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Abstract: The kidney and the vasculature play crucial roles in regulating blood pressure. The ubiquitin
proteasome system (UPS), a multienzyme process mediating covalent conjugation of the 76-amino
acid polypeptide ubiquitin to a substrate protein followed by proteasomal degradation, is involved in
multiple cellular processes by regulating protein turnover in various tissues. Increasing evidence
demonstrates the roles of UPS in blood pressure regulation. In the kidney, filtered sodium is reabsorbed
through diverse sodium transporters and channels along renal tubules, and studies conducted till
date have provided insights into the complex molecular network through which ubiquitin ligases
modulate sodium transport in different segments. Components of these pathways include ubiquitin
ligase neuronal precursor cell-expressed developmentally downregulated 4-2, Cullin-3, and Kelch-like
3. Moreover, accumulating data indicate the roles of UPS in blood vessels, where it modulates nitric
oxide bioavailability and vasoconstriction. Cullin-3 not only regulates renal salt reabsorption but
also controls vascular tone using different adaptor proteins that target distinct substrates in vascular
smooth muscle cells. In endothelial cells, UPS can also contribute to blood pressure regulation by
modulating endothelial nitric oxide synthase. In this review, we summarize current knowledge
regarding the role of UPS in blood pressure regulation, focusing on renal sodium reabsorption and
vascular function.
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1. Introduction

Hypertension is not only one of the most frequent diseases in the world, but it is also a key risk
factor for cardiovascular disease and renal dysfunction. The kidney plays a pivotal role in the regulation
of body fluid levels and blood pressure (BP), and an impaired kidney function comprises a major
mechanism that alters the salt sensitivity of BP [1]. Because renal salt handling is critical for maintaining
an independent life for terrestrial mammals, these animals have developed highly differentiated
diverse tubule cells that are involved in the transport of sodium and other ions. The major renal
sodium transporters and channels include Na+/H+ exchanger isoform 3 (NHE3) in the proximal tubule
(PT), Na+-K+-2Cl− cotransporter (NKCC2) in the thick ascending limb (TAL), Na+-Cl− cotransporter
(NCC) in the distal convoluted tubule (DCT), and epithelial sodium channel (ENaC) and Cl−/HCO3

−

exchanger pendrin in the connecting tubule (CNT) and the collecting duct (CD). The significance
of several of these transporters and their regulators in the renal nephron has been confirmed by
the monogenic hypertensive or hypotensive disorders [2–4], as well as by the clinical efficacy of the
pharmacological agents that block these sodium transport mechanisms.

In addition to the role of the kidney, it is well known that the dysregulation of vascular function
significantly contributes to BP elevation [5,6]. The arterial wall consists of intimal endothelial cells,
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vascular smooth muscle cells, and adventitia. Vascular endothelial cells (VECs) play vital roles in
regulating diverse biological functions by secreting various vasoactive factors, including nitric oxide
(NO). NO, a strong vasodilator that tightly modulates vascular function, is primarily produced by
endothelial NO synthase (eNOS) in endothelial cells [7]. Studies have demonstrated that both genetic
and pharmacological ablation of eNOS elicits significant BP elevations [8–10]. Vascular smooth muscle
cells (VSMCs) also play important roles in controlling the tonus of blood vessels, thereby regulating BP
levels [11].

Ubiquitylation is a stepwise process involving three classes of enzymes. Ubiquitin-activating
enzymes (E1s) activate the ubiquitin molecule combined with ATP hydrolysis [12]. Ubiquitin is then
transferred to ubiquitin-conjugating enzymes (E2s) with an active cysteine [13,14]. Following this,
ubiquitin is transferred to substrates via the ubiquitin protein ligases (E3s). Humans have only one
E1, ~40 E2s, and 500–1000 of E3s [15–17]. Two types of E3s exist, termed the homologous to the
E6-AP C terminus and the really interesting new gene (RING). E3s provide substrate specificity to
the ubiquitin system and recognize multiple substrates through different protein–protein interactions,
thus regulating multiple cellular processes, including DNA damage repair, cell cycle progression,
development, and signal transduction. Given that the ubiquitin proteasome system (UPS) enables
adaptation to physiological challenges by controlling the protein abundance of target substrates,
the involvement of UPS in BP regulation has attracted extensive research attention. In this article,
we review the role of UPS in BP homeostasis, especially focusing on sodium transporters of the kidney
and vascular functions (Figure 1).
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2. Role of UPS in the Regulation of Tubular Function in the Kidney

2.1. Proximal Tubule

Among the salt transport mechanisms in the PT, NHE3 has a major role in sodium reabsorption
in this segment [18,19]. Human NHE3 contains a PY motif that binds to ubiquitin ligase neuronal
precursor cell-expressed developmentally downregulated 4-2 (NEDD4-2), and this interaction can
modulate cell surface expression and internalization of NHE3 [20], although it is unclear whether
NHE3 is directly ubiquitylated by Nedd4-2. It is interesting to note that this interaction appears to be
exclusive to humans and several primates, which is because the PY motif in NHE3 was not identified in
other mammals in the alignment analysis. Hatanaka et al. reported that angiotensin II signaling alters
NHE3 levels, thereby regulating salt sensitivity [21]. Using subtotal nephrectomized mice, they showed
that NHE3 abundance was lower in subtotal nephrectomized mice receiving azilsartan, an angiotensin
II receptor 1 (AT1R) blocker, than in those receiving vehicle and that lactacystin, a proteasome inhibitor,
blocked the azilsartan-induced decrease in NHE3 expression. These data indicate that NHE3 levels are
regulated by UPS that are modulated by AT1R signaling. It currently remains unknown whether the
interaction between NHE3 and NEDD4-2 is regulated by angiotensin II.

2.2. Thick Ascending Limb

NKCC2, a target of loop diuretics such as furosemide, regulates sodium reabsorption in the
TAL [22]. Regarding the UPS-mediated modulation of NKCC2, Wu et al. reported a role of UPS in
the regulation of NKCC2 abundance in a high-salt condition [23]. They used a cytochrome P450 4F2
transgenic mouse model, which exhibited an increased production of 20-hydroxyeicosatetraenoic acid
(20-HETE), a regulator of vascular tone and renal sodium reabsorption, by blocking Ca2+-activated K+

channels [23]. Compared with wild-type mice, the transgenic mice displayed a profound decrease
in renal NKCC2 abundance in response to a high-salt diet. This effect was not accompanied by the
changes in NKCC2 mRNA expression but increased the abundance of ubiquitylated NKCC2. NKCC2
interacted with NEDD4-2, suggesting a role of this ubiquitin enzyme in the regulation of NKCC2
abundance. Another study reported that dibutyryl cyclic GMP (db-cGMP), a cell-permeable cGMP
analog, decreased NKCC2 levels by increasing NKCC2 ubiquitylation and proteasomal degradation
in rats [24]. In that study, db-cGMP induced a significant reduction in surface NKCC2 levels in
suspensions of rat medullary TALs, which was inhibited in the presence of the proteasome inhibitor
MG132. Furthermore, that study reported that NKCC2 levels were constitutively ubiquitylated and
that the process was promoted by db-cGMP [24]. Pathways that modulate NKCC2 ubiquitylation
at the downstream of cGMP signaling remains to be determined. Given that phosphorylation can
regulate the interaction between substrates and ubiquitin ligases, roles of cGMP-dependent kinase
might be worth exploring in future studies.

2.3. Distal Convoluted Tubule

2.3.1. KLHL3-Mediated WNK4 Ubiquitylation and NCC

NCC, a target of thiazide diuretics, modulates sodium reabsorption in the DCT, and accumulating
evidence has demonstrated its importance in controlling BP [25]. Familial hyperkalemic hypertension,
also known as pseudohypoaldosteronism type II (PHAII) or Gordon syndrome, is characterized
by salt-sensitive hypertension, hyperkalemia, and metabolic acidosis [26–28]. The phenotypes in
these patients can be reversed by thiazide treatment, thus suggesting the involvement of NCC in the
pathogenesis of PHAII. Till date, mutations in four genes are known to cause PHAII, which include
serine-threonine kinase with-no-lysine (WNK) 1 and WNK4 and Cullin 3 (CUL3) and Kelch-like
3 (KLHL3), the components of the cullin-RING ubiquitin ligase (CRL) complex [3,28,29]. WNKs are
substrates for the KLHL3-CUL3 ligase complex. WNKs phosphorylate the downstream kinases
STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress-responsive 1 [30],



Int. J. Mol. Sci. 2020, 21, 5358 4 of 13

which in turn increase the levels of phosphorylated NCC, an active form of NCC. We and others
have identified by mass spectrometry and co-immunoprecipitation that KLHL3 normally binds to
WNK1 and WNK4 [4,31–33]. KLHL3-WNK4 binding induces ubiquitylation in at least 15 specific sites,
leading to reduced WNK4 levels [4]. KLHL3 is phosphorylated at serine 433 (KLHL3S433) in the Kelch
domain, which is regulated by angiotensin II–protein kinase C signaling [34]. Of interest, this site
is recurrently mutated in independent PHAII families, and phosphorylation or single amino acid
substitution of this site impairs the binding of KLHL3 with WNKs, resulting in its accumulation and
activation of downstream signaling. It has also been reported that Akt and protein kinase A (PKA),
key downstream substrates of insulin and vasopressin signaling, respectively, increase phosphorylated
KLHL3S433 [35]. In addition, calcium-sensing receptor signaling can modulate KLHL3-WNK4-SPAK
pathway by phosphorylating KLHL3 and WNK4 [36,37]. Conversely, phosphatase calcineurin is
capable of dephosphorylating KLHL3 phosphorylation at KLHL3S433 [38]. These mechanisms probably
play important roles in several pathological conditions such as low-K+-induced BP elevation and
hypertension associated with obese diabetes mellitus [39,40]. CRLs are activated by neddylation of
cullin. It has been demonstrated that CUL3 is also neddylated, and that its neddylation status is
regulated by multisubunit deneddylase COP9 signalosome [41,42].

2.3.2. NEDD4-2-Mediated Ubiquitylation and NCC

Accumulating data also indicate that the ubiquitin ligase NEDD4-2 regulates NCC. Arroyo et al.
demonstrated that in cultured cells, NEDD4-2 interacts with NCC, resulting in its ubiquitylation
and reduced cell surface expression [43]. They also observed that serum/glucocorticoid-regulated
kinase 1 (Sgk1) prevented the NEDD4-2-mediated deactivation of NCC in a kinase-dependent manner,
indicating that Sgk1 is also involved in the NEDD4-2-mediated NCC regulation [43]. The role of
Sgk1 in regulating NEDD4-2 and NCC has been demonstrated in vivo in Sgk1 knockout mice [44].
In another study, tetracycline-inducible, nephron-specific NEDD4-2 knockout mice exhibited increased
NCC protein levels and salt-sensitive hypertension [45]. The mRNA expression of NCC remained
unchanged, suggesting that NEDD4-2 regulates NCC abundance at the post-transcriptional level.
Roy et al. reported that NEDD4-2 regulates NCC function through WNK1 [46]. They identified two
alternatively spliced exons within a proline-rich region of WNK1 that contain PY motifs. NEDD4-2
binds to the PY motifs of WNK1, ubiquitylating WNK1 and targeting it for proteasomal degradation [46].
Dysregulation of NEDD4-2 has been implicated in the pathophysiology of salt-sensitive hypertension
in a model of chronic kidney disease, which resulted in NCC activation through WNK1/SPAK [47]. In a
recent study, Wu et al. reported that NEDD4-2 modulated NCC levels through a mechanism involving
basolateral K+ channel Kir4.1 (KCNJ10) [48]. The authors observed that kidney-specific deletion
of NEDD4-2 hyperpolarized the DCT membrane, accompanied by the increase in NCC abundance.
These changes were abolished in kidney-specific NEDD4-2/KCNJ10 double-knockout mice, leading to
the suppression of NCC and blunted thiazide-induced natriuresis [48]. These data demonstrate a role
of Kir4.1 in the NEDD4-2-mediated regulation of NCC.

2.4. Connecting Tubule and Collecting Duct

2.4.1. NEDD4-2-Mediated Ubiquitylation and ENaC

ENaC, consisting of three subunits, α, β, and γ, is a primary regulator of sodium reabsorption
in the CNT and CD [49,50]. It has been reported that gain-of-function mutations of SCNN1B and
SCNN1G cause Liddle’s syndrome, which is characterized by salt-sensitive hypertension, hypokalemia,
metabolic alkalosis, and low aldosterone levels [51–54]. This phenotype is induced by the disruption or
elimination of PY motifs in the β- and γ-subunits of ENaC. Provided that NEDD4-2 ubiquitylates ENaC
and regulates its membrane expression and activity [55–58], these mutations cause both increased
channel expression and intrinsic activity with a consequent increase of sodium reabsorption. When the
renin-angiotensin-aldosterone system (RAAS) is inactivated, NEDD4-2 continuously ubiquitylates
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ENaC and downregulates ENaC abundance. When RAAS is activated, aldosterone-induced Sgk1
phosphorylates NEDD4-2, resulting in the recruitment of 14-3-3 adaptor proteins. These proteins inhibit
the association between NEDD4-2 and ENaC, thereby leading to the elevation of ENaC levels [59,60].
Consistently, several studies have demonstrated that mice lacking functional NEDD4-2 exhibit high
levels of ENaC and salt-sensitive hypertension [61,62]. In humans, several reports indicated that
common variants in NEDD4L (encoding NEDD4-2) are associated with BP disorder [63–66].

2.4.2. NEDD4-2 and Pendrin

Although there is limited information available regarding the role of UPS in the intercalated cells
(ICs) of CNT and CD, a recent study has demonstrated a role of NEDD4-2 in regulating electrolyte
transport mechanisms in these cells [67]. Nanami et al. examined the phenotype of IC-specific NEDD4-2
knockout mice and found that these mice displayed increased pendrin abundance and Cl−/HCO3

−

transport in the ICs, accompanied by the elevation of BP [67]. Furthermore, pendrin gene ablation was
found to eliminate the BP increase observed in global NEDD4-2 knockout mice. These data indicate
that the ubiquitin ligase NEDD4-2 in ICs is also involved in electrolyte transport and regulation of BP.

3. Role of UPS in the Regulation of Vascular Function

3.1. Proteasome Inhibitors and Cardiovascular Disorders

It is well known that the vasculature is an important determinant of BP. UPS ubiquitously regulates
tissue function and can regulate BP through its effect on blood vessels. Proteasome inhibitors have
been clinically used as therapeutic agents for multiple myeloma. Carfilzomib, the first irreversible
proteasome inhibitor, was found to bind selectively to its target, the chymotrypsin-like activity of the
20S proteasome [68]. It exhibited a higher efficacy in the treatment of patients with relapsed and/or
refractory multiple myeloma when applied in combination with dexamethasone with or without
lenalidomide [69,70]. Since its approval during the year 2010, there have been increasing reports of
carfilzomib-associated cardiovascular adverse events, including hypertension. A systematic review
and meta-analysis showed that hypertension (12.2%) was most common among carfilzomib-associated
cardiovascular adverse events [71], supporting the involvement of UPS in BP control.

3.2. Vascular Endothelial Cells

With respect to the mechanisms of carfilzomib-associated hypertension, vascular endothelial
dysfunction may play a vital role [71–73]. It is known that carfilzomib elicits renal toxic effects
as well as microangiopathy, which is believed to be mediated by endothelial dysfunction [74–76].
The key feature of vascular endothelial dysfunction is the decreased NO bioavailability, which is
caused due to low NO production and/or increased consumption. Provided that endothelial eNOS
is responsible for most of the vascular NO produced [77], its dysfunction results in the impairment
of endothelium-dependent vasodilatation [78]. Tetrahydrobiopterin (BH4) is known as an essential
cofactor for eNOS-mediated NO synthesis [79]. GTP cyclohydrolase (GTPCH), the rate-limiting enzyme
involved in BH4 synthesis, has been reported to be regulated by UPS, and that cigarette smoke extract
diminished GTPCH abundance that was inhibited by the proteasomal inhibitor MG132 [80]. This BH4
depletion in turn induced eNOS uncoupling with the loss of NO generation and increased superoxide
production, resulting in VEC dysfunction [80]. There are also data indicating that UPS-mediated
degradation of GTPCH is associated with oxidative stress in angiotensin II-induced hypertension [81]
and diabetes mellitus [82]. It was observed that angiotensin II induced the proteasomal degradation
of GTPCH via tyrosine nitration of an important regulatory subunit of 26S proteasome, which was
triggered by NADPH oxidase activation and generation of free radicals [81]. In another study,
streptozotocin-induced diabetic mice displayed reduced eNOS activity, which was restored by the
administration of a proteasome inhibitor through the inhibition of the proteasome-dependent GTPCH
reduction [82]. These results imply that the UPS-mediated degradation of GTPCH underlies VCE
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dysfunction through eNOS regulation. In fact, there have been several reports demonstrating that
proteasome inhibitors can improve the function of VECs [83–85]. The role of UPS in endothelial
function may vary depending on the disease state and stage, and further studies are required to
investigate the role of UPS in VECs.

3.3. Vascular Smooth Muscle Cells

The UPS in VSMCs can also regulate BP. Peroxisome proliferator-activated receptor gamma
(PPARγ) is a nuclear regulator superfamily of transcription factors, which is an important regulator of
lipid and glucose metabolism. PPARγ is expressed in numerous tissues, including VSMCs. Importantly,
studies have shown that mutations (P467L or V290M) in the ligand-binding domain of PPARγ cause
not only insulin resistance but also early-onset hypertension [86,87], indicating its role in BP regulation.
Moreover, dominant negative mice model of PPARγ (S-P467L) in VSMCs developed arterial stiffness
and vascular dysfunction, accompanied by hypertension [88,89]. These results indicate that PPARγ in
VSMCs may play an essential role in regulating BP.

Recent studies have suggested that the effect of PPARγ in VSMCs is mediated by its downstream
effector molecule, Rho-related BTB domain-containing protein 1 (RhoBTB1) [90]. RhoBTB1, a new
subfamily of Rho GTPases [91], is expressed in various tissues [92]. Several genome-wide association
studies have demonstrated that RhoBTB1 loci are associated with BP [93,94]. RhoBTB1 interacts with
the N-terminal of CUL3 through its first BTB domain [95]. Recently, Mukohda et al. demonstrated
that RhoBTB1 protects against hypertension and arterial stiffness by restoring the activity of
phosphodiesterase 5 (PDE5) [89]. They generated tamoxifen-inducible and VSMC-specific RhoBTB1
transgenic mice (S-RhoBTB1) and found that Rho-BTB1 expression was reduced in S-P467L mice,
whereas S-P467L/S-RhoBTB1 mice exhibited the restoration of RhoBTB1 expression and improvement
of vasocontraction in VSMCs, which was accompanied by the reduced PDE5 activity, leading
to the attenuation of hypertension. In addition, tadalafil, a PDE5 inhibitor, reduced BP in the
S-P467L/S-RhoBTB1 mice. It is interesting to note that RhoBTB1 promoted PDE5 ubiquitylation in the
presence of CUL3, which was blunted upon treatment with an inhibitor (MLN4924) of neddylation,
a modification that is required for CUL3 activation. The authors concluded that RhoBTB1 is involved
in the PPARγ-mediated regulation of BP by regulating PDE5 activity through CUL3-dependent
ubiquitylation [89]. Accumulating data indicate that phosphodiesterase 3 (PDE3), another member
of the phosphodiesterase family, also critically regulates BP. Recent studies have demonstrated that
six missense mutations of PDE3A in six unrelated families with Mendelian hypertension exhibit
severe salt-independent but age-dependent hypertension [96]. In vitro analyses of mesenchymal
stem cell-derived VSMCs demonstrated that the mutations increased the PKA-mediated PDE3A
phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity [96].
Whether PDE3 is regulated through UPS needs to be determined.

CUL3 also mediates the ubiquitylation and degradation of RhoA by interacting with a BTB
domain-containing adaptor, BACURD [97], which regulates vascular contraction. It has been
demonstrated that hypertension-causing mutations in CUL3 impair RhoA ubiquitylation [98] and that
selective expression of mutant CUL3 in VSMCs results in augmented RhoA signaling and vascular
dysfunction, leading to elevation of BP [99,100].

4. Conclusions

In this review article, we have summarized the current evidence regarding the role of UPS in BP
regulation, especially focusing on sodium reabsorption in the kidney and vascular functions (Figure 1).
In the kidney, sodium reabsorption regulated by NEDD4-2 has been well characterized in principal
cells and has been extensively analyzed in other nephron segments. Studies have also demonstrated
the emerging roles of other mechanisms including CUL3 and KLHL3. In addition, accumulating
evidence reveals the involvement of vascular functions in UPS-mediated BP regulation. Given that
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UPS is present ubiquitously and elicits multiple functions, future investigation is necessary for the
complete elucidation of the precise role of UPS in modulating BP.
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Abbreviations

20-HETE 20-Hydroxyeicosatetraenoic acid
AT1R Angiotensin II type 1 receptor
BH4 Tetrahydrobiopterin
BP Blood pressure
CD Collecting duct
CNT Connecting tubule
CUL3 Cullin 3
DCT Distal convoluted tubule
E1 Ubiquitin-activating enzyme
E2 Ubiquitin-conjugating enzyme
E3 Ubiquitin protein ligase
ENaC Epithelial sodium channel
eNOS Endothelial NO synthase
GTPCH GTP cyclohydrolase
IC Intercalated cell
KLHL3 Kelch-like 3
NCC Na+-Cl− cotransporter
NEDD4-2 Neuronal precursor cell-expressed developmentally downregulated 4-2
NHE3 Na+/H+ exchanger isoform 3
NKCC2 Na+-K+-2Cl− cotransporter
NO Nitric oxide
PDE Phosphodiesterase
PHAII Pseudohypoaldosteronism type II
PKA Protein kinase A
PPARγ Peroxisome proliferator-activated receptor gamma
PT Proximal tubule
RhoBTB1 Rho-related BTB domain-containing protein 1
RING Really interesting new gene
Sgk1 Serum/glucocorticoid-regulated kinase 1
SPAK STE20/SPS1-related proline-alanine-rich protein kinase
TAL Thick ascending limb
UPS Ubiquitin proteasome system
VEC Vascular endothelial cell
VSMC Vascular smooth muscle cell
WNK With-no-lysine
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