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Abstract. Myoblast transplantation has been consid- 
ered a potential treatment for some muscular disorders. 
It has proven very successful, however, only in immu- 
nodeficient or immunosuppressed mice. In this study, 
myoblasts from C57BL10J +/+ mice were trans- 
planted, with no immunosuppressive treatment, in the 
tibialis anterior of fully histocompatible but dystrophin- 
deficient C57BL10J mdx/mdx mice. One to 9 months 
after transplantation, the success of the graft was evalu- 
ated by immunohistochemistry. All the transplanted 
mice (n -- 24) developed dystrophin-positive fibers fol- 
lowing transplantation. Depending on myoblast cul- 
tures, transplantations, and time of analysis, the mice 
presented 15 to 80% of dystrophin-positive fibers in 
transplanted muscles. These fibers were correctly ori- 
ented and they were either from donor or hybrid origin. 
The dystrophin-positive fibers remained stable up to 
9 months. 

Possible humoral and cellular immune responses 
were investigated after grafting. Antibodies directed 
against dystrophin and/or muscle membrane were de- 
veloped by 58% of the mice as demonstrated by immu- 
nohistochemistry and Western blotting. Despite the 
presence of these antibodies, dystrophin-positive fibers 
were still present in grafted muscles 9 months after 
transplantation. Moreover, the muscles did not show 
massive infiltration by CD4 cells, CD8 cells, or mac- 
rophages, as already described in myoblast allotrans- 
plantations. This lack of rejection was attributed to the 
sequestrated nature of dystrophin after fiber formation. 
These results indicate that myoblast transplantation 
leads to fiber formation when immunocompetent but 
fully histocompatible donors and recipients are used 
and that dystrophin incompatibility alone is not suffi- 
cient to induce an immunological rejection reaction. 

S 
KELETAL muscle fibers are multinucleated giant syn- 

citia formed during embryogenesis and growth by 
the fusion of hundreds or even thousands of precur- 

sor cells named myoblasts (Allbrook, 1981; Campion, 
1984). Some of these myoblasts do not immediately partic- 
ipate in the fusion process but remain attached to muscle 
fibers under the basal lamina sheet as quiescent stem cells; 
these are termed satellite cells, and their role is to contrib- 
ute to fiber regeneration after metabolic or mechanical le- 
sions (Campion, 1984). This biological particularity has 
been used during the last 15 years in attempts to alleviate 
some muscular genetic diseases, such as Duchenne muscu- 
lar dystrophy (DMD) 1 (Law et al., 1990; Partridge, 1991; 
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1. Abbreviations used in this paper: Ab, antibody(ies); DMD, Duchenne 
muscular dystrophy; Dys, dystrophin; EDL, extensor digitorum longus; 

Karpati et al., 1993; Tremblay et al., 1993). Moreover, the 
implantation of genetically modified myoblasts has been 
explored for the treatment of genetic, inherited metabolic 
deficiencies (Blau et al., 1993). 

The mdx mouse, which constitutively lacks full-length 
dystrophin (Dys) expression because of a single-point mu- 
tation (Sicinski et al., 1989), is a good biochemical animal 
model for DMD and has been widely used to test the effi- 
cacy of various transplantation protocols, and successful 
myoblast transplantation procedures in mdx mice were 
first reported by the group of Partridge et a1.(1989). After 
injection, the normal myoblasts containing the normal Dys 
gene fuse together and/or with host myoblasts to form 
muscle fibers expressing Dys (Karpati et al., 1989; Par- 
tridge et al., 1989; Morgan et al., 1990, 1993; Huard et al., 
1994a,b; Kinoshita et al., 1994a,b). 

MHC, major histoeompatibility complex; NK, natural killer; TA, tibialis 
anterior. 
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To date, the results obtained in human clinical trials 
have been disappointing. Dys-positive fibers have been 
obtained in some patients (Huard et al., 1991, 1992; Law et 
al., 1990; Tremblay et al., 1993), and the normal Dys-cod- 
ing mRNA has been found in two patients after transplan- 
tation (Gussoni et al., 1992). Transient strength increases 
have been reported (Tremblay et al., 1993). Some patients 
developed antibodies (Ab) directed against donor myo- 
blasts and myotubes, even when donors and recipients 
were matched for class I and class II (DR) histocompati- 
bility antigens (Huard et al., 1992; Roy et al., 1993; Trem- 
blay et al., 1993). In some cases, Ab were capable of fixing 
complement proteins, thus lyzing the target cells in vitro 
(Tremblay et al., 1993). Some of the Ab detected in the 
plasma were directed against donor Dys (Huard et al., 
1992; Tremblay et al., 1993). These problems raised the 
question of the role of the immune system in myoblast 
transplantations. In the mouse, rejection is very rapid and 
efficient after major histocompatibility complex (MHC)- 
incompatible cell transplantation and involves both cellular 
and humoral immunity (Grounds et al., 1980; Watt et al., 
1984; Gu6rette et al., 1995; Huard et al., 1994a; Kinoshita 
et al., 1994b; Vilquin et al., 1994, 1995a,c). In some studies, 
the recipients were immunodeficient mice (nude/mdx mice; 
Partridge et al., 1989; Morgan et al., 1990, 1993, 1994), or 
tolerized mice (Grounds et al., 1980; Watt et al., 1982). 
Only partial success has been achieved using H2-compati- 
ble mice (Watt et al., 1984; Law et al., 1988b; Partridge et 
al., 1989; Labrecque et al., 1992). Various immunosuppres- 
sive agents or combinations have also been employed or 
compared (Watt et al., 1984; Law et al., 1988a; Karpati, 
1990; Labrecque et al., 1992; Huard et al., 1994a; Kinoshita 
et al., 1994a,b; Vilquin et al., 1994, 1995a,c). 

The number and viability of injected myoblasts, to- 
gether with the injection protocol and pretreatment of the 
muscle, are important problems to consider in animal 
models. Immunological reactions, however, have to be un- 
derstood and controlled because they should compromise 
myoblast transplantation whatever the protocol. In the 
present study, we addressed the question of the role of 
normal Dys itself in graft acceptance or rejection in the 
mouse. We used fully histocompatible animals. The only 
difference between these donors and recipients was the 
presence in donor myoblasts of the full-length normal Dys 
gene. As normal Dys protein expression would result in 
the presentation of new antigens to the recipient mouse, 
we wondered whether this new antigenicity could trigger 
an efficient immune reaction against fibers formed in part 
by the donor myoblasts, leading to rejection. We showed 
evidence of long-term implantation success but also the 
production of Ab directed against Dys. These Ab were un- 
able to participate in short-term or long-term efficient re- 
jection of the muscle fibers expressing normal Dys. This 
lack of rejection was attributed to the sequestrated nature 
of the antigens after fiber formation. These results are rel- 
evant to the general aims of normal or genetically modi- 
fied cell transplantation in experimental animal models. 

Materials and Methods 

Cell Cultures 
Mouse primary myoblast cultures were obtained from newborn skeletal 

muscle biopsies (Cossu et al., 1980; Vilquin et al., 1992). Briefly, the mice 
were killed, and the arms and legs skinned and cut into 1 mm 3 fragments, 
which were dissociated at 37°C under magnetic stirring, initially with colla- 
genase (600 IU/ml for 1 h; Sigma Chemical Co., St. Louis, MO) and then 
with trypsin (0.1% wt/vol for 30 min; GIBCO BRL, Gaithersburg, MD), 
dissolved in Ca z+- Mg2*-free HBSS. Each animal yielded 12-15 × 106 
ceils. The cell suspension was grown in 199 medium supplemented with 
15% FBS and a mixture of penicillin G (10,000 IU/ml) and streptomycin 
(10 mg/ml). Cells were harvested at 70% confluence, that is, 2 d after plat- 
ing, either for immediate grafting or for freezing until grafting. Prelimi- 
nary experiments indicated that frozen myogenic cells were as good as 
fresh cultures for transplantation in mice. Freezing was performed in 199 
medium containing 15% FBS and 10% DMSO. Different batches of pri- 
mary cell cultures have been used for this work. Desmin immunoperoxi- 
dase labelling indicated that the primary cultures contained, in general, 
30-40% myoblasts at the time of injection (personal results). The mice 
transplanted with different cell batches have been gathered under the let- 
ters A, B, C, and D. 

Animals 
Inbred normal C57BL/10SnJ +/+  and C57BL/10ScSn mdx/mdx mice 
(mdx) were purchased from Jackson Laboratories (Bar Harbor, ME) and 
reproduced in our animal facilities. Primary myoblast cultures from new- 
born +/+  mice were transplanted in 26 male mdx mice, 2-3 mo of age. 
This work was authorized by Laval University Animal Care Committee 
and conducted according to the Canadian Council on Animal Care. 

Cell Transplantations 
3 d before transplantation, the left hind legs of the mdx mice were Cobalt- 
irradiated (20 Gy). This level of irradiation has been shown to block host 
myoblast proliferation (Wakeford et al., 1991), thus making the mdx 
mouse a closer model to DMD patients. 1 d before transplantation, the 
left tibialis anterior (TA) was exposed and injected with 10 I~1 of notexin 
venom (5 ixg/ml), which has been shown to trigger muscle fiber degenera- 
tion without damaging myoblasts (Harris et al., 1975). On the day of trans- 
plantation, the cells were harvested by trypsinization or thawed, washed 
three times in HBSS, and concentrated as pellets. Cell viability was as- 
sessed using trypan blue staining. The left TA muscles were exposed and 
injected with ~4  x 106 viable cells suspended in 10 ixl of HBSS. Mice from 
group A received fresh cultures, and mice from other groups received fro- 
zen cells. 

Blood and Muscle Collections 
2-37 wk after transplantation, the host mice were killed under deep anes- 
thesia by intracardiac perfusion using sodium chloride (0.9%) containing 
heparin (2 IU/ml; Leo Laboratories, Ajax, ONT, Canada). Plasma were 
separated by centrifugation from the first 2 ml of perfusates. Grafted and 
contralateral untreated TA and extensor digitorum longus (EDL) were 
collected and immersed in a sucrose solution (30% wt/vol) overnight at 
4°C. Muscles were embedded in OCT compound, frozen in liquid nitro- 
gen, and serially sectioned at 8 ixm using a Zeiss cryostat. Series of sec- 
tions were separated by 180 ixm. Blood was also obtained from some mice 
at different times after grafting by retro-orbital puncture. 

Dystrophin Immunohistochemistry 
The endogenous peroxidase activity was first blocked in muscle sections 
using 1% hydrogen peroxide for 30 min. Nonspecific Ig binding was then 
blocked with a 10% serum mixture (i.e., containing 3.3% rabbit serum, 
3.3% horse serum and 3.3% FCS) in PBS. The R27 polyclonal sheep Ab 
against a 60-kD Dys antigen (Hoffman et al., 1987; kind gift of Genica Co, 
Boston, MA) was used 1/1,000 in 1% serum mixture in PBS for 1 h. The 
second Ab was a peroxidase-conjugated rabbit anti-sheep Ig (Dako, 
Copenhagen, Denmark). Binding was revealed with DAB (0.5 mg/ml; 
Sigma Chemical Co.) and 0.015% hydrogen peroxide. Slides were 
mounted in PBS-glycerol. Dys expression was also confirmed on some 
sections using the mouse NC1Dysl mAb (1/40 for 1 h; NovoCastra, New- 
castle upon Tyne, UK) directed against the rod domain of Dys or the 
mouse NCIDys2 mAb (NovoCastra) directed against the COOH-terminal 
domain. The second Ab was a rabbit anti-mouse Ig conjugated to peroxi- 
dase (Dako Corp.). Immunoperoxidase-positive and -negative fibers were 
counted by microscopic examination for each muscle on the section with 
apparently the most positive fibers. 
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Research of Anti-Dys Ab 
TA sections from a normal mouse and an mdx mouse were juxtaposed on 
the same slide. The presence (normal mouse) or absence (mdx mouse) of 
Dys was demonstrated using R27, NCIDysl, or NC1Dys2 as described 
above. Instead of these Ab, plasma from grafted mice was used on other 
slides at a dilution 1/40 and/or 1/400. The second Ab was a rabbit anti- 
mouse Ab conjugated either to biotin or to peroxidase (1/100 for 1 h; 
Dako Corp.). The peroxidase activity was revealed with DAB. The pres- 
ence of biotin was detected using FITC-streptavidin (1/200 for 30 min; 
Caltag, San Francisco, CA). Negative controls were obtained either by 
omitting the first antibody or plasma or by using the plasma from 12 naive 
male mdx mice aged 2-10 mo instead of the grafted mouse plasma. 

The reaction of some mouse plasma against their own revertant fibers 
was also analyzed. Serial sections of TA muscles from the contralateral, 
nongrafted leg of the mouse were incubated with R27, NCIDysl, 
NCIDys2, or the mouse own plasma using the same protocol as described 
above. Some clusters of revertant fibers were identified and compared. 

Western Blotting and Immunoblotting 

To determine the molecular weight of the antigens recognized by Ab 
formed in recipient mice, Western blotting assays were performed. Pro- 
tein extracts were obtained from one normal and one mdx, both naive, 
male mice. Skeletal muscles were solubilized in 0.3% SDS. 20 p,g protein 
samples were solubilized in sample buffer by heating at 100°C for 5 min, 
and separated on a 6% T-SDS-PAGE gel overlaid with a 3.5% T-stacking 
gel by applying a current of 40 mA for ~3  h at 4°C. Electrophoretic trans- 
fer was performed onto a nitrocellulose membrane using a semi-dry tech- 
nique (Multiphor II Electrophoresis Unit; Pharmacia LKB, Piscataway, 
N J) with a current of 0.8 mA/cm 2 for 90 min. Antibody reactivity was as- 
sessed using an immunoblotting technique. Nitrocellulose strips were in- 
cubated overnight at 4°C with PBS containing 10% nonfat dried milk, 
0.2% Tween 20 and 5% normal horse serum to block nonspecific binding 
sites. They were then incubated with recipient plasma diluted 1:50 in PBS 
containing 0.2% Tween 20 and 1% normal horse serum for 90 min under 
agitation. After several washes in PBS containing 0.05 % Tween 20, strips 
were incubated for 90 min in a 1:500 dilution of horse anti-mouse IgG la- 
beled with biotin (Vector Laboratories, Burlingame, CA). The reaction 
was followed by another 60-min incubation in the presence of a 1:750 dilu- 
tion of streptavidin-alkaline phosphatase (Zymed, San Francisco, CA). 
Alkaline phosphatase was revealed using NBT-BCIP (GIBCO BRL) in 
Tris buffer (pH 9.5). Reactions were stopped by washing with 20 mM 
EDTA and the strips were photographed immediately. The presence of 
Dys in the samples was determined using NC1Dysl mAb and R27 poly- 
clonal Ab. 

The fine determination of high molecular weight is not easy in one- 
dimensional electrophoresis. Thus, in a second set of experiments, the 
positive plasma from mice Bt ,  B3, BS, B6, B7, BS, C2, D1, D4, and D9 
were used in the same electrophoresis preparation of normal mouse mus- 
cle extract. Strips for NC1Dysl and R27 were intercalated between the 
strips prepared for these plasma. This allowed to compare as exactly as 
possible the position of the bands stained by NCIDysl, R27, and the mice 
plasma. 

Immunocytochemistry 

Myogenic cells from C57BL/10SnJ + /+  mice and from C57BL/10ScSn 
mdx/mdx mice were grown on 2% gelatin-coated plates for 3 d in 199 me- 
dium supplemented with 15% FBS. The concentration of FBS was then 
reduced to 7% to increase myoblast fusion. The 12-well culture plate was 
divided into two groups: (a) six wells were fixed and permeabilized with 
methanol at -20°C prior to first Ab or plasma incubation; and (b) six 
wells were fixed and permeabilized after such an incubation. Incubations 
were performed in 199 medium containing 1% blocking serum mixture. 
The mouse plasma were used at 1/40 dilution. Negative controls and fur- 
ther reaction steps have been described above. The second Ab was FITC- 
conjugated rabbit anti-mouse IgG (Dako Corp.). Incubations were per- 
formed at room temperature to avoid endocytosis by living cells. The mdx 
myotube cultures do not express Dys and were used as a control for non- 
specific Ig binding. A mouse anti-desmin mAb (Dako Corp.) was also 
used (1/100) on permeabilized and nonpermeabilized mdx myotube cul- 
tures to ascertain the efficacy of the protocol used to differentiate intra- 
and extracellular protein localization. 

CD4 Cell, CD8 Cell, Macrophage, and Natural Killer 
Cell Immunohistochemistry 
Monoclonal antibodies were produced as culture supernatants from the 
following hybridomas: GK1.5 for CD4 (American Type Culture Collec- 
tion, Rockville, MD), YTS169 for CDg (kind gift of Dr. Waldmann, Cam- 
bridge University, UK), MAC1 for macrophages and natural killer (NK) 
cells (American Type Culture Collection). These supernatants were used 
undiluted. The immunohistochemistry protocol has been previously de- 
scribed (Gu6rette et al., 1995). For each muscle, positively stained cells 
were counted in 60 microscopic fields randomly selected in six sections 
(Gu6rette et al., 1995). Each field represented ~1.5 × 10 s ~m 2. 

Results 

Short- and Long-term Dys-positive Fiber Formation 
after Histocompatible Myoblast Transplantation 
All 24 grafted mice gave positive results; that is, they pro- 
duced 15-82% Dys-positive fibers (Table I). These results 
were obtained in four different groups of animals (desig- 
nated A to D) using four different primary cultures. Some 
differences in the final percentages were noted between 
batches B, C, and D. 

2 wk after transplantation, some small- and medium- 
diameter Dys-positive fibers were formed (Fig. 1 A). These 
new or hybrid fibers were often associated in clusters that 
were dispersed in the muscle, probably reflecting the mul- 
tiplicity of injection sites (Fig. 1 A). At this time, some ne- 
crotic zones were still visible, probably resulting from no- 
texin injection. The percentage of Dys-positive fibers 
varied between 15 and 30% (Table I). 

1 mo after grafting, the number and size of Dys-positive 
fibers were increased as compared to results observed 2 
wk after grafting (Table I, Fig. 1, B-D), and in some cases 
almost 70% of the fibers were Dys-positive. Most of these 
fibers had smaller diameters than the original mdx fibers 
or the remaining dys-negative mdx fibers (Fig. 1, B and 
D), suggesting that they arose from the fusion of donor 
myoblasts and from the small-diameter myofibers and myo- 
tubes present 2 wk after grafting. Some Dys-positive fi- 
bers, however, had very large diameters, close to the maxi- 
mum diameter of mdx Dys-negative fibers (Fig. 1 C). Most 
Dys-positive fibers, small or large, were correctly oriented 
in the muscle section, parallel to Dys-negative fibers. 

2, 4, 5, 6, 8, and 9 mo after grafting, the Dys-positive fi- 
ber size had increased (Fig. 1, E-N) to a maximum that 
was sometimes greater than 75 ixm (Fig. 1 G), i. e., the 
larger fibers described in the TA muscles of mdx mice 
(Coulton et al., 1988; Louboutin et al., 1993; Pastoret and 
Sebille, 1993). Normal caliber (i. e., 30-50 p~m in TA mus- 
cle of this old, Louboutin et al., 1993), however, was the 
most frequent phenotype. Some necrotic zones were still 
visible in some muscles 2 mo after grafting but were not 
observed during the following months (Fig. 1, E and F). Fi- 
brosis extension was rare (not shown). Large areas of Dys- 
positive fibers were present (Fig. 1 G) and were observed 
throughout the entire muscle length, but the percentage 
was higher in the central portion of the muscle (not 
shown). In these portions, the percentage of Dys-positive 
fibers reached up to 80% in some mice (Fig. 1 H). Some 
important variations existed, however, from one mouse to 
another (Fig. 1, G and H) that may reflect either differ- 
ences in notexin necrosis or in myoblast implantation be- 
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Table L Fiber Formation after Histocompatible Myoblast Transplantation 

Mouse number Days after grafting Dys + Dys - Total Percent Dys + Percent Dys - 

A1 13 322 1890 2212 14.6 85.4 
A2 13 465 970 1435 32.4 67.6 

B1 36 1320 1160 2480 53,2 46.8 
B2 36 1520 693 2213 68.7 31.3 
B3 68 1802 2873 4675 38.6 61.4 
B4 68 1909 1771 3680 51.9 48,1 
B5 162 2217 565 2782 79.7 20.3 
B6 162 830 410 1240 66.9 33.1 
B7 239 2354 631 2985 78.8 21.1 
B8 239 670 1080 1750 38.3 61.7 
Mean B group ± SD 1,578 ± 612 1,148 ± 822 2,725 ± 1086 59.5 ± 16.5 40.5 ± 16.5 
CI 55 424 405 829 51.l 48.9 
C2 114 883 722 1605 55.1 44.9 
C3 114 360 233 593 60.7 39.3 
C4 189 315 759 1074 29.3 70,7 
C5 189 625 153 778 80.3 19.7 
C7 259 1028 473 1501 68.5 31.5 
Mean Cgroup ± SD 606 ± 294 457 ± 248 1,063 ± 410 57.5 ± 17.3 42.5 ~ 17.3 
D1 84 355 870 1225 28.9 71.1 
D2 159 388 428 816 47.6 52.4 
D3 159 522 1404 1926 27.1 72.9 
D5 229 304 551 855 35.6 64.4 
D6 229 601 1662 2263 26.6 73.4 
D7 229 469 1227 1696 27.7 72.3 
D9 229 459 924 1383 33.2 66.8 
Mean D group ± SD 443 ± 102 1,009 ± 448 1,452 ± 541 32.4 ± 7.5 67.6 ± 7.5 

Mice were sacrificed at the times indicated. Dys histochemistry was done using R27 polyclonal Ab. The numbers of Dys-positive and Dys-negative fibers were counted on the 
best sections for each mouse. Mice C6 and D8 died accidentaly before muscle biopsy. The muscle from D4 mouse was broken during cryostat sectioning, thus not allowing exact 
fiber enumerations. 

tween each mouse in a given set of experiments. Such dif- 
ferences have been pointed out by others (Morgan et al., 
1993). Differences in the total number of muscle fibers in 
the TA were also observed at given post-grafting intervals. 
Fiber splitting, a frequent event in mdx muscles, was also 
observed in some grafted muscles (for example, the diam- 
eter of the split fiber in Fig. 1 K was ~120 p~m). Longitudi- 
nal sections showed that Dys-positive fibers were still cor- 
rectly oriented and that some were more than 750-1xm long 
(Fig. 1 L). 8 and 9 mo after grafting, Dys-positive fibers 
were often grouped as bundles (Fig. 1, M and N). The size 
variabilities among Dys-positive fibers, however, was still 
striking. The percentage of Dys-positive fibers still showed 
some variations between mice and batches of myoblasts. 

In the contralateral nongrafted leg of the same animals, 
no more than 1% Dys-positive fibers were present (Fig. 1 
O). These were probably revertant fibers. 

Some important bundles of Dys-positive fibers were 
identified in only one EDL of eight investigated. In three 
other muscles, few scattered fibers were observed, that did 
not extend throughout the muscle. Although myoblast mi- 
gration from transplanted muscles to neighboring muscles 
(i.e., peroneal or EDL) has been described by others 
(Morgan et al., 1990, 1993; Watt et al., 1993), our results 
about possible myoblast migration were not consistent. 
The best results were observed by these authors either 
when the permanent C2 cell line was used, or when the 
neighboring muscles were irradiated or submitted to de- 
generation-regeneration cycles. In our study, Dys-positive 
fibers may be due to accidental injection of myoblasts in 
the EDL during our multiple injections in the TA. 

Table II shows that the TA weight of the mice was de- 
creased by more than 50% 5-8 mo after irradiation and 
notexin necrosis even following myoblast transplantation. 

Production of Ab against Normal Muscle Fibers by 
Grafted Mice 

The polyclonal R27 Ab and the NC1Dysl mAb specifically 
reacted with normal mice muscle fibers but not with the 
large majority (>99%) of muscle fibers in mdx muscles 
not injected with normal myoblasts. The plasma from 12 
naive, nongrafted mdx male mice, however, did not react 
with the same normal fibers (Fig. 2, A-H) .  During the 
course of the experiment, 15 of 26 (58%) grafted mice de- 
veloped some Ab against the normal muscle fiber mem- 
brane, but not against mdx membrane (Table III). The in- 
tensity of membrane staining produced by the grafted 
mice plasma on normal muscle fibers varied from one 
mouse plasma to another (Fig. 2, I-0). In some cases, the 
mouse reactive plasma gave a stronger staining on normal 
muscle than that observed with the Ab specific for Dys 
(Fig. 2, J-L). In other cases, staining was weaker (Fig. 2 / ) ,  
but still distinctively stronger than the background stain- 
ing produced by the same plasma on mdx muscle fibers. 
The staining produced by even the weakly reactive plasma 
was also clearly stronger than the background staining ob- 
tained on normal muscle fibers when no mouse plasma or 
the plasma from a naive mouse was used (Fig. 2 C). The 
pattern of labeling around a muscle fiber varied from one 
transplanted mouse plasma to another: a smooth, regular 
pattern was observed in some cases (Fig. 2 I), a rough, ir- 
regular pattern in others (Fig. 2, L and O). 
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Figure 1. Short- and long-term Dys-positive fiber development after histocompatible myoblast transplantation. Cryostat sections of 
mouse muscles at various times after grafting and stained using R27 Ab. (A) 2 wk; (B-D) 1 mo; (C) magnification of B; the same fiber is 
indicated (asterisk) and probably results from host-donor hybridation. (E-G) 2 mo after grafting; one necrotic zone is shown in E and 
magnified in F (same area indicated by an asterisk); Dys-positive fibers (arrowheads) are often surrounded by Dys-negative fibers (ar- 
rows). (H-L) 5 mo after grafting; up to 80% of the fibers were Dys-positive, but size differences were observed between fibers (1, mag- 
nification of H); on longitudinal sections, Dys is expressed over the full-length of the fibers (J, arrows; L); Dys-positive splitted fibers are 
presented in J and K (asterisks). (M-O) 8 mo after grafting (same mdx mouse); (M and N) grafted muscle; N is a magnification of M 
(same fiber indicated by an asterisk); (O) nongrafted muscle; one bundle of revertant Dys-positive fibers is shown. Bars: (A, B, D, E, G, 
H, L, and M) 190 ~m; (C, F, L J, K, N, and O) 75 txm. 
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Table II. Weight of Some Mice TA 

Mouse number Days after grafting Control Trea ted  Graft/control ratio 

mg mg 

B7 239 90 30 0.33 
C4 189 79 23 0.29 
C5 189 77 19 0.25 
C7 259 51 15 0.29 
D2 159 82 29 0.35 
D3 159 74 35 0.47 
D4 159 66 17 0.26 
D5 229 78 28 0.36 
D6 229 91 37 0.41 
D7 229 61 28 0.46 
D9 229 76 24 0.32 
M e a n ±  SD 75 ± 12 26 ± 7 0.34 ± 0.08 

Mice were sacrificed at the times indicated. Treated (irradiation, notexin, transplanta- 
tion) and control (no irradiation, no notexin, no transplantion) TA muscles, were 
weighed just after biopsy. 

Table III displays Ab production in grafted mice at dif- 
ferent times after transplantation, when available. After 
13 d, only one mouse (A1) of two gave a slightly positive 
reaction. After 36 d, two mice (B1, B2) of two gave posi- 
tive reactions but only at a low dilution of 1/40. After 68 
days, two mice (B3, B4) of two gave positive reactions, one 
of which was positive even at dilution of 1/400. Plasma 
were unfortunately collected from these six mice only 
once, when they were killed. The following 20 mice were 
investigated for Ab production at different times after 
transplantation. In one case (C2), the plasma was positive 
on day 27, but no preimmune plasma was available. In 
four cases, the plasma collected 2 (D1, D4, D9) or 44 d 
(C7) after grafting were negative, but conversion to posi- 
tivity developed after 75,101, or 160 d. In nine cases, nega- 
tive plasma remained negative, whereas plasma that started 
to be positive at any time remained positive until sacrifice, 
34 wk in some cases, demonstrating sustained Ab produc- 
tion over a long time course. 

In six of seven cases investigated, the mouse plasma 
could also react with some revertant fibers which were 
present in small numbers in the muscle of the naive, male 
mdx mouse used as a control for Ab staining (Fig. 2 N). 
These revertant fibers were also recognized by R27 Ab or 
NC1Dys2 mAb (not shown). 

Immune Reactions against Own Revertant Fibers 

One to five clusters of revertant fibers were present in the 
nongrafted muscles. These clusters were identified using 
R27 polyclonal Ab (Fig. 3, B, E, H, and K) and contained 
one to eight fibers that expressed some Dys-truncated pro- 
teins. Some, but not all, of these clusters were also labeled 
by NC1Dysl mAb directed against Dys rod domain (Fig. 3, 
A, D, G, and J) or by NCIDys2 directed against the 
COOH-terminal domain (not shown). The plasma from 
mice that developed Ab against normal fibers also reacted 
against their own revertant clusters and recognized more 
clusters than R27, NC1Dysl, and NC1Dys2 (Fig. 3, C, F, I, 
L); for example, the plasma from mouse B8 reacted 
against four clusters in its own nongrafted TA muscle, 
whereas R27 detected only three and NC1Dysl only two 
(Fig. 3). 

It is noteworthy that back-mutated fibers were often 

split (Fig. 3, M-O). This was already observed by Hoffman 
et al. (1990). Fiber splitting is frequent in mdx mouse, but 
it is an aberration in normal mouse muscles (Coulton et al., 
1988; Louboutin et al., 1993), and is interpreted as result- 
ing from excessive fiber enlargement or fusion inability. 

Immunoblotting 
R27 polyclonal Ab and NC1Dysl specifically reacted with 
an antigen whose weight was estimated on Western blots 
to be ~420 kD. This antigen was expressed only in normal 
mouse muscles (Fig. 4) and likely corresponds to Dys 
whose theoretical molecular weight is 427 kD (Koenig et 
al., 1988). The plasma from 10 of 14 mice reacting against 
normal muscle membranes in immunohistochemistry also 
reacted with antigens whose molecular weight was very 
close or equal to 420 kD. The band intensity varied greatly 
from one mouse plasma to another (Table IV). Some 
plasma reacting positively with normal muscle fibers also 
reacted with other bands of lower molecular weight (Table 
IV). The high molecular weight antigens stained by NC1- 
Dysl and R27 were colocalized on the nitrocellulose strips 
with bands stained by the 10 positive mouse plasma (not 
shown). The plasma from grafted mice which were not re- 
active in immunohistochemistry did not react against the 
high molecular weight antigens stained by NC1Dysl and 
R27 (Table IV). The control plasma from nongrafted mice 
served as negative controls (Fig. 4). 

Cytochemistry 

Normal myotubes express intracellular Dys (Lev et al., 
1987). The plasma from naive mice and from mice that did 
not react with normal muscle fibers did not show any spe- 
cific binding on myotubes in culture, neither alive nor per- 
meabilized (not shown). Staining was also not observed 
when living and nonpermeabilized myotubes were ex- 
posed to NC1Dys2 (Fig. 5 A) or the positive plasma (Fig. 5, 
D and G). On the contrary, the positive plasma from 
grafted mice showed a preferential localization on myo- 
tubes after permeabilization. A fluorescent staining was ob- 
served when myotubes were permeabilized with methanol 
before incubation with NC1Dys2 mAb (Fig. 5 B) or mouse 
plasma (Fig. 5, E and H). The intensity of the staining var- 
ied among the plasma of different grafted mice. Such 
staining was never observed when the mouse plasma was 
omitted from the first step of the reaction (not shown), or 
when these experiments were performed using mdx 
myotube cultures, that is, myotubes that do not express 
Dys (Fig. 5, C, F, and/ ) .  The permeabilization protocol 
really allowed to discriminate between intra- and extracel- 
lular antigens, since the intracellular cytoskeletal protein 
desmin was only stained when cultures were permeabi- 
lized (Fig. 5, J and K). Taken together, these data suggest 
that most, if not all, of the antigens recognized by the Ab 
developed by the grafted mice were located inside the 
myotubes, and not on the extracellular part of the mem- 
brane, except in one case (mouse B3) in which a faint myo- 
tube labeling was observed on living cells and a stronger la- 
beling inside the myotubes was seen after permeabilization. 

Cellular Infiltration 

2 and 4 wk after grafting, CD8 ÷ T cells, macrophages, and 
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Figure 2. Production of Ab directed against normal muscle membranes. Cryostat sections of normal mouse muscle (left and right) or 
mdx muscle (middle) were incubated with mice plasma or specific Ab. (A-C) Plasma from a naive, nongrafted mouse. Note that mdx 
muscle background staining is always more important than normal muscle staining. (D and E) NC1Dysl anti-Dys mAb. (F) NC1Dys2 
anti-Dys mAb. (G and H) R27 polyclonal anti-Dys Ab. (/) plasma from mouse B6 (weakly positive). (J-L) Plasma from mouse B8 
(strongly positive). (M-O) Plasma fom mouse C2 (strongly positive). Note that muscle staining pattern presented some differences from 
one mouse plasma to another (I, L, and O). The serum from mouse C2 could also react with revertant fibers in the mdx muscle used for 
the assay (N, arrowheads). Bars: (left and middle) 190 txm ; (right) 70 Ixm. 
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Table III. Reactivity of the Grafted Mice Plasma Against Normal Mouse Muscle Fibers 

Mouse number Days after grafting 

13 

A1 + t 
A 2  - t 

36 

B1 + / - %  

B2 + / -  t 

68 

B3 + + + / + +  t 
B4 + + / -  t 

75 92 

B5 + + + + / + +  N D / + +  

B6  + / -  N D  

B7 + + + + / + +  + + + / + + +  

B8 + + + + / + +  + + + / + + +  

27 44  101 

c1 - - t 
C2 + + +  + + + / +  + + + t  

C3 - - - t 
C 4  - - - 

C5 - - N D  

C6 - - - t 
C7 - - + 

160 

+++t 
+t 

+++ 
+++ 

2 75 160 

D I  - + t 
D2 - - - t 

D3 - - - t 

D4  - + + +  + # 

D5 N D  + N D  

D6 N D  - - 

D7 N D  + N D  

D8 - N D  - t 

D9  - - + + +  

239 

+ + +  t 
+++t 

190 

- t  

- t  

N D  

229 

+t 
ND t 
+t 

+++t 

259 

N D  t 

t ,  Day of mouse sacrifice; 
- ,  negative; 
+,  weakly positive; 
+ + to + + + +, positive to strongly positive; 
$, Results are given for serum dilution of 1/40. When two results are given, the first was obtained with a 1/40 dilution of the semm and the second with a 1/400 dilution. 
ND, not determined. 

NK cells were present in the grafted muscles, mainly at the 
injection sites (not shown). They were more numerous 
than in a noninjected mouse muscle, but they were less nu- 
merous than when MHC-incompatible cells were grafted 
(Gu6rette et al., 1995). CD4 + T cells were almost absent 
from grafted muscles. The values obtained at 2 and 8 mo 
did not differ from one another (Table V). Some hot spots 
containing many macrophages or NK cells were located in 
the immediate vicinity of, or inside, some muscle fibers un- 
dergoing degeneration, but this observation is frequent in 
mdx mouse (not shown) and is the reason for the high 
standard deviations. Thus, the infiltration of the muscle af- 
ter histocompatible transplantation was weaker than that 
observed in previous studies by our group (Gu6rette et al., 
1995; Vilquin et al., 1995a) after MHC-incompatible myo- 
blast transplantation. Indeed, once the necrosis caused by 
notexin and cell injections has been cleared, the number of 
infiltrating cells was not significantly higher than in the ab- 
sence of cell injection. 

Discuss ion  

Transplantation Results 

Using nude/mdx congenic mice, Partridge group demon- 

strated short- and long-term myoblast transplantation suc- 
cess (Partridge et al., 1989; Morgan et al., 1990, 1993, 1994; 
Watt et al., 1993). The level of success decreased when H2- 
compatible M9 mice or tolerized mice were used as recipi- 
ents (Grounds et al., 1980; Partridge et al., 1989). Rando 
and Blau (1994) reported good success after injecting 
retrovirally labeled myoblast clones into isogenic hosts, 
whereas allogeneic grafts were rejected; the use of cyclo- 
sporin A or specific anti-adhesion molecules mAb allowed 
4-mo-long acceptance of allogeneic grafts (Pavlath et al., 
1994). Huard et al. (1994a,b) reported 1-mo success after 
human cell xenografting in immunodeficient nude and 
SCID mice. Kinoshita reported 1-5-mo-long success fol- 
lowing MHC-incompatible myoblast transplantation into 
mdx mice immunosuppressed with FK506 (Kinoshita et 
al., 1994b; and personal results). Karpati et al. (1989) ob- 
tained little, unquantified success following human myo- 
blast xenotransplantation in mdx mice without immuno- 
suppression. 

In the present study, 100% of the mice presented short 
or long-term success after compatible myoblast transplan- 
tation, as all the transplanted mdx mice expressed Dys- 
positive fibers after grafting at any time of analysis. Half of 
the transplanted mice expressed >50% Dys-positive fibers 
in their grafted muscles. The total number of Dys-positive 
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Figure 3. Differential staining of a grafted mouse own revertant fibers by specific anti-Dys Ab or by its own plasma. Serial cryostat sec- 
tions of the nongrafted TA of mouse B8. A, D, G, and J were observed on one muscle section, whereas M was observed on another mus- 
cle section. NC1Dysl anti-Dys mAb (left) labeled two clusters of revertant fibers (D and G), whereas R27 polyclonal anti-Dys Ab la- 
beled 3 clusters (B, E, and H). The B8 mouse plasma reacted against four clusters (C, F, L and L). The same fibers on serial sections are 
indicated by arrowheads. Some revertant fibers were split (M-O, asterisk). Bar, 75 ~m. 

fibers in the graf ted muscle was in some cases > 8 0 %  of 
the total  f iber number .  Myoblas t  t ransplanta t ion  t r iggered 
the format ion  of hybrid and new Dys-posi t ive muscle fi- 
bers. These  different  f iber categories  may be identif ied by 
their  size 1 mo after grafting. The  progressive increase in 

total  number  and size of Dys-posi t ive fibers be tween the 
first two weeks and the end of the second month  indicates 
that all injected myoblasts  do not  fuse immedia te ly  after 
injection, but  keep  prol i ferat ing for some weeks. The  in- 
crease in Dys-posi t ive fibers number  may also be due to 
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Figure 4. Immunoblot analysis of mouse muscle antigens stained 
by mouse plasma. NC1Dysl mAb specifically reacted with the 
high molecular weight antigen Dys present in +/+ mouse muscles 
(arrow) and absent from mdx mouse muscles. The plasma from 
B8 mouse, which strongly reacted in immunohistochemistry, also 
strongly reacted against some antigens which were present in +/+ 
muscles and absent from mdx muscles. The molecular weight of 
these antigens were around 115, 160, 260, and 400 kD (arrows). 
The highest molecular weight antigen migrated to the same place 
as Dys. The control plasma from a naive, non-transplanted 
mouse, did not react with these antigens. 

Dys accumulation and diffusion. Dys expression, however, 
is thought to be restricted to nuclear domains (Karpati et 
al., 1989; Pavlath et al., 1989). Therefore, many injected 
cells could behave as new satellite cells. Variations in and 

between groups of transplanted mice are too important to 
establish whether Dys-positive fibers progressively re- 
placed Dys-negative fibers. Although Dys-positive fibers 
were obtained with all batches of cell cultures, the D batch 
produced a consistent lower percentage of Dys-positive 
cells, indicating some variability in the state of the injected 
myoblasts. 

Rejection reactions may be induced following allotrans- 
plantations in both humans and mice by minor histocom- 
patibility antigens (Oppat and Mohanakumar, 1994). In 
the present study, good transplantation results have likely 
been obtained because mice compatible for major and mi- 
nor histocompatibility antigens were used. To short-cut 
the problem of sex-linked minor histocompatibility anti- 
gens (i.e., the HY antigen), male mice were systematically 
used as recipients, as it is difficult to check exactly the sex 
of newborn donor mice. Thus, between donor and recipi- 
ent mice, only full-length Dys was different. 

Effect of Irradiation and Notexin on 
Muscle Regeneration 

Except for diaphragm, the skeletal muscles of the young 
mdx mouse, including the TA muscles under study, do not 
present the extensive fibrosis and muscle fiber loss ob- 
served in Duchenne patients (Louboutin et al., 1993). It 
has been reported, however, that irradiation and local in- 
jection of some snake venoms increased the success of myo- 
blast transplantation in skeletal muscles, probably by sup- 
pressing the mitotic activity of host myoblasts and by 
starting one cycle of degeneration-regeneration in which 
host myoblast cannot participate (Wakeford et al., 1991; 
Morgan et al., 1993). Actually, transplantation success was 
better using irradiation and notexin in mouse than without 

Table IV. Molecular Weights of the Normal Muscle Antigens Reacting with Grafted Mice Plasma 

Reactivity in Antigens mol wt determination (kD) Colocalization with 
histochemistry Mouse number (lst set of experiments) Dys (2nd set of experiments) 

Positive control 

Negative 

Weakly positive 

Positive to strongly positive 

NCIDys I 408, 391, 371 yes/R27 
R27 419, 403, 381 yes/NC1Dysl 
CI 243, 142, t21 ND 
C3 243 ND 
C4 253 ND 
C5 None ND 
C6 None ND 
D2 None ND 
D6 44, 42 ND 
B1 386", 340, 270, 253 yes 
B2 243 ND 
B4 286, 261, 44, 43 ND 
B6 389, 288, 262, 102, 99, 43, 41 yes 
DI 373,269, 245, 42 yes 
D5 114 ND 
D7 264, 44 ND 
B3 395,360", 260, 243 yes 
B5 389, 379, 321,238, 103, 43 yes 
B7 405,389, 330, 300, 273, 251,238, 42 yes 
B8 437, 414, 386, 377, 361,283,268, 162, 114 yes 
C2 424, 403, 377, 271, 53, 45, 43 yes 
D4 379, 277, 251,238, 42 yes 
D9 400, 389, 273 yes 

These plasma were obtained after mouse sacrifice. 
*, The bands were very faint on some nitrocellulose strips. 
ND, not done. 
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Figure 5. Differential staining of living or permeabilized myotube cultures by specific Ab or mouse plasma. Isogenic myotube cultures 
were incubated with the specific NCIDys2 mAb (A-C), mouse B8 plasma (D-F), mouse B3 plasma (G-/) or the specific anti-desmin 
mAb (J and K). (Left) First Ab incubated on living cells; (middle) first Ab incubated on permeabilized cells; (right) first Ab incubated 
on permeabilized mdx ceils. (A, B, D, E, G, and H) Normal mouse cultures; (C, F, L J, K, and L) mdx mouse cultures. L is a phase con- 
trast image of mdx myotuhe culture after methanol permeabilization. The specific staining of permeabilized myotubes (B, E, H, and K) 
was not observed when living myotubes were exposed to the Ab (A, D, G, and J). In one case (mouse B3), the extracellular part of some 
myoblasts and myotubes was labeled (G), although the intracellular labeling of myotubes was clearly stronger (H). Bar, 70 p~m. 

these pretreatments (personal results). The efficacy of 
these pretreatments,  however, seems to depend on the an- 
imal model; for example, notexin seems detrimental in 
dogs or monkeys (Kinoshita, I., and J.-T. Vilquin, personal 
results). Even at lower concentrations, notexin necrosis is 

more extensive in dogs than in mice, where necrosis seems 
restricted to the injection site (personal results). One may 
assume that irradiation blocked the regenerative capaci- 
ties of  all the host leg cell types: myoblasts, fibroblasts, 
chondrocytes, osteoblasts, endothelial, and mesothelial 
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Table V. Infiltration of Grafted Muscles by Immune Cells 

MAC* 
Mouse number Days after grafting (number per field -+ SD) CD8 + cells 

B3 68 2.0 _+ 2.2 0.15 ± 0.51 
B4 68 2.9 _ 2.4 0.17 + 0.46 
B5 162 1.7 _+ 1.6 0.23 _+ 0 .50 
B6 162 2.5 _ 4.4 0.18 ± 0.47 
B7 239 2.6 _ 3.5 0.18 ± 0.43 
C2  101 3.2 _+ 4.8 0.07 ± 0.25 

*, MAC : MAC1 antigen positive cells. One field represents approximately 1.5 x 
10 5 o,m 2. 

cells, Schwann cells, and so on. Actually, not only did the 
TA weight decrease (Table II), but also that of the whole 
irradiated leg. Thus, in our experimental protocol the re- 
sult of myoblast transplantation may not be termed muscle 
regeneration, but rather gene complementation. Some 
physical or metabolic supports may be lacking for donor 
cells to sustain full muscle regeneration over a long time 
course following irradiation. 

Anti-Dys Ab Production after Transplantation in 
Some Mice 

In this study, 58% of the mice developed Ab against some 
antigens present on the membranes of normal muscle fi- 
bers but absent from the mdx fibers. These Ab were not 
produced in some mice and were not detected in the 
plasma of nongrafted mice, therefore they were allo-Ab, 
not auto-Ab. The subsequent immunoblot analysis of the 
antigens recognized by these Ab indicated multiple molec- 
ular weights, but in 10 of 14 cases the highest molecular 
weights corresponded to Dys. It is therefore very likely 
that these grafted mice developed Ab against Dys. The de- 
termination of the nature of the smaller antigens recog- 
nized by various plasma would require further investiga- 
tions. 

The Ab appeared slowly after grafting. In some cases, 36 
to 75 d were necessary to observe a positive reaction. In 
the absence of any rejection problem related to major and 
minor antigens, donor myoblasts slowly colonize part or 
whole recipient muscle, then they proliferate and/or fuse 
to form new or hybrid muscle fibers. This process, how- 
ever, may require at least i or 2 wk (Allbrook, 1981; Mor- 
gan et a1.,1993). As presented in this study, the number of 
Dys-positive fibers is elevated after only 2 mo. Myoblasts 
alone do not express Dys to detectable levels (Lev et al., 
1987). Dys expression is triggered by muscle differentia- 
tion after myoblast fusion (Lev et al., 1987; Scott et al., 
1988). Therefore, only myotubes and muscle fibers express 
the skeletal muscle form of Dys. The immune system of 
the host may recognize only exogenous Dys after the for- 
mation of myotube and/or hybrid fibers, and after they 
have degenerated once and freed antigens from the inner 
muscle cells. This degeneration may follow metabolic or 
mechanic damages. Therefore, it is likely that Dys become 
fully immunogenic only some weeks after grafting. Then, 3 
to 4 wk are necessary before a detectable amount of Ab 
specific for normal muscle fibers can be seen. Once the re- 
action is triggered, a low level of continuous stimulation is 
sufficient to sustain high Ab titers. This stimulation could 
be due to degeneration-regeneration cycles which cer- 

tainly take place in grafted animals, because damage in 
Dys-positive and Dys-negative fibers is a natural phenom- 
enon. The presence of high Ab levels in some cases 8 mo 
after grafting shows that Dys is continuously presented to 
the immune system. 

Immune Reactions against Autologous 
Revertant Fibers 

Plasma from mice that developed Ab against Dys also re- 
acted against autologous revertant fibers. Mdx mice, de- 
pending on their age and breed, present 0.1-1% revertant 
fibers in their muscles (Danko et al., 1992; Pastoret and 
Sebille, 1993; Zhao et al., 1993). Revertant, or back- 
mutated, fibers are believed to result from a punctual, 
individual somatic mutation of the Dys gene in some myo- 
blasts or satellite cells (Hoffman et al., 1990). The Dys- 
positive fibers in mdx muscles possess Dys, but sometimes 
with almost completed size and sometimes with various 
types of deletions (Zhao et al., 1993). Unfortunately, the 
polyclonal nature of the mice plasma did not allow to dis- 
criminate between the various Dys peptides produced by 
back-mutation. The presence of Ab directed against rever- 
tant fibers could be an immunological paradox. One could 
assume that a mouse producing back-mutated fibers 
would become tolerant to Dys and would not produce any 
Ab against this protein after grafting. The Dys peptides 
produced after back mutation and presented to the im- 
mune system, however, likely do not represent full-length 
Dys. Second, even if myoblasts can be considered antigen- 
presenting cells (Goebels et al., 1992), they do not yet ex- 
press Dys (Lev et al., 1987), and mature muscle fibers do 
not express class I and class II complexes (Roy et al., 1991; 
Goebels et al., 1992; Hohlfeld and Engel, 1994). Thus, the 
production of Ab directed against revertant fibers could 
be due either to the presentation of irrelevant antigens, or 
to an absence of antigen presentation. 

Absence of Anti-muscle Membrane Ab Production 
after Transplantation in Some Cases 

The lack of Ab directed against normal muscle mem- 
branes in 42% of the mice is striking. Dystrophin, even if 
considered a foreign antigen, is not always capable of trig- 
gering Ab formation. If Dys is released in amounts that 
are too small or in a too discontinuous way, or if the pro- 
cessing or presentation by the antigen presenting cells is 
inadequate, anti-Dys Ab should not be produced. The par- 
allel between the total numbers of muscle fibers and the 
production of anti-Dys Ab suggests that an increased 
number of Dys-positive fibers in the grafted muscle in- 
duces a stronger Ab production (Tables I and III). The 
mean number of Dys-positive fibers in batch B was two to 
four times higher than that in batches C and D. The stron- 
gest Ab reactions were found in group B, which quantita- 
tively expressed more Dys (Table III). Thus, in many 
cases, the amount of Dys antigens released by the fibers 
may have been too low to trigger a strong Ab production. 

Anti-Dys Ab and the Absence of Rejection 

The production of anti-Dys Ab did not lead to rejection of 
Dys-positive fibers. All the grafts were successful, Dys ex- 
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pression was sustained over many months, no increase in 
lymphocyte number was noted, and Dys-positive fibers did 
not seem to be rejected either at long or short term. Also 
none of the plasma directed against Dys could induce a 
complement-dependent lysis of human myotubes in vitro 
(E. Wagner, personal results). 

Dystrophin is an intracytoplasmic, subsarcolemmal pro- 
tein without transmembrane or extracellular domain (Wat- 
kins et al., 1988; Ervasti and Campbell, 1991). Dystrophin 
is sequestrated in the muscle fibers, whose solid structure 
is designed to support only a very slow turnover. Thus the 
absence of Dys-positive fiber destruction could be attribut- 
able to a lack of accessibility and thus an absence of recog- 
nition of the antigen by the Ab. This hypothesis is confirmed 
by the differential results obtained in vitro in myotube cul- 
tures. When Ab gained access to the cytoskeleton inside 
the cells following permeabilization, the reaction was clearly 
positive, whereas the reaction was negative on living non- 
permeabilized cells, suggesting that the Ab were directed 
against intracellular antigens. Thus, the recognition of Dys 
peptides as foreign antigens and the reaction against the 
intracellular proteins would be two distinct immunological 
events. 

In one clinical trial, human myoblasts compatible for 
class I and class II (DR) MHC antigens were transplanted 
in DMD patients (Huard et al., 1992; Tremblay et al., 
1993), but histocompatibility was not absolute. Some mi- 
nor histocompatibility antigens or other immunogenic pro- 
teins differences between host and donor could have trig- 
gered humoral and/or cellular rejection. In the present 
experiments, mice were not only histocompatible, but also 
inbred, and the grafts were not rejected. Thus, we hypoth- 
esize that major and minor histocompatibility antigens 
can trigger rejection following myoblast transplantation, 
whereas Dys alone cannot. 

Concluding Remarks 
Histocompatibility, antigen sequestration and slow muscle 
structure turnover should explain the overall phenomenon 
reported here. However, access of the immune system to 
new antigens encoded by normal genomic donor DNA 
could depend on the availability, location and presentation 
of these antigens. Immune reactions did not lead to short- 
or long-term rejection of Dys-containing fibers produced 
by myoblast-mediated gene complementation in mdx mice, 
but the situation could be different with other antigens. 
The data presented in this article should also prove useful 
in the expanding field of gene therapy where, whatever the 
vector, the single gene encoding for a non-self-product 
could lead to immune reactions, with or without associated 
rejection (Vilquin et al., 1995b). 
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