescing molecular species to
the point that they precipitate out of solution. In fact aluminum, as alum [potassium alu-
minum sulfate; KAS; KAl(SO4)2·12 H2O] is used globally to aggregate organic/biological
impurities in turbid drinking water in order to precipitate them and to clarify an unappeal-
ing cloudy water product into a clear, finished water product [3,7,11–13]. To accomplish
this, raw waters are treated with alum that serves as a flocculant; raw water often holds
tiny suspended particles that are very difficult to filter and remove, and alum causes them
to clump together so that they can settle out of the water and be easily trapped by standard
filtration methods [12–14]. Interestingly, the speciation of aluminum is often transformed
during the processes of coagulation, flocculent formation, filtration and sedimentation and
the use of aluminum in the purification of drinking water has long been criticized due to
potentially toxic and especially neurotoxic effects on human biology and physiology, and
particularly neurobiology and neurophysiology [13–15].
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At the molecular level aluminum has a remarkable effect on the compaction of DNA
and chromatin misfolding into higher order structures, effects that are not observed when
natural chromatin is treated with other bioavailable divalent or trivalent metals such as
Mg2+, Cu2+, Ca2+, Mn2+, Fe2+, Fe3+ or Cr3+ [16–19]. Chromatin is essentially the assembly of
genomic DNA, DNA-binding proteins and other nucleoproteins packaged into the nucleus
of eukaryotic cells which together are crucial in regulating a myriad of gene expression
programs and essential cellular processes unique to each cell type. It should be kept in mind
that the human genome has a very complex organization and the genetic material within
chromatin is in a constant dynamic motion, in part because genes are being continuously
activated or deactivated with biologically useful divalent metal ions including Ca2+, Mg2+

and/or Mn2+ [20–22]. One well-studied aspect of aluminum is its interaction with nucleic
acids, specifically RNA, DNA and chromatin and aluminum’s second-to-none capability to
irreversibly compact nucleic acid-protein complexes [16–18]. The ability of aluminum to
alter DNA stability, topology and conformation and compact chromatin ultimately results
in quenching the natural actions of the RNA polymerases (RNAPs). These RNAPs normally
transcribe DNA and chromatin into messenger RNA (mRNA) and other RNA species that
include ribosomal RNA (rRNA), small non-coding RNA (sncRNA), transfer RNA (tRNA)
and microRNA (miRNA), all of which are involved in the complex regulation of eukaryotic
gene expression [8–10,19,23–26].

Some major studies from our laboratories and those of our colleagues over the last 38
years have focused on human linker histones, sometimes referred to as the H1 linker histone
family and their binding to DNA in the presence of aluminum salts [2–7,11–18,23–25,27–30].
Histone H1′s and the linker histones are a family of dynamic DNA-binding and chro-
matin compacting nucleoproteins composed of multiple subspecies each having a unique
amino acid sequence essential for higher-order chromatin organization and the regula-
tion of gene transcription. The electrostatic binding of chromatin H1 linker proteins
promotes a higher order chromatin compaction and induces a shift from transcribed ‘eu-
chromatin’ into silent ‘heterochromatin’, sometimes referred to as ‘compacted’ or ‘heavy
chromatin’. Using electrostatic affinity experiments, high-field 19.6T 27Al solid-state MAS
NMR spectroscopy, computer-assisted modelling, bond angle, length and strength algo-
rithms and statistical analysis a model involving the H1 linker family subspecies H1◦

binding to DNA, our group devised an atomic-molecular model of H1◦-DNA binding
which may explain the increased compaction of the genetic material as is observed in
both experimental aluminum-induced encephalopathy and dialysis dementia as well as
in AD-affected brain (Figure 2) [16–18,32–34]. This H1◦-DNA binding model involves the
unique adjacent aspartic-98 (Asp98; D98) and glutamic-99 (Glu99; E99) amino acid residues
of the ~21.4 kDa, ~194 amino acid human H1◦ and one of the many accessible phosphate
groups of an accessible ‘open’ region of promoter DNA (https://www.ebi.ac.uk/interpro/
entry/IntePro/IPR005819/; https://www.genecards.org/cgi-bin/carddisp.pl?gene=H1-0;
https://www.degruyter.com/document/doi/10.1515/BC2005.064/html (last accessed on
13 June 2022); Figure 2). The unscheduled and pathogenic binding of specific chromatin
proteins such as the linker histone H1◦ and perhaps other nucleoproteins, and DNA con-
densing agents such as aluminum to this natural and highly dynamic system appears
to shut down the homeostatic expression of the genetic material with an ensuing re-
duction in the generation of mRNA and other types of RNA as is widely observed in
aluminum-treated human neurons in primary cell culture and in multiple neurological
disease states [3,10,17,18,20,28].

https://www.ebi.ac.uk/interpro/entry/IntePro/IPR005819/
https://www.ebi.ac.uk/interpro/entry/IntePro/IPR005819/
https://www.genecards.org/cgi-bin/carddisp.pl?gene=H1-0
https://www.degruyter.com/document/doi/10.1515/BC2005.064/html
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Figure 2. Al3+, DNA and linker histone H1◦- Proposed 3-dimensional (3D) model for increased
stability of H1◦–DNA interaction in the presence of hydroxylated Al3+- hypothetical interaction of
asp98 and glu-99 (D98-E99) of the ~21.4 kDa, ~194 amino acid human H1◦, aluminum and high
probability target DNA in the 5′ region of the single copy human NF-L promoter; human brain specific
H1 linker histones provide unique sites for protein amino acid–aluminum–DNA coordination; such
structures may be responsible for the observed increase in binding of linker histones in aluminum-
treated neocortical nuclei or in AD brain; such structures would be expected to increase the affinity of
linker histones for DNA and increase and stabilize chromatin compaction. One consequence of the
enhanced stability of deoxyribonucleoprotein complexes in AD affected neocortical nuclei appears
to be a shift to higher order chromatin structure and an ensuing reduction in the transcription of
brain-specific genetic information [16–18,31–34]; figure adapted from Figure 30 in reference [32].

4. Al3+, Protein Misfolding and the PrPc to PrPsc Transition in Neurodegenerative Disease

Certain naturally occurring brain- and CNS-abundant peptides and proteins including
the microtubule-associated protein tau (MAPT) and the 42 amino acid amyloid beta (Aβ42)
peptide have the ability over time and under pathological conditions to assume atypical
conformations, thereby altering their normal biological structure and function [34–41].
This causes these brain-enriched species to assume pathological conformations causing
them to aggregate into highly insoluble, pro-inflammatory and neurotoxic intracellular
lesions, defining the processes known as ‘conformational disease’, ‘protein misfolding
disease’ or ‘protein aggregation disease’ [34–41]. Normally, PrPc, a ubiquitously expressed
glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein, is associated with
lipid raft components and functions as a signaling molecule during neuronal development,
synaptic plasticity and neuronal myelin sheath maintenance, with additional roles in metal
uptake and homeostasis [34–39]. The transition of PrPc to PrPsc supports the formation of
intracellular lesions whose abundance is linked to progressive inflammatory neurodegen-
eration, neurological dysfunction, neurobehavioral deficits and disturbances in cognition
and progressive dementia [34–44]. These classes of misfolded and aggregated host proteins
thereby contribute to the pathogenesis of several progressive, age-related and ultimately
lethal human neurodegenerative and dementing amyloidopathies and tauopathies. These
encompass a continuous spectrum of brain diseases that include multiple prion disor-
ders in mammals including ‘mad cow disease’ (bovine spongiform encephalopathy; BSE),
other human prion diseases that include Creutzfeldt–Jakob disease (CJD), Gerstmann–
Sträussler–Scheinker Syndrome (GSS) and fatal familial insomnia (FFI), Parkinson’s disease
(PD), triplet-repeat disease (TRD), Alzheimer’s disease (AD), frontotemporal dementia
(FTD) and other fatal neurodegenerative diseases known as transmissible spongiform
encephalopathies, which affect humans, deer, sheep and cattle [34–40].
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The molecular mechanism of the pathological phenomenon of neuronal protein mis-
folding lends support to the ‘prion hypothesis’, which predicts that the aberrant folding of
endogenous natural protein structures into unusual pathogenic isoforms can induce the
atypical folding of other similar brain-abundant proteins. This underscores the age-related,
progressive nature and potential transmissible and spreading capabilities of the aberrant
protein isoforms that drive these invariably fatal neurological syndromes. Divalent metals
are known to promote PrPsc formation, and evidence is emerging that a pathological
interaction of the environmentally abundant metal ions and/or their oxides with the amino
acids of prion proteins are involved in multiple protein misfolding pathways [39–50]. Sev-
eral independent lines of evidence lend support for an effect of environmental metals,
metal ions and their oxides on the PrPc to PrPsc transition and come from a number of
independent experimental observations:

(i) It is clear that there exist ‘intramolecular regions’ within cellular components
with a very high sensitivity and selectivity for aluminum interaction, but only for certain
energetically-favorable sites in protein or peptide subtypes/species and genetic environ-
ments. Several well-defined areas appear to occur in the oxygen-donor groups of ATP
(Figure 1) and in adjacent aspartic-glutamic acid (ASP-GLU) amino acid side groups of
certain human H1 linker histone subtypes (Figure 2). Interestingly, human prion pro-
tein, enriched in ASN and GLN residues also contains multiple ASP-GLU and GLU-ASP
amino acid motifs (https://www.uniprot.org/uniprot/P04156 (last accessed on 13 June
2022). The prion structural conversion from PrPc to PrPsc appears to be driven by the
presence of GLN- and ASN-enriched amino acid segments which account for the particle’s
priogenicity [45–48];

(ii) Mammalian prion diseases (PrD), especially of deer, sheep and cattle are trans-
missible via environmental routes and specifically through an environment-mediated
transmission via the lithosphere and SiAl, the latter representing the upper layer of the
earth’s crust consisting of soils enriched in aluminum silicate [43–46]. In fact, aluminum-
enriched soils are likely to be an important environmental reservoir of prion infectivity
and soil-immobilized prions have enhanced infectivity via the oral route compared to
unbound prions [45–48]. The oxide surface of soil particles that include aluminum- and
iron-oxides (Al2O3, Fe2O3) and various forms of environmentally- and physiologically-
available aluminum hydroxides (Al(OH)3; see Figure 2) have been implicated in PrP disease
transmission affecting prion transport, bioavailability and persistence in soil environments
([44–50]; unpublished observations). Quartz crystal microbalance with dissipation monitor-
ing analysis and optical waveguide light mode spectroscopy further indicate that based on
pH and ionic strength the efficiency of prion attachment to Al2O3 is in a manner consistent
with electrostatic forces dominating PrP interaction with these oxides; and that the presence
of the PrP N-terminal promotes strong electrostatic attachment to Al2O3. This suggests
that prions have an affinity for and tendency to associate with Al2O3 and other charged
minerals in soils and/or other metal oxides, again underscoring the attraction of PrP for
aluminum and other metal oxide surfaces [46–50];

(iii) Tau proteins are misfolded and aggregated in the tauopathies that include AD
and FTD; accelerated tau aggregation, apoptosis and neurological dysfunction are induced
by a chronic oral administration of aluminum in multiple murine models of tauopathy and
induced inflammatory neurodegeneration [51–59];

(iv) Multiple independent laboratories have studied the effects of supplementing the
diets of amyloid-over-expressing transgenic murine models of AD including the Tg2576,
APP/PS1, 5xFAD series with aluminum (as chloride, lactate, maltolate or sulfate) and
have evaluated the impact of ingested aluminum salts with pathological outcome [5,7,
10,26,29,41–44,47,51–59]. A general consensus of the results of these studies is that the
presence of aluminum in the diets of TgAD murine models enhances neurodegenerative
pathology by progressively intensifying the prevalence of oxidative stress and by increasing
the generation of Aβ42 peptides, accelerating Aβ42 oligomerization, amyloidogenesis,
aggregated tau and/or senile plaque and NFT deposition [5,7,10,25,26,42–44,52–59];

https://www.uniprot.org/uniprot/P04156
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(v) Aluminum-fed TgAD models also exhibit an up-regulation in the abundance of
pro-inflammatory and pathogenic microRNAs (miRNAs) many of which are involved
in amyloidogenesis and neuroinflammation, and are the same miRNA species as those
observed to be up-regulated in the brain and CNS of patients suffering from several age-
related neurodegenerative disorders [10,18,52–54,57]; and

(vi) Using Western gel Tris-glycine sodium-dodecyl sulfate (TGSDS)-based electrophoretic
analysis, immunoblotting (to distinguish between the PrPc and PrPsc isoforms), immuno-
cytochemistry, immune-fluorescence using PrPsc Antibody (3F4; Alexa Fluor® 700) Novus
Biologicals; Centennial, CO, USA; CD230 (PrP) monoclonal antibody (4D5), Invitrogen
ThermoFisher Scientific, Waltham, MA, USA and others] and computer-aided algorithms,
statistical and imaging analysis, preliminary unpublished evidence from our laboratory
suggests that aluminum (as aluminum sulfate; Al2(SO4)3) at nanomolar concentrations
strongly promotes a shift in conformation from the PrPc into the PrPsc isoform both in vitro
and in human neuronal-glial (HNG) cells in primary co-culture. As such aluminum salts
may be an integral component in the molecular-metallic mechanism involved in inducing
protein misfolding disease (see manuscript text; Figure 3). Taken together these findings
continue to underscore a potential role for aluminum salts in driving neurotoxicity and
neuropathological mechanisms associated with PrPc- to PrPsc-type protein transitions and
the initiation and/or propagation of progressive, age-related neurological and neurodegen-
erative disease states.

1 

 

 
A 

 
B 

 Figure 3. Al3+ and the prion PrPc to PrPsc transition in neurodegenerative disease-prion disease
(PrD) in mammals appears to be caused by a conformational transition from the cellular prion
protein’s native conformation (PrPc) into a pathological isoform called “prion protein-scrapie” (PrPsc);
multiple prion-associated neurodegenerative disorders are a consequence of protein misfolding,
aggregation, and spread; (A) graphical representation of the scheme of the structural transition
of the prion protein-cellular (PrPc) native form to the prion-scrapie isoform PrPsc; (B) model of
the structure of the α-helical-enriched cellular prion protein (PrPc; red and green alpha-helices)
to the pathological (abnormal) β-pleated sheet-enriched prion protein (PrPsc; red and green anti-
parallel arrows); published evidence indicates that trivalent aluminum (Al3+; Al(III)) exacerbates both
amyloid formation into insoluble aggregates from naturally-occurring Aβ peptides and increases
the rate of the onset of AD-type symptomology in transgenic murine models of AD (TgAD); AD is a
complex neurological disorder and unique in that it may represent a ‘double prion’ disorder involving
both aggregated tau proteins (as a tauopathy) and Aβ peptides (as an amyloidopathy) [34–38];
preliminary monoclonal PrPsc antibody-based evidence further suggests that trivalent aluminum
(Al3+; Al(III)) also promotes the misfolding of PrPc into the PrPsc isoform (see manuscript text);
structures adapted from references [3,34].
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5. Discussion

There has long been an interest in aluminum as a pathogenic factor in human biology,
and especially in neurobiology and neurology, largely because: (i) of aluminum’s unusually
high positive charge density, unique biochemical and biophysical properties under physio-
logical conditions and within complex biological systems; (ii) this metallotoxin’s ubiquity
as the most abundant metal in the earth’s biosphere and enrichment in naturally-occurring
biological systems; (iii) of aluminum’s wide spread bioavailability in drinking water, food,
medicines, cosmetics and other consumer products and in atmospheric dust and groundwa-
ter that promotes extensive human exposure; (iv) multiple investigators have demonstrated
aluminum’s extreme neurotoxicity on multiple neurobiological systems, even at very low
ambient (nM or lower) levels; and (v) of aluminum’s ability to aggregate naturally occur-
ring cellular proteins and peptides, a process known to drive neuro-inflammation, alter
neurogenesis and neuronal cytoarchitecture and induce significant memory and learning
deficits in multiple experimental murine models [55–61].

Although aluminum is especially abundant in the biosphere and is remarkably well
tolerated by all plant and animal species, no organism is known to use aluminum in any
active metabolic process. There is, however, abundant evidence for a biological role for
aluminum in the packaging of genes into inactive chromatin conformation [2,3,16,17,32].
Biologically, this is very important because, for example, while all cells of the human body
contain the same number and distribution of genes, not all genes are expressed in every
individual cell type. For instance, the α-crystallin genes of the eye are not expressed in
erythrocytes and the hemoglobin genes of immature erythrocytes are not expressed in
the eye, but instead are apparently compacted away into dense, inactive ‘heterochromatic’
configurations by targeted aluminum binding. In fact, aluminum has the highest capability
for compacting light transcriptionally active ‘euchromatin’ into inactive ‘heterochromatin’
of any divalent or trivalent metal complex known [16–19,23,57]. The potential of additional
biological roles for aluminum is of continuing interest and studies continue in both human
health and disease and in tissue culture and model animal systems.

6. Conclusions

In conclusion, the pathological role for aluminum in neurological disorders has been
controversial largely due to an incomplete understanding of aluminum’s precise mode of
interaction with select biomolecules and its targeting to specific biological compartments.
Many independent researchers have uncovered highly interactive aspects of aluminum
neurotoxicity and the precise details of these molecular-metallic pathological mechanisms
are becoming increasingly clear. Several seriously understudied areas of aluminum neu-
rotoxicology are: (i) the interaction of aluminum with other environmentally-available
metals such as mercury, which together exhibit significantly synergistic and neurotoxic
effects [62,63]; (ii) aluminum’s effects on nucleoprotein modifications including the epi-
genetic modification of histones and other DNA-associated nucleoproteins [64]; (iii) the
association and/or interaction of aluminum-modified and/or misfolded proteins with
the pathological hallmarks of neurodegenerative disease that include prions, Aβ peptides,
tau proteins and α-synuclein [34–38,65]; (iv) the neutralization of aluminum neurotoxicity
and genotoxicity including multiple chelation approaches and the use of both synthetic
and naturally occurring compounds [66–69]; and (v) the potential for the interaction of
aluminum with other oxygen-donor ligands which occur at relatively high densities within
the natural cellular and nuclear compartments of all eukaryotic organisms.
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