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Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of
intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions
determine the direction, timing and flux of various intracellular transports. This review
examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven
by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a
partially overlapping set of serine/threonine kinases, and each event produces a unique
outcome. For example, phosphorylation of the motor domain inhibits motility, and that of
the stalk and tail domains induces cargo loading and unloading effects according to the
residue and context. Also, the association of accessory subunits with cargo and adaptor
proteins with the motor, respectively, is disrupted by phosphorylation. In some instances,
phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We
discuss how this diverse range of effects could manage the logistics of Kinesin-dependent,
long-range intracellular transport.
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INTRODUCTION

Kinesins represent a superfamily of mechanochemical enzymes that bind to microtubules, hydrolyze
ATP and either transport cargoes along the microtubule tracks or participate in controlling
microtubule dynamics inside a cell (Vale and Milligan, 2000; Hirokawa and Noda, 2008). All
Kinesins have three consensus structure-function domains engaged in motor activity (head domain),
dimerization (stalk domain), and cargo binding (tail domain). Motors of the Kinesin-1, -2 and -3
families are primarily involved in long-range intracellular transport towards the cell periphery and
synapse (Box 1) (Lawrence et al., 2004; Hirokawa and Noda, 2008). They contribute to one of the
fundamental aspects of cellular functions–the logistics of moving molecular complexes and
organelles from one point to another inside a cell (Ray, 2006). Kinesins have two primary
biochemical functions—1) the microtubule-dependent ATPase activity that generates the
mechanical force along the microtubule (Vale and Milligan, 2000; Qin et al., 2020), and 2)
reversible interaction with soluble and vesicle-associated/transmembrane proteins, and
membrane lipids (Hirokawa and Noda, 2008). Synchrony between these two actions leads to an
effective movement of proteins, vesicles and organelles inside a cell (Akhmanova and Hammer,
2010).

Kinesin motor activity, cargo-binding and the flux of cargo transport driven by the motor are
tuned according to the cargo availability and cellular environments. Motor activation and
spatiotemporally modified cargo affinity are the two aspects of this regulation. An
intramolecular interaction strategy, known as autoinhibition, blocks the ATPase activity when
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the motor is not associated with a cargo (Box 1). For some
Kinesins in the auto-inhibited state, a part of the “tail” domain
binds to the “motor” domain, preventing the ATP-ADP exchange
(Hackney and Stock, 2000). A similar inhibition occurs through a
motor-stalk interaction in the case of a Kinesin-3 family motor
(Siddiqui and Straube, 2017). In both cases, cargo binding releases
the inhibition. In addition, the start and stop signals, the direction
and the speed of cargo traffic driven by motor proteins are
actively controlled at multiple levels (Koppers and Farías,
2021; Guedes-Dias and Holzbaur, 2019). Amongst several
other factors, phosphorylation of kinesins and their adaptors
plays a crucial role in this process.

Phosphorylation-dephosphorylation cycles brought upon by
kinases and phosphatases, respectively, downstream of signaling
receptors are the most widely utilized mechanisms of global
systems management inside a cell. The process helps
coordinate a vast array of chemical reactions in functionally
correlated subcellular compartments and conveys the effects of
external stimuli to internal targets and vice versa. The
information is relayed by cytoskeleton—associated motor
proteins, which move the signaling complexes from their
sources to the destinations inside a cell (Liang and Yang,

2019; (Bhabha et al., 2016; Akhmanova and Hammer, 2010).
Several studies suggested that the kinases and phosphatases
engaged in the signal transduction also act on molecular
motors regulating the logistics of this information flow.

This review discusses the effects of site-specific phosphorylation on
kinesin motility and intracellular transport. We describe the effects of
phosphorylation on motor function and cargo binding and how
phosphorylation orchestrates the logistics of kinesin-driven traffic
inside a cell. A large body of literature, as summarized below,
suggests that a select group of kinases (Box 3) also controls the
logistics of relatively long-range transport carried by Kinesins 1–3.
The phosphorylation sites, located in the motor domain, stalk-tail
domains, or non-motor accessory subunits (Table 1), are unique to
each Kinesin family, and some of them are only partially conserved.
The results indicate that each phosphorylation imparts a unique effect.
Motor activation andmodification of various cargo-motor interactions
are the most widely reported effects of kinesin phosphorylation.
Besides, phosphorylation of an extensive repertoire of kinesin
adaptors also regulates cargo attachment (Table 2). In many cases,
the cargo association de facto activates the motor function, indicating
the dual impact of this action. Therefore, the data is discussed according
to the motor type and adaptors.

TABLE 1 | List of kinases that phosphorylate kinesins.

Kinesin Subunit Kinase Residue Effect Reference

Kinesin-
1

DmKHC GSK3β S314 Attenuates motor activity; reduces run length and velocity Banerjee et al. (2021)
HsKHC JNK S175 Stabilizes the folded conformation of kinesin Padzik et al. (2016)
HsKHC,
HsKLC

PKA unknown Releases kinesin from the synaptic vesicles DeBerg et al. (2013)
Sato-Yoshitake et al. (1992)

HsKHC,
HsKLC

PKC unknown Increases the ATPase activity Increases the ATPase activity Matthies et al. (1993)

HsKLC GSK3β S615 Releases membrane-bound organelles at growing neurite tips Morfini et al. (2002)
HsKLC1 ERK S460 Weakens kinesin-1 interaction with Calsyntenin-1 Vagnoni et al. (2011)
HsKLC1 PKC? T466 Inhibits KLC1-JIP1 interaction Chiba et al. (2017)
MmKLC2 unknown S575 Promotes 14-3-3 η binding Ichimura et al. (2002)
MmKLC2 AMPK S539 and

S575
Regulates the interaction of Kinesin-1 with regulatory subunit p85 of PI3K Amato et al. (2011)

CeKLC CamKII S240, S276 Promotes GLR-1 transport Hoerndli et al. (2015)
Kinesin-
2

MmKIF3A CaMKII S689 Recruitment of N-cadherin to KIF3A Ichinose et al. (2015)
MmKIF3A CILK/ICK T674 Ciliary length regulation by regulating the handover between anterograde

and retrograde IFT machinery at ciliary tip
Chaya et al. (2014)

CrFla8
(KIF3B)

CaMKII S663 Releases IFT-B particles at the tip of regenerating flagella Liang et al. (2014)

MmKIF17 CaMKII S1029 Dissociation of KIF17 from its adaptor Mint1/Lin10 Guillaud et al. (2008), Yin et al.
(2012)

Enhances KIF17 localization in photoreceptor outer segment
HsKAP3 SFK unknown Weakens the affinity with SmgGDS Shimizu et al. (1996)
MmKAP3A MARK/

Par1b
S60 Decreases the association between KAP3 and TRIM46 Ichinose et al. (2019)

Kinesin-
3

KIF1c CK2 S1092 Binding with 14-3-3 proteins Dorner et al. (1999)
MmKIF1A CaMKII S1665 Increases association of KIF1a with DCV Hummel and Hoogenraad. (2021)
KIF1A GSK3β S402 unknown Gan et al. (2020)
KIF13B (rat) CDK5 T506 TRPV receptor binding Lu and Prehoda. (2013)
HsKIF13B MARK/

Par1b
S1381,
S1410

promote 14-3-3 ß binding and intramolecular interactions in KIF13B
inhibiting its interaction with microtubules

Yoshimura et al. (2005)

DmKHC73 MARK/
Par1b

S1374 binds to 14-3-3 ζ and helps in mitotic spindle organization Lu and Prehoda. (2013)
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EFFECTS OF KINESIN-1
PHOSPHORYLATION ON MOTOR
FUNCTION
One of the earliest in vitro studies suggested that bovine Kinesin-1
could be phosphorylated by cyclic-Adenosine Monophosphate
(cAMP)-dependent protein kinase (cAMP-PK/PKA), protein
kinase C (PKC) and pp60c-src (Matthies et al., 1993).
Amongst these, PKA phosphorylated at multiple sites of KLCs,
whereas the PKC phosphorylated both KHC and KLCs. The
PKA-dependent phosphorylation enhanced the microtubule-
stimulated ATPase activity, i.e., the motor function, of purified
Kinesin-1 (Matthies et al., 1993). Also, KLC phosphorylation by a
100 kDa kinase copurified with Kinesin-1 holoenzyme increased
the microtubule-dependent ATPase activity and microtubule
gliding by the motor in vitro (McIlvain et al., 1994;
Lindesmith et al., 1997). Although the target sites of these
kinases on Kinesin-1 were not identified, these early studies
suggested that phosphorylation could control kinesin-
dependent intracellular transport.

Subsequently, two independent studies further indicated that
phosphorylation of the KHCmotor domain would disrupt motor
activity (Table 1), and the incidents were linked to specific
neurodegenerative disorders. For instance, increased activity of
the poly-Q expanded Androgen Receptor (AR), which causes
Spinal and Bulbar Muscular atrophy (SBMA), arrested Kinesin-1
motility and fast axonal transport by phosphorylating KHC
through downstream activation of cJun N-terminal Kinase
(JNK) (Morfini et al., 2006). Similarly, JNK3 activation due to
the expression of pathogenic huntingtin protein phosphorylates a
conserved serine residue (S175) of mouse Kif5A (Morfini et al.,
2009a; Morfini et al., 2009b). Phosphorylation of an equivalent
serine residue of Kif5B attenuated the load-bearing capacity of the
motor, biasing a minus-end directed cargo transport in vitro and
stabilized the autoinhibited conformation (DeBerg et al., 2013). A
separate study further suggested that although the JNK
phosphorylation of an equivalent S176 residue of mouse Kif5C
could enhance the ATPase rate, it significantly reduced the
microtubule affinity in vitro and stalled the movement of
kinesin-associated vesicles in the axon (Padzik et al., 2016).
Altogether, the data suggest that S175/176 phosphorylation
stabilizes an autoinhibited conformation of Kinesin-1 and
attenuates the load-bearing capacity of the motor in the

absence of cargo in vitro and enhances the minus-end-directed
vesicle movement in vivo. The S175/176 residue is located in the
loop8-β5 region of the kinesin motor domain involved in
microtubule binding (Woehlke et al., 1997). The structure of
this region displays considerable variation amongst different
types of kinesins (Scarabelli and Grant, 2013). This insight led
us to conjecture that increasing the negative charge in this loop
could alter the microtubule affinity.

A recent study further suggested that Glycogen Synthase
Kinase 3β (GKS3β) could phosphorylate Drosophila KHC at
the S314 residue in the α6 helix interfacing the head and the
neck-linker domain (Banerjee et al., 2021). The phosphomimetic
S314D and the phosphodeficient S314A substitutions severely
affected the motor function. Although it did not detach the motor
from the microtubule, the ATPase activity and microtubule
gliding in vitro were significantly reduced. The mutations also
affected the axonal transport of mitochondria in Drosophila
(Banerjee et al., 2021). The neck-linker domain moves to a
significant extent during the ATPase cycle to generate the
force along microtubule during the ATPase cycle (Rice et al.,
1999; Vale and Milligan, 2000), which is likely to transiently
increase tension on the α6 segment during each stepping cycle
(Qin et al., 2020). Therefore, the phosphorylation of the S314
could potentially alter the helix packing and change the overall
dynamics of the neck-linker movement.

Together, these results suggest that phosphorylation of
different conserved serine residues in the motor domain could
attenuate the Kinesin-microtubule interaction and the ATPase
rate through distinct mechanisms (Figure 1B). Further structure-
function correlation studies are needed to identify the underlying
mechanism and its significance in vivo.

EFFECTS OF KINESIN-1
PHOSPHORYLATION ON CARGO-MOTOR
INTERACTION
The phosphorylation of Kinesin-1 subunits was indicated to
promote and attenuate cargo association in different contexts.
The outcome depends on the site of phosphorylation and the
local milieu. It was also shown to stabilize the autoinhibited
conformation of the motor. In one of the pioneering studies, Peter
Hollenbeck and his colleagues showed that membrane-associated

TABLE 2 | List of phosphorylation targets of kinesin adaptors.

Adaptor Kinase Target site Effect References

JIP1 (Mouse) JNK S421 Increases its binding to KHC Fu and Holzbaur.
(2013)

Aplip1/JIP1
(Drosophila)

Wnd/MAPKKK, Hep/
MAPKK

unknown Inhibits Aplip1/JIP-KLC binding Horiuchi et al. (2007)

Fez1 (Human) MARK2 S58 Promotes FEZ1-mediated transport; prevents aggregation of FEZ1
vesicles

Butkevich et al. (2016)

Fez1 (Drosophila) Unc51/Atg1 S143 Increases its binding to Synaptotagmin-1 Toda et al. (2008)
Alcn-α/Clstn-1 CK1/CK2 Multiple serine

residues
Enhance its interaction with KLC Sobu et al. (2017)

CRMP2 GSK3β T514 Reduces its binding to Tubulin Yoshimura et al. (2005)
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KHC and KLC are phosphorylated at multiple serine residues by
PKA downstream of nerve growth factor (NGF) signaling in
PC12 cells and chick neurons in vivo (Hollenbeck, 1993). The
event promoted organelle transport in the neurites of PC12 cells
(Lee and Hollenbeck, 1995). Although the types of kinases and
target sequences were unclear, the observation indicated that
KHC phosphorylation could promote cargo binding. Similarly,
KLC2 phosphorylation at S575 was shown to trigger 14-3-3η
binding (Ichimura et al., 2002). The 14-3-3 family of homo and

heterodimeric adaptor proteins associate with a variety of other
proteins, including several kinases and phosphatases (Thompson
and Goldspink, 2021; Obsilova and Obsil, 2020) (Box 2). Genetic
studies further showed that CaMKII-dependent phosphorylation
at the N-terminal part of KLC-2 (S240 and S276) and MAPK-
signaling could positively regulate an AMPA-receptor subunit
(GLR-1) transport in C. elegans (Hoerndli et al., 2015; Hoerndli
et al., 2022). Together, these findings suggested that site-specific
phosphorylation by a distinct set of kinases could activate

FIGURE 1 | Phosphorylation sites on Kinesin-1 and their effects on the motor’s function. (A) Domain organizations of KHC and KLC subunits with relative positions
of phosphorylation sites and alignments of the surrounding amino acid sequences from different species. Dd, Dr, Dm, Mm and Hs represent Dictyostelium, Zebrafish,
Drosophila, mice, and humans. (B) Schematics indicate the structure of the Kinesin-1 holoenzyme and illustrate the effects of phosphorylation of different serine residues.
Phosphorylation of the C-terminal part of KLC by ERK, PKC, AMPK and GSK3β, respectively, disrupts motor-cargo interactions. Phosphorylation at the N-terminal
part of KLC by CaMKII recruits Kinesin-1 to GLR-1 vesicles and increases its transport. The GSK3β and JNK–dependent phosphorylation at two different resides in the
motor domain disrupts the motor activity. The phosphorylation by JNK was also shown to stabilize autoinhibited conformation. Abbreviations: AMPK, Adenosine
Monophosphate-activated protein kinase; CC, Coiled coil, CK2, Casein Kinase 2; cAMP, cyclic Adenosine Mono Phosphate; ERK, Extracellular Receptor Kinase; FEZ1,
Fasciculation and elongation protein zeta 1; GSK3β, Glycogen Synthase Kinase 3β; JIP, cJUN interacting Protein; KHC, Kinesin Heavy Chain; KLC, Kinesin Light Chain;
LFP, Leucine Phenylalanine Proline motif; PKA, Protein Kinase A; PKC, Protein Kinase C; TP, Tetra-Trico-peptide repeat; S, serine; pS, phosphoserine.
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Kinesin-1 in specific contexts and promote intracellular transport
(Figures 1A,B).

A KHC phosphorylation was also indicated to disrupt cargo
association. Ca2+-dependent dephosphorylation of KHC by
protein phosphatase-2Bβ (PP2Bβ) enhanced the glucose-
dependent insulin release, whereas the CK2-dependent
phosphorylation of KHC inhibited the vesicle transport by
Kinesin-1 in these cells (Donelan et al., 2002). Thus, KHC
dephosphorylation was suggested to promote insulin secretion
by moving β-granules to the plasma membrane in the pancreatic
β-cells after insulin stimulation. Consequently, a yeast two-hybrid
screen identified KIF5C/KHC as a direct binding partner of the
CK2α’ (Schäfer et al., 2009), and CK2 activation by Amyloid β
(Aβ) oligomers in the axon increased KLC phosphorylation,
which released Kinesin-1 from the membrane and disrupted
the fast axonal transport of membrane-bound organelles in
squid axoplasm (Pigino et al., 2009). These results indicate
that KHC and KLC phosphorylation could also decrease cargo
association and transport.

Consistent with this notion, KLC phosphorylation by several
kinases was found to disrupt cargo association (Figure 1B;
Table 1). One of the pioneering reports suggested that KLC
phosphorylation by PKA could reduce its affinity for purified
synaptic vesicles (Sato-Yoshitake et al., 1992). Similarly, KLC
phosphorylation by the GKS3β, enriched at the membrane
delivery sites near the growing neurite tips, released Kinesin-1
from membrane-bound organelles (Morfini et al., 2002). GKS3β
can potentially phosphorylate at least two serine residues (S611
and S615) after a priming phosphorylation by Casein Kinase 2
(CK2) at the C-terminal region of KLC (Morfini et al., 2002). It
was shown that Presenilin (PS), the catalytic subunit of γ-
secretase, could sequester GKS3β, preventing the kinase from
binding and phosphorylating Kinesin-1 in axons (Banerjee et al.,
2018). Accordingly, PS-1 knockout and gene mutation increased
the levels of active GKS3β in neurons, which predominantly
phosphorylated KLC and caused severe neuropathy in the mouse
Alzheimer’s model (Pigino et al., 2003). Also, phosphorylation at
multiple sites (S539 and S575) of human KLC2 by the Adenosine
Monophosphate-activated protein kinase (AMPK) in neurons
disrupted the association between the p85 regulatory subunit of
PI3K and KLC2, attenuating the Phospho-Inositol-3-Kinase
(PI3K) transport to the neurite tips by Kinesin-1, which is
essential for neurite growth (Amato et al., 2011). Hence,
phosphorylation at the C-terminal of KLC appears to impart
an opposite effect from that of the N-terminal region. The
structural and biochemical basis of this divergence is unclear.
Also, phosphorylation of each residue affected the interaction
with a specific adaptor/cargo.

This selective disruption of protein binding due to residue-
specific phosphorylation can help to discriminate between
cargoes and adaptors and regulate the respective transport. For
example, vesicles carrying Amyloid Precursor Protein (APP) can
associate with two different Kinesin-1 adaptors, Alcadeinα/
Calsyntenin1 (Alcα/Clstn1) and the JNK interacting protein
JIP1. Kinesin-1 association with Alcα/Clstn1 at the post-Golgi
vesicles is suggested to regulate the APP transport in the axons
(Konecna et al., 2006; Araki et al., 2007; Ludwig et al., 2009;

Vagnoni et al., 2012). Alcα/Clstn1 was shown to compete with the
JIP1 for KLC binding (Araki et al., 2007) and modulate the speed
of APP vesicle transport (Chiba et al., 2017; Chiba et al., 2014).
Phosphorylation of the S460 residue of KLC1 (Figure 1A) by
Extracellular Receptor Kinase (ERK) specifically weakened its
interaction with Alcα/Clstn1 and inhibited Clstn1-dependent
APP transport in cultured rat cortical neurons (Vagnoni et al.,
2011). A relatively high level of the S460 phosphorylation was
reported in the frontal cortex of Alzheimer’s patients (Mórotz
et al., 2019). Whereas phosphorylation at the T466 of KLC1,
which progressively increased in mouse brain with ageing,
disrupted JIP1 binding and reduced APP transport in CAD
cells (Chiba et al., 2017). Both the residues are highly
conserved, and the rate of APP-vesicle transport associated
with JIP1 was estimated to be higher than those associated
with Clstn1 (Araki et al., 2007). Hence, this phosphorylation-
dependent adaptor-switching could determine the APP
distribution kinetics in axons in different contexts.

Besides, KLC phosphorylation and the absence of cargo can
stabilize the autoinhibited conformation of Kinesin-1. KLC
associates with the KHC stalk through the N-terminal coiled-
coil domain and KLC-KHC interaction has been implicated in
both activation and inactivation of the Kinesin-1 dependent
transport (Gindhart et al., 1998; Verhey et al., 1998). KLC
forms an autoinhibited, folded conformation involving the
LFR motif and TPR domains (Yip et al., 2016). Association of
the autoinhibited KLC with KHC further stabilizes the fold-back
inhibitory conformation of the motor subunit (Figure 1B). A
competitive interaction with the tryptophan-acidic (WD) motifs
of the cargo/adaptor proteins is suggested to disengage the LFR
motif, which would then associate with the positively charged tail
domain of KHC, relieving the motor inhibition (Yip et al., 2016).
Thus, phosphorylation of the conserved TPR6 motif and the
flexible C-terminal part of KLC that disengages the cargoes/
adaptors from the motor complex could revert Kinesin-1 to an
inhibited state (Figure 1B). Interestingly, the C-terminal part,
containing S575, S606-616, and S619 residues, is unique to the
mammalian KLCs (Figure 1A), indicating that these regulations
evolved late. The data also suggests that the distribution of
electrostatic charges in the C-terminal end of the KLC could
play a vital role in regulating motor-cargo association. This
model, however, does not explain how phosphorylation of KHC
and the N-terminal part of KLC could increase the cargo
association and motor activation as suggested by some other
experiments (Lee and Hollenbeck, 1995; Matthies et al., 1993).

To summarize, the phosphorylation of Kinesin-1 appears
to both promote and inhibit the interactions with cargoes and
adaptors (Figure 1B). The phosphorylation of the C-terminal
domain of KLCs disrupts cargo binding and stabilizes the
autoinhibited conformation of the motor, whereas
phosphorylation of conserved serine residues at the
N-terminal part of KLC and unknown KHC sites could
facilitate adaptor binding and cargo transport. Besides, not
all potential phosphorylation sites on Kinesin-1 subunits are
likely to be phosphorylated in vivo. For example, although the
consensus AMPK target sequences at T693 and S520 in KHC
and KLC, respectively (Rutter and Hill, 2006), were
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phosphorylated by the enzyme in vitro, the experimental
analysis failed to identify the effect of this phosphorylation
on insulin vesicle movement inside a cell (McDonald et al.,
2010). Many of these contrasting reports are obtained from
diverse cell and tissue types. Therefore, a tissue-specific
comparative experimental analysis is needed to understand
the basis of this diversity.

PHOSHOREGULATION THROUGH THE
ADAPTORS OF KINESIN-1

Kinesin-1 binds to cargoes through several different adaptors
(Box 2). Phosphorylations of Kinesin adaptor proteins are equally
crucial for regulating cargo association and motor activation
(Table 2). The idea is well understood for the cJUN

FIGURE 2 | Effect of phosphorylation on Kinesin-1 adaptors. (A) Domain organizations of JIP1 and Fez1 with relative positions of phosphorylation sites and
alignments of the surrounding amino acid sequences from different species. Ce, Dm, Mm and Hs represent C. elegans, Drosophila, mice, and humans. (B–D).
Schematics depict how phosphorylation of JIP1 and Fez1 affect the adaptor binding to the kinesin motor. JIP1 is phosphorylation by Hep and JNK downstream of
MAPKKK signaling at some unknown site(s) disrupts association with KLC (B). On the other hand, JIP1 phosphorylation by JNK at S421 enhances binding to the
KHC tail and promotes APP vesicle transport in DRG neurons (C). Similarly, phosphorylation of both the human and Drosophila Fez1 at S58/S143 by MARK2 and Atg1,
respectively, enhances its binding to Kif5C/KHC tail and the Munc18-Syntaxin1 complex (D), and that of Alcα/Clstn1, potentially by CK1 and/or CK2, increases KLC
association (E).
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N-terminal Kinase (JNK) interacting proteins (JIP1-4), which can
independently bind to both KLC (Bowman et al., 2000; Verhey
et al., 2001) and KHC (Sun et al., 2011; Fu and Holzbaur, 2013).
Depending on its location, the JIP phosphorylation resulted in
distinct effects. For example, JIP-1 phosphorylation at the
conserved S421 by JNK, downstream of DLK (Nihalani et al.,
2003), facilitates interaction with the KHC tail and activates the
motor function in vitro (Table 2). Whereas a dephosphorylated
JIP1 binds to p150Dynactin, switching the movement of APP
vesicles in axons (Fu and Holzbaur, 2013). Thus, adaptor
phosphorylation is suggested to regulate motor recruitment
and transport direction. The presence of KLC harnesses JIP1
releasing the KHC-tail, which induces autoinhibition. In this
context, Fasciculation and Elongation protein Zeta-1 (FEZ1)
binding to the KHC-tail keeps the motor active (Blasius et al.,
2007).

Although the specific mechanism is unclear, genetic analysis
showed that the upstream kinases MAPKKK (DLK/Wnd) and
MAPKK (MKK7/Hep) bind to APLIP1/JIP1 and inhibit JIP1-
KLC interaction in Drosophila (Horiuchi et al., 2007). It was
suggested that either JNK (Basket) or MKK7 (Hep) could
phosphorylate JIP1. The JIP1 phosphorylation at T103 by
JNK, and possibly by some other kinases, promoted JIP-JNK
interaction, dissociating and activating DLK (Nihalani et al.,
2001; Nihalani et al., 2003), which in turn further promoted
association and activation of both JNK and KLC1 with JIP1.
Similar phosphorylation of JIP3 by the MAPKKK/ASK1 is
suggested to regulate its interaction with JNK3 (Matsuura
et al., 2002). This phosphorylation-dependent feedback system
is suggested to restrict JNK diffusion and possibly localise its
activity to promote independent transport of apparently
unrelated classes of endocytic compartments in axons (Abe
et al., 2009; Sun et al., 2011; Huang et al., 2011).

Adaptor phosphorylation could independently regulate motor
recruitment on a cargo (Figure 2). For example, phosphorylation
of multiple serine residues in the C-terminal acidic region
between the WD-motifs of Alcα/Clstn1 regulates the degree of
its interaction with KLC (Sobu et al., 2017). In addition,
phosphorylation of several serine residues distributed along
the N-terminal part of Fez1 was shown to differentially
regulate the interactions between Munc18-KHC complex and
Syntaxin-1 (Chua et al., 2012). In this context, two distinct
kinases were found to act on a particular serine residue
(Figures 2B,C). The ATG1/Unc51 kinase-dependent
phosphorylation of the Drosophila Unc76/Fez1, which forms a
complex with Munc18 and Syntaxin-1 on a distinct subset of
presynaptic vesicles (Chua et al., 2012), at the S143 residue
increased the adaptor’s affinity for Synaptotagmin-1 (Syt-1)
and initiated Syt-1 vesicle transport by Kinesin-1 (Toda et al.,
2008). Whereas phosphorylation of an equivalent serine (S58)
residue of mammalian Fez1 by MARK/PAR-1 turned out to be
essential for the axonal transport of presynaptic components like
Synaptobrevin and Syntaxin1 (Butkevich et al., 2016). Further,
MARK2-dependent phosphorylation of Fez1 was shown to
recruit Kinesin-1 on a viral capsid (Malikov and Naghavi,
2017). In all these cases, the phosphorylation enhanced
Kinesin-1 association with the cargo.

A converse effect was observed in the case of a tubulin adaptor
of Kinesin-1—the Collapsin Response Mediator Protein-2
(CRMP-2), also known as TOAD-64, Ulip2, and DRP-2
(Kawano et al., 2005). The C-terminal domain of CRMP2
binds to the TPR domains of KLC1 and transports the Sra-1/
WAVE1 complex during axon formation (Kawano et al., 2005). It
also regulates the microtubule organization in C. elegans neurons,
which is essential for the KIF5/UNC-116 dependent axonal
transport of mitochondria (Chen et al., 2021). CRMP2 is
phosphorylated by CDK-5, GSK3β and Rho-kinase at multiple
residues at the C-terminal domain and dephosphorylated by
PP2A (Nakamura F. et al., 2020). The CDK-5 and GSK3β-
dependent dual phosphorylation altered the CRMP2-tubulin
interaction and led to the axon growth cone collapse
(Yoshimura et al., 2005; Uchida et al., 2005). It is unclear
whether the phosphorylation could also regulate KLC1-
CRMP2 interaction in this context. Nevertheless, the result
suggests that phosphorylation can differentially regulate
adaptor-cargo interaction.

A distinctly different molecular mechanism appeared to
regulate the mitochondria association with Kinesin-1. The
mitochondrial outer membrane protein Miro binds to KHC
through Milton/TRAK (Brickley et al., 2005; Glater et al.,
2006; Weihofen et al., 2009; Wang and Schwarz, 2009; López-
Doménech et al., 2018). The Miro-Mitochondria interaction is
regulated by PTEN-induced putative kinase 1 (PINK1) and the
ubiquitin ligase Parkin (Weihofen et al., 2009; Wang et al., 2011).
PINK1-dependent phosphorylation of Miro induces its
degradation via Parkin which detaches Kinesin-1 from the
mitochondrial surface and promotes a minus end-directed
movement on the microtubule.

Thus, phosphorylation of the adaptor-cargo interacting
domains appears to promote cargo association in the case of
JIP1/3, Fez1 and Clstn-1, and disrupts the interactions with
CRMP2 and Miro (Figure 2). Together, these observations
indicate that adaptor phosphorylation could tune the affinity
with motor, adding a new layer of logistics control.

PHOSPHOREGULATION OF KINESIN-2

Phosphorylation of multiple serine residues in the tail domains of
Kinesin-2 motor subunits was shown to regulate the cargo-motor
interactions (Figure 3; Table 1). In the case of the heterotrimeric
Kinesin-2, phosphorylation of each tail imparted distinctive
effects (Figures 3A,B). For example, phosphorylation of Kif3A
at the conserved S689 by PKA and the partly conserved T694/
S698 by CaMKIIa increased the Kif3A-dependent N-cadherin
transport in the neurites of cultured mouse hippocampal neurons
(Ichinose et al., 2015). The dual phosphorylation enhanced the
interaction between N-cadherin and Kinesin-2, but it did not
appear to affect the activity of purified Kinesin-2. An independent
study further showed that dephosphorylation of pS690 of human
Kif3A (equivalent to S689 of mouse Kif3A) by a PP2C family
phosphatase, POPX2, could disrupt both the N-cadherin and β-
catenin transport in NIH3T3 cells (Phang et al., 2014). However,
contrary to data presented by Ichinose et al. (2015), Phang et al.
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FIGURE 3 | Effect of phosphorylation on Kinesin-2. (A) Domain organizations of mammalian heterotrimeric Kinesin-2 subunits with relative positions of
phosphorylation sites and alignments of the surrounding amino acid sequences from different species. Cr, Dm, Dr, Xl, Mm and Hs represent Chlamydomonas,
Drosophila, zebrafish, Xenopus, mice, and humans. (B) Schematics indicate the structure of heterotrimeric Kinesin-2 holoenzyme and illustrate the effects of
phosphorylation of different serine residues. Phosphorylation of the motor subunits KIF3A and KIF3B produces opposite effects. The KIF3A (S689) phosphorylation
increases association with N-cadherin vesicles, whereas KIF3B(S631) phosphorylation disrupts interaction with the IFT particles. The KAP3(S60) Phosphorylation by
MARK2 reduced the Kinesin-2 affinity for TRIM46 and microtubule. (C) Domain organization of the mammalian homodimeric Kinesin-2 subunit with the relative position

(Continued )
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(2014) suggested that CaMKII could phosphorylate the S690 as
well. Regardless of this discrepancy, both studies suggest that the
phosphorylation of the Kif3A tail domain is likely to enhance
specific cargo interaction with heterotrimeric Kinesin-2 in the
cytoplasm (Figure 3B). These studies also highlighted the
compartment-specific effects of CaMKII-dependent
phosphorylation of heterotrimeric Kinesin-2. On the other
hand, the CrCDPK/CaMKII-dependent phosphorylation at a
conserved S663 of the FLA8 (Kif3B orthologue) of
Chlamydomonas at the tip of regenerating flagella released the
soluble IFT-B particles from the Kinesin-2 complex and
facilitated the motor turnover (Liang et al., 2014). The levels
of FLA8 phosphorylation, controlled by the PP2A family of
phosphatases, CrPP1 and CrPP6, determine the ciliary length
(Liang et al., 2018). Thus, it suggested that the phosphorylation
could negatively regulate the cargo-motor interaction in the cilia.

Phosphorylation requires an association between the enzyme
and substrate. Accordingly, both MLK2 andMLK3 were found to
interact with Kinesin-2 subunits using a yeast 2-Hybrid assay
(Nagata et al., 1998). The C-terminal fragment of MLK2 is
associated with the tail domain of Kif17, the human
orthologue of C. elegans Osm3, as well as the Kif3A and
Kif3B. The effects of these interactions are not known. In
addition, the non-catalytic C-terminal domain of Ciliogenesis
associated kinase 1 (CILK1), also known as Intestinal Cell Kinase
(ICK), was shown to associate with the IFT-B complex along with
Kif3A (Nakamura K. et al., 2020) and phosphorylate a highly
conserved T672 residue in the human Kif3A tail (Oh et al., 2019),
and an equivalent T674 residue of mouse Kif3A, at the ciliary tip
(Chaya et al., 2014). It was proposed that the ciliary tip
localization of ICK could facilitate the IFT to transition from
anterograde to retrograde. Although ICK was indicated to be
critical for cilia assembly in certain types of cells in vivo (Moon
et al., 2014), Kif3A (T674A) mutation did not significantly affect
the embryonic development and cilia growth in mouse
embryonic fibroblast cells (Gailey et al., 2021). Therefore, it is
unclear whether this particular phosphorylation could affect
cargo-motor interaction or motor activity.

Further, reports indicated that phosphorylation of the
heterotrimeric Kinesin-2 accessory protein, KAP, could also
alter cargo-motor interaction. The tripartite motif (TRIM)
family protein TRIM46 has a unique microtubule crosslinking
activity essential for the organization of the axon-initial segment
(AIS) (Van Beuningen et al., 2015), which directs the movement
of axon-specific cargoes (Nakata and Hirokawa, 2003; Nakata
et al., 2011; Morikawa et al., 2015). The phosphorylation at the
conserved S(T)23 and S60 residues of KAP3 by the Microtubule-

Associated Regulatory Kinases (MARK1/2) reduced the KAP3-
TRIM46 association in the cell body and dendrites of mouse
hippocampus neurons (Ichinose et al., 2019). Loss of Kif3B and
TRIM46 altered the microtubule polarity in the AIS in tissue-
cultured cells (Ichinose et al., 2019; Van Beuningen et al., 2015),
and an independent study suggested that loss of Kinesin-2
function also disrupts the movement of soluble choline
acetyltransferase across AIS in Drosophila (Sadananda et al.,
2012). The result suggests that KAP phosphorylation would
disrupt the cargo association (Figure 2B). Similarly,
phosphorylation of the human KAP orthologue, identified as
Smg GDS associated protein (SMAP) using a yeast 2-hybrid
screen (Shimizu et al., 1996), by the v-Src kinase reduced its
affinity for the SmgGDS in cell-free systems. However, in vivo
effect of this phosphorylation is still not known. Interestingly, the
MARK1/2 phosphorylation targets are located in the flexible
N-terminal region of KAP3, which is also suggested to
associate with the coiled-coil stalk of heterodimeric motor
subunits (Doodhi et al., 2009). Therefore, phosphorylation
could also potentially alter the interaction with the motor.

For homodimeric Kif17, CaMKII-dependent phosphorylation of
S1029 at the tail domain in dendrites disrupted its interaction with the
scaffold protein Mint-1, which associates with vesicles carrying the
NMDA receptors subunit GluN2B (Guillaud et al., 2008; Yin et al.,
2012). Whereas the phosphorylation of S815 residue of zebrafish
Kif17, which is equivalent to the S1029 of mouse Kif17, increased disc
shedding and the motor turnover in the cone photoreceptor outer
segment (Lewis et al., 2018). The S815 phosphorylation was suggested
to facilitate Kif17 entry into the cilia. These results showed how
phosphorylation at equivalent positions could produce contrasting
outcomes in different subcellular compartments, such as the dendrites
and cilia (Figure 2D).

In summary, the tail phosphorylation of the Kinesin-2 family
motors appeared to regulate type-specific cargo release and
compartment-selective activation. Kinesin-2 tails are natively
unfolded and directly bind to several soluble (Lolkema et al.,
2007; Dishinger et al., 2010; Sadananda et al., 2012; Girotra et al.,
2017; Dishinger et al., 2010) and vesicle-associated cargoes (Yin et al.,
2012; Dey et al., 2017; Jana et al., 2021). Therefore, unlike Kinesin-1,
phosphorylation of the tail domains of Kinesin-2 motor subunits
could play a predominant role in regulating cargo interactions. Also,
we noted that almost all the phosphorylation motifs are conserved
within the heterotrimeric Kinesin-2 family, indicating functional
conservation of the phosphorylation events (Figure 2; Table 1).
Compared to Kinesin-1, our understanding of the Kinesin-2
structure and cargo-motor interaction is still rudimentary (Webb
et al., 2020). Future research in this area is required to understand

FIGURE 3 | of the CaMKII phosphorylation site and alignment of the surrounding amino acids from different species. Dr, Mm and Hs represent Drosophila, mice and
humans, respectively. (D) Schematics indicate the structure of the homodimeric Kinesin-2 holoenzyme and illustrate the effects of phosphorylation of different serine
residues. Mouse Kif17(S1029) phosphorylation by CaMKII dissociates vesicles carrying the GluN2B receptor subunit. Phosphorylation on an equivalent residue of
zebrafish KIF17(S815) promoted motor entry into the photoreceptor cilia. Abbreviations: ARM, Armadillo-like repeats; CaMKII, Ca2+/Calmodulin-Dependent Protein
Kinase II; IFT, Intraflagellar Transport; KIF3A and KIF3B, heterotrimeric Kinesin-2 motor subunits α and β; KAP, Kinesin Accessory Protein; Kif17, homodimeric Kinesin-2
motor subunit γ; MARK2, Microtubule Associated Regulatory Kinase 2; PP2A, Protein Phosphatase 2A; POPX2, PP2C family phosphatase; TRIM46, Tripartite motif
family protein.
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how phosphorylation of the same region could produce divergent
effects in different subcellular compartments. Besides, the role of
phosphorylation on Kinesin-2 motor activation/inhibition is not
known, although several putative motifs are predicted in the motor
domain.

PHOSPHOREGULATION OF KINESIN-3

Kinesin-3 is a highly diverse family of motors consisting of several
conserved sub-families (Box 1), and distinct target-specific effects
of phosphorylation were observed (Table 1). Phosphorylation of

FIGURE 4 | Phosphorylation sites of Kinesin-3 isoforms and their effects on their function. (A,C) Domain organizations of mammalian Kinesin-3 subunits with
relative positions of phosphorylation sites and alignments of the surrounding amino acid sequences from different species are indicated on the primary structures. Dm,
Dr, Mm and Hs represent Drosophila, zebrafish, mice, and humans. (B,D) Schematics indicate the structure of Kinesin-3 family proteins Kif1A/C (B) and Kif13B (C),
respectively, and illustrate the effects of phosphorylation of different serine residues. CaMKII-dependent phosphorylation of Kif1A increased its association with
DCV, and CK2-dependent phosphorylation of Kif1C promoted association with 14-3-3γ (B). In the case of Kif13B, FHA domain phosphorylation by CDK5 enhanced
association with the vesicles carrying TRPV receptors, and MARK2/Par1-dependent phosphorylation in the tail domain promoted association with the dynein motor
complex through 14-3-3γ/ε heterodimer (D). Abbreviations: CC, coiled-coil; CDK5, Cyclin-Dependent Kinase 5; CG, CAP-Gly domain; CK2, Casein Kinase 2; DCV,
Dense Core Vesicle; FHA, Fork Head Associated domain; MBS, MAGUK binding domain; NC, neck coil; PTPD1, Protein Tyrosine Phosphatase D1 binding domain;
TRPV, Transient Receptor Potential Vanilloid; T-, threonine; pT, Phosphothreonine.
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the stalk and the tail domains of Kinesin-3 motors is suggested to
block motor activity and modulate cargo binding (Figure 4). The
results are summarized according to the Kif1A, Kif13 and Kif16
subfamilies in the following subsections.

In mammalian cells, Kif1A binds to Calmodulin (CaM) in the
presence of Ca2++, which promotes the dense-core vesicles (DCV)
association (Stucchi et al., 2018). Phosphorylation at S1665 near
the C-terminal end of mouse Kif1A by the CaMKII regulates the
Kif1A-DCV interaction through the small GTPase Arl8
(Hummel and Hoogenraad, 2021). Mutation of an equivalent
S1758 residue of the human Kif1A is associated with hereditary
sensory and autonomic neuropathies (Rivire et al., 2011). Here,
the MmKif1A (S1665) phosphorylation is suggested to promote
the cargo association. Similarly, CK2-dependent phosphorylation
at the S1092 of HsKif1C enhanced the 14-3-3γ interaction
(Dorner et al., 1999). Since 14-3-3 proteins act as a scaffold
for a large variety of proteins inside a cell, Kif1C and 14-3-3γ
interaction could also attach the motor to other proteins. A
similar interaction between 14-3-3ζ and Drosophila Kif13B
orthologue Khc73 is suggested to harness the dynein adaptor
NudE through 14-3-3ε/ζ heterodimerization downstream of the
cell polarity factors Pins and Dlg1 during the spindle positioning
event (Lu and Prehoda, 2013).

Complex intramolecular interactions involving the motor
domain, neck-coil, the coiled-coil stalk and the FHA domain
inactivate the Kinesin-3-family motor (Al-Bassam et al., 2003; Lee
et al., 2004; Ren et al., 2018; Siddiqui et al., 2019). A recent study
further showed that the Aβ-induced activation of GSK3β could
attenuate Kif1A transport in neurites of the mouse hippocampal
neurons (Gan et al., 2020). Although GSK3β phosphorylated
S402 of rat Kif1A in vitro, it did not appear to alter the motility of

an autoinhibition-deficient KIF1A, suggesting that
phosphorylation of additional components may be involved in
this process. In the case of mammalian Kif1C, the motor-stalk
interaction is disrupted by the binding of PTPN21, a FERM-
domain containing protein tyrosine phosphatase, or Hook, a
cargo adaptor (Siddiqui et al., 2019). It is unclear whether the
PTPN21 binding could dephosphorylate the motor or whether a
phosphorylation event could regulate its association. Also, an
independent study suggested that the Hook3 is redundant for
Kif1C activation, but it is carried to the cell periphery, where it
could act as a scaffold to recruit and activate the dynein motor
(Kendrick et al., 2019). Therefore, the PTPN21 and Hook3
binding are likely to have a distinct impact on Kif1C function
within the cell. Together, these data indicated that potential
phosphorylation of Kinesin-3 outside the motor domain could
activate or deactivate the motor.

The Kif13A/B family of homodimeric proteins are implicated
in a variety of intracellular transports both in neurons and
somatic cells (Siddiqui and Straube, 2017). The C. elegans
KLP-4 and its mammalian orthologue, Kif13A, transport the
AMPA receptors GLR-1 to the ganglionic synapse of the worm
and GluA1 to the dendritic spines of CA1 neurons, respectively
(Monteiro et al., 2012; Gutiérrez et al., 2021). The AMPAR is
associated with the rat Kif13A stalk domain through centaurin-α1
and the Rab11 adaptor FIP1 in response to neuronal activation
(Gutiérrez et al., 2021). Although genetic studies implicated the
activity of Cyclin-Dependent Kinase, CDK5, in GLR-1
trafficking, the phosphorylation/dephosphorylation did not
appear to regulate the GluA1-Kif13A interaction (Gutiérrez
et al., 2021). Therefore, this evidence suggests that some
kinases can act as cargo adaptors, or they may act on other

BOX 1 | The long-range Kinesins.
Kinesin 1: It is also known as the conventional Kinesin. The motor was the first member of the Kinesin family to be discovered (Vale et al., 1985; Yang et al., 1988). The
Kinesin holoenzyme was purified as a heterotetramer of two identical heavy and light chains (Bloom et al., 1988). The Kinesin Heavy Chain (KHC) contains the conserved
N-terminal motor/head domain, which is followed by a flexible neck, a coiled-coil stalk and natively unfolded tail domains (Figure 1A). The N-terminal coiled-coil
domain of the Kinesin Light Chain (KLC) associates with the C-terminal part of the coiled-coil stalk of KHC. Six conserved tetra-trico-peptide repeats (TPR) motifs in the
middle and a flexible C-terminal domain of KLC binds to adaptors and cargoes (Figure 1A). Auto-inhibition of the kinesin motor through the head-tail association was
also studied first time using Kinesin-1 (Hackney and Stock, 2000). It was suggested that the association between the IAK motif of the tail domain and the P-loop region
of the head domain could prevent the ADP-ATP exchange and arrest the motor function in vivo (Kaan et al., 2011). A cargo association and/or binding with KLCs could
relieve this auto-inhibition. Both KHC and KLC were purified in multiple phosphorylated forms from the bovine brain (Matthies et al., 1993) and chick neurons
(Hollenbeck, 1993).

Kinesin-2: This family of motors consists of both the heterotrimeric and homodimeric members. The heterotrimeric Kinesin-2, represented by the mammalian Kif3A/
B and Kif3A/C, are highly conserved from Chlamydomonas to humans. The heterotrimeric Kinesin-2 holoenzyme, purified from several organisms, consists of two
distinct motor subunits (Kif3A/2α and Ki3B/2β) and accessory protein KAP3/2κ (Figure 2A); (Scholey, 2013). Each motor subunit has a similar domain organization as
KHC with a relatively shorter stalk domain. Genetic studies indicated that the accessory subunit is essential for Kinesin-2 functions (Sarpal et al., 2003; Mueller et al.,
2005). KAP, suggested initially as the universal cargo adaptor, is also shown to associate with the tail domain of the vertebrate and C. elegans Kinesin-2 motor subunits
(Wedaman et al., 1996; Yamazaki et al., 1996). However, studies with the Drosophila and human orthologs have shown that KAP could bind to the C-terminal part of the
coiled-coil stalk domain of the heterodimeric motor (Doodhi et al., 2009) and harness the motor subunits together (Ahmed et al., 2020). The heterotrimeric Kinesin-2 is
involved in cilia formation and transport into the cilium (Scholey, 2013; Webb et al., 2020). It is also implicated in the axonal transport of a range of different types of
presynaptic proteins (Ray et al., 1999; Sadananda et al., 2012; Kulkarni et al., 2017) and endosomal derivatives (Tuma et al., 1998; Brown et al., 2005; Dey et al., 2017).
The homodimeric Kinesin-2, represented by the mammalian Kif17 (2γ) and Osm3 of C. elegans, is also implicated in the receptor transport and cilia assembly (Scholey
2013).

Kinesin-3: Represented by Kif1, Kif13, Kif14, Kif16, and Kif28 in mammals (Miki et al., 2005; Siddiqui and Straube, 2017), these are induced homodimeric motors
that are engaged in superfast, long-range transport of presynaptic vesicles andmitochondria (Hammond et al., 2009; Soppina et al., 2014). Mutations in thesemotors are
associated with hereditary neurodegenerative disorders (Gabrych et al., 2019). Apart from a conserved N-terminal motor domain and a partly conserved
phosphothreonine (pThr)-specific forkhead-associated (FHA) domain in the middle, the Kinesin-3 family motors have highly diverse domain compositions (Miki
et al., 2005; Siddiqui and Straube, 2017). For example, the Kif1A and Kif16 family contains several coiled-coil domains (exceptions Kif28P and Kif16A), and the Kif13
family contains a MAGUK family guanylate kinase (GK) protein binding (MBS) domain. All of them contain a variable C-terminal region of unknown structure. Hence the
regulation mechanisms of these motors are equally diverse.
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proteins that could modulate distinct cargo-motor interactions
and motor activation.

The Kif13B/GAKIN family proteins also contain an MBS
domain that binds to the PDZ domain-containing MAGUK
family protein Discs Large 1 (Dlg1) and the microtubule-
binding CAP-Gly (CG) domain at the C-terminal end
(Hanada et al., 2000; Asaba et al., 2003).

Uncharacteristically, the Dlg1 guanylate kinase (GK)-
domain associated with an unphosphorylated segment of
the MBS domain (Zhu et al., 2016), activating Kif13B
motor function (Yamada et al., 2007). MAGUK-GKs
usually bind to a phosphorylated target sequence.
However, in this context, the Kif13B MBS was shown to
compete with phospho-LGN peptide for the Dlg1-GK

BOX 2 | The Kinesin adaptors.
CJun N-terminus kinase (JNK)-interacting proteins (JIP1-4): JIPs are scaffolding proteins containing a JNK-binding domain at N-terminus and protein-protein
interaction domains, such as Src homology 3 (SH3) domain at their C-terminus. JIP family comprised of four genes encoding for JIP1-4. JIP1, most studied for its role as
the scaffolding protein in the MAPK signalling cascade, binds to MLK, MKK7 and JNK (Whitmarsh et al., 1998). A yeast 2-hybrid screen identified JIP1, JIP2 and
JIP3 as KLC interacting partners (Verhey et al., 2001). Later, it was found that JIP4, which is more similar to JIP3 than JIP1 and JIP2, also interacts with KLC (Nyaya et al.,
2005). JIP1 and JIP-2 bind to Kinesin-1 through their phosphotyrosine-binding (PTB) domain at the C-terminal region (Satake et al., 2013), whereas JIP-3 and JIP-4
bind to KLC through a leucine-zipper domain (Nyaya et al., 2005; Cockburn et al., 2018). JIP-1 acts as an adaptor for APP and APOER2 transport by Kinesin-1, while
JIP-3 helps recruit Kinesin-1 onto TrkB receptor carrying vesicles inside neurons (Huang et al., 2011).

Fasciculation and elongation protein zeta 1 (Fez1): Fez1 is the mammalian orthologue of unc-76 (McIntire et al., 1992). FEZ1 contains a coiled-coil domain
towards its C-terminus through which it can interact with different proteins. The N-terminus region has three glutamic-acid rich regions that help in FEZ1 dimerization,
which can also form a heterodimer with its homologue FEZ2 (Assmann et al., 2006). FEZ1 interacts with the inhibitory tail domain of KHC and relieves the motor from its
fold-back conformation. (Blasius et al., 2007). It also helps in the recruitment of Kinesin-1 to certain cargoes, for example, KIF5C to the Syntaxin 1a (Stx1a) and Munc-18
complex (Chua et al., 2012) and KIF5A/B to HIV capsid envelope (Malikov et al., 2015).

Calsyntenin 1 (Clstn1): Clstn1 is a transmembrane protein belonging to the cadherin superfamily. Vertebrates have three Clstn genes (Clstn1-3). Clstn-1 binds to
the TPR domain of KLC throughW-acidic (WD) peptidemotifs present in its cytoplasmic domain (Konecna et al., 2006) and recruits Kinesin-1 on vesicles carrying amyloid
precursor protein (APP) (Vagnoni et al., 2012) and other proteins (Araki et al., 2007). Recent studies suggest that Clstn1 also has a role in organizing microtubule
dynamics during axon maturation (Ponomareva et al., 2014; Lee et al., 2017).

SifA-Kinesin interacting protein (SKIP): SKIP binds to SifA, an effector protein secreted by the bacterium Salmonella typhimurium that helps in the multiplication
and virulence of the bacterium in the host cell (Dumont et al., 2010). SKIP also recruits Kinesin-1 to lysosomes and mediates their anterograde dispersion inside the cell
(Sanger et al., 2017). SKIP contains a RUN domain followed by W-acidic (WD) motifs at the N-terminus and a pleckstrin homology domain at the C-terminus. The
C-terminus pleckstrin homology domain of SKIP is required to bind SifA. Interestingly, the same WD motifs at the N-terminus of SKIP are required to bind the KHC tail
and KLC.

Collapsin response mediator protein (CRMP): CRMP2 associates with microtubule. CRMP2 interacts with heterotetrameric Kinesin-1 through the KLC subunit
and acts as an adaptor for the Kinesin1-tubulin complex (Kawano et al., 2005). There are five homologous CRMP genes, of which CRMP2 (previously known as
CRMP62) shares significant homology with the unc33 gene of C. elegans. CRMP2/Unc-33 helps in Kif5A/Unc-116 mediated transport of mitochondria in C. elegans
neurons by organizing stable microtubule bundles around the cell body and along the axons (Chen et al., 2021). CRMP2 also aids in the polarized sorting of proteins in the
neurons by regulating Kif1A (Maniar et al., 2012).

Milton/TRAK:Milton recruits KHC on mitochondria in association with an atypical GTPase called Miro and drives the mitochondria transport in axons and dendrites
(Stowers et al., 2002; Guo et al., 2005). KHC binds to the N-terminus coiled-coil domain, and Miro binds to the adjacent C-terminal part of Milton (Glater et al., 2006;
Smith et al., 2006). Mammals code for two Milton/TRAK isoforms—TRAK1 and TRAK2. TRAK1 interacts with Kinesin1/KIF5A and dynein-dynactin complex and steers
the mitochondrial transport into the axon, while TRAK2 steers the mitochondrial transport towards the dendrites by interacting with dynein (van Spronsen et al., 2013).
TRAK2/GRIF1 is also associated with the γ-Aminobutyric acid, type A (GABA) receptor (Beck et al., 2002).

Protein tyrosine phosphatase non-receptor type 21 (PTPN21): PTPN21, also known as PTPD1, is a peripheral membrane protein that links the membrane-
associated focal adhesion proteins to cytoskeletal proteins (Carlucci et al., 2008). It has an N-terminus four-point one-ezrin-radixin-moesin (FERM) domain and a catalytic
phosphatase domain at the C-terminus. PTPN21 can interact with Kinesin-3 subfamily proteins Kif1A and Kif16B through the FERM domain (Dorner et al., 1998; Carlucci
et al., 2010). PTPN21 binding can activate Kif1A by relieving the autoinhibited conformation (Siddiqui et al., 2019).

Hook3:Humans have three Hook proteins- Hook1, 2, and 3. Hook proteins have three distinct domains, an N-terminusmicrotubule-binding domain, a central coiled-
coil domain and a C-terminus unstructured domain. Hook1 and -3 can interact with the dynein-dynactin complex and increase the processivity of dynein-based transport
(Olenick et al., 2016). Hook3 can bind to the stalk domain of the Kinesin-3 motor KIF1A and relieve it from its autoinhibited state (Siddiqui et al., 2019). Thus, hook protein
acts as an adaptor for both Dynein and Kinesin; it also helps in recruiting them to early endosomes (Bielska et al., 2014).

Centaurin: Centaurins are characterized by one or more pleckstrin homology (PH) domains, through which they can bind to several phospholipids and an Arf-
GTPase domain. There are five different isoforms in Centaurin family of proteins- α1, α2, β, σ and ϒ. Centaurin α1 (CENTA1) has two PH domains. CENTA1 preferentially
binds to phosphatidylinositol-3,4,5 triphosphate (PIP3) and phosphoinositol-3,4-biphosphate (PI(3,4)P2) and the FHA domain of KIF13B through its PH domains (Tong
et al., 2010). CENTA1 is also important for recruiting KIF13A to AMPAR vesicles (Gutiérrez et al., 2021).

Discs large 1 (Dlg1): Dlg1 is a member of the membrane-associated guanylate kinase domain (MAGUK) protein family. It interacts with the MAGUK-binding stalk
(MBS) domain of the Kinesin-3 subfamily protein KIF13B/GAKIN. Human disc large (hDlg) is present in two different isoforms-hDlg-I2 and hDlg-I3. hDlg has intramolecular
interactions and is present in an inhibited conformation. SH2-I3-GUK segment of hDlg-I3 is required to inhibit intramolecular interactions of GAKIN and activate its
ATPase activity (Yamada et al., 2007).

Mint-1: Mint family of proteins has three genes (Mint-1,2,3). They have a variable N-terminal domain and a conserved C-terminal domain having one
phosphotyrosine-binding (PTB) sub-domains and two PDZ subdomains. The Mint-1 protein interacts with the tail domain of homodimeric Kinesin-2 KIF17 through
one of its PDZ domains and acts as an adaptor for the transport of NMDA receptor subunit 2B (NR2B) into the dendrites of glutamatergic neurons (Setou et al., 2000).

14-3-3: The 14-3-3 family proteins generally bind to a target motif containing phosphorylated serine or threonine. Mammals express seven isoforms of 14-3-3 (β, γ, η,
ε, ζ, σ, τ), while the Drosophila genome only codes for 14-3-3 ε and ζ. The 14-3-3 proteins are present as homo or heterodimers. The N-termini of 14-3-3 monomers form
a conserved central groove that binds to phosphorylated motifs on the target proteins. 14-3-3 proteins are expressed in all types of cells. In Drosophila oocytes, 14-3-3 ζ
interacts with a Kinesin-3 subfamily member Khc73/Kif13B, and 14-3-3 ε interacts with a dynein adaptor NudE. The 14-3-3 heterodimerization brings about a
coordination between the various kinesin and dynein motor proteins required for the organization of mitotic spindles (Lu and Prehoda, 2013). Similarly, 14-3-3 η, along
with Kif3A and Par-3, localizes at the tip of the cilia, which is essential for ciliogenesis (Fan et al., 2004).
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binding (Zhu et al., 2016). Independent studies suggested that
centaurin-α1, also known as the PIP3 binding protein
(PIP3BP), could specifically bind to the unphosphorylated
target sequence in the FHA domains of Kif13A and 13B to
release the autoinhibition and activate PI3P vesicle transport
to the neurite tips (Tong et al., 2010; Horiguchi et al., 2006).
In comparison, phosphorylation of T506 within the FHA
domain of mammalian KIF13B by CDK5 was shown to
regulate TRPV receptor binding in CHO cells (Xing et al.,

2012). Thus, phosphorylation of the FHA domain could
potentially regulate selective cargo interaction and motor
activation for the Kif13 family of motors. On the other
hand, the unphosphorylated MBS domain could regulate
the oligomerization of MAGUK-GKs and transport them
to specific destinations in the cell through a competitive
interaction.

Therefore, the Kinesin-3 phosphorylation, predominantly in
the dimerization and tail domains, appeared to regulate the

BOX 3 | Major kinases that also phosphorylate Kinesin.
Adenosine Monophosphate-activated protein kinase (AMPK): An S/T kinase that consists of three subunits. α subunit contains the catalytic domain, β subunit
binds glycogen, and the γ subunit contains four ATP/ADP/AMP binding Bateman domains. It phosphorylates S/T residues. The phosphorylation of the T172 of α
subunit by upstream kinases, such as the CaMKKβ, and increasing concentration of AMP activates the enzyme allosterically. AMPK acts as the metabolic sensor
and targets a wide variety of pathways (Hardie et al., 2012; Rodríguez et al., 2021).

Casein Kinase 2 (CK2): A heterotetramer of two catalytic and two regulatory subunits that acts on a large variety of substrates containing the consensus “S/T-X-X-
E/D/pS/pY” motif except for Casein. The enzyme activity is maintained at a low level in normal cells except during embryogenesis and in cancerous tissue, where the
levels are much higher. It controls protein synthesis by upregulating the rRNA levels through direct phosphorylation of RNA and spliceosomal machinery and targets a
large variety of cytoskeletal and motor proteins, such as myosin-1, X, XVIIIa, Dynactin, Cytoplasmic Dynein Light Intermediate Chain 1 (LIC1), capping protein, Gelsolin,
Septin, etc. It reduces the death/survival ratio, favours angiogenesis, and inactivates tumour suppressors in cancerous tissue. CK2 also acts as a scaffold to stabilize
microtubule dynamics in cilia/flagella, spindle body, and axon-initial segment (Venerando et al., 2014; D’Amore et al., 2019).

Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII): It is a ubiquitous enzyme of the CaMK superfamily with four (α, β, γ, and δ) highly homologous and
tissue-specific isoforms, each containing regulatory and substrate-binding catalytic sites, and involved in cellular Ca2+mediates signalling. The holoenzyme consists of 12
subunits of homo and heteromeric isoform composition. The Ca2+-dependent Calmodulin (CaM) binding to each subunit of the holoenzyme activates the enzyme
independently, and an intra and intersubunit autophosphorylation of a conserved threonine residue at the regulatory domain modulates the enzyme activity. CaMKII
targets an extensive repertoire of proteins carrying the consensus S/T residues. It is extensively studied in the context of learning and memory formation, epilepsy,
schizophrenia and other neuropsychiatric disorders (Bayer and Schulman, 2019; Robison, 2014).

Cyclin-Dependent Kinase 5 (CDK5): Homologous to the family of proline-directed serine/threonine protein kinases of the Cdc2/CDK1 family involved in cell cycle
progression, the enzyme is predominantly expressed in terminally differentiated neurons. Unlike the other CDK homologues, CDK5 binds to a non-Cyclin regulatory
subunit called p35/39. Cdk5 and its orthologues—Cdk5r1/2 are also expressed in non-neuronal tissues during developmental stages. Myristoylatation of the p35/39
helps to associate Cdk5 to vesicles and plasma membrane. Calpain-dependent proteolysis of p35 at the plasma membrane hyperactivates the enzyme (Pao and Tsai,
2021). The enzyme targets a large variety of proteins involved in multiple different pathways (Gao et al., 2021).

Cyclic-AMP-dependent Proteins Kinase (PKA): A tetrameric holoenzyme complex comprising a regulatory subunit homodimer and two catalytic subunits (R2:C2)
that act as a cAMP-dependent allosteric molecular switch and transmits the second messenger signal downstream of several G-protein coupled receptors (Kim et al.,
2007; Zhang et al., 2012; Taylor et al., 2012). All PKA substrates must contain a minimal RR-x-S/T motif (Moore et al., 2003). It has four regulatory and three catalytic
isoforms that can freely combine in different permutations. Each combination has a unique cAMP-dependent kinetics and target specificity (Zhang et al., 2012). The
A-kinase anchoring proteins (AKAPs) recruit the enzyme to a larger macromolecular complex (Newlon et al., 2001; Taylor et al., 2012). cAMP binding to the R subunits
releases the C units. Phosphorylation of the R subunits could also activate PKA without cAMP (Haushalter et al., 2018).

Glycogen Synthase Kinase 3β (GSK3β): A CMGC (CDK, MAPK, GSK-3, CLK) family S/T kinase, originally identified in glucose metabolism downstream of insulin
signaling, was later shown to target a wide variety of proteins underlying several signaling pathways such as the Wnt and Notch signaling. It binds to targets pre-
phosphorylated by the priming kinases such as CKII. The phosphorylation of S9 on GSK-3β by AKT/PKB and other kinases inactivates the enzyme, whereas the Y216
phosphorylation through FYN2 and PYK2 activates it (Patel and Woodgett, 2017).

cJUNN-terminal Kinase (JNK):One of the three-tiered mitogen-activated protein kinase (MAPK) cascade enzymes that acts at the penultimate step in relaying the
signal. It belongs to the CMGC family, which is activated by a dual threonine and tyrosine phosphorylation of the TPY motif by the MAP2K family enzymes MKK4 and
MKK7 downstream of the MAK3K enzymes DLK1 (Karin and Gallagher, 2005; Zeke et al., 2016). Proteins with a consensus sequence that binds to the D-site of JNK are
phosphorylated by the enzyme (Whisenant et al., 2010).

MAP/microtubule affinity-regulating kinases (MARK1-4): These enzyme isoforms were identified in the context of tau hyper-phosphorylation-dependent
development of Alzheimer’s pathology (Drewes et al., 1997). They belong to the AMPK subfamily of the CaMK group. The enzyme, enriched in the brain, kidney and
spleen, phosphorylates serine residues. Phosphorylation of a conserved threonine residue at the catalytic domain activates the enzyme, and that of a conserved serine
residue inactivates the enzyme (Timm et al., 2008). MARK1/2, also known as Par1, is involved in determining cell polarity and neuronal differentiation (Kemphues, 2000).
Besides Tau, the MARK targets include microtubule-associated proteins—MAP2, MAP4, doublecortin, and phosphatases regulating 14-3-3 binding.

Protein Kinase C (PKC): An AGC-family kinase that is generally classified as lipid-dependent serine/threonine kinase. PKC isoforms belong to three subfamilies -
conventional (cPKCs; α, βI, βII, and γ), non-conventional (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ). The N-terminal regulatory domain contains a
pseudosubstrate motif that binds to the C-terminal kinase domain and inhibits the enzyme activity. The N-terminal regulatory subdomains of cPKCs bind to Di-acyl-
glycerol (DAG) or phorbol 12-myristate 13-acetate ester (PMA) and anionic phospholipids in the presence of Ca2+. The lipid-binding recruits the enzyme onto the
membrane and activates the enzyme through a structural reorganization that expels the autoinhibitory, pseudosubstrate motif from the substrate-binding pocket. The
cPKC and nPKC activities are controlled by phosphatidic acid and ceramide binding to the regulatory domain and phosphorylation of a threonine residue in the activation
look of the kinase domain (Steinberg, 2008). The nPKC and aPKC isoforms are also activated by tyrosine phosphorylation in the catalytic domain by heterologous
enzymes, such as the Src-family kinases and adaptor binding. Distinct PKC isoforms are recruited to the plasmamembrane and on the cell’s vesicular membrane and act
on a specific set of substrates (Geribaldi-Doldán et al., 2019; Kawano et al., 2021).

Src-Family Kinase (SFK): These are tyrosine phosphorylating enzymes, homologous to the oncogene cSrc/pp60cSrc, and include nine members (c-Src, Yes, Fyn,
Fgr, Lyn, Hck, Lck, Blk, and Yrk) (Portugal et al., 2021; Thomas and Brugge, 1997). SFKs are associated with the receptor-linked tyrosine kinases (RTKs) (Ingley, 2008),
and they are highly expressed in the developing tissue as well as cancerous cells (Thomas and Brugge, 1997). Phosphorylation of a conserved tyrosine residue in the
C-terminal domain by C-terminal Src kinase (CSK) or CSK-homologous kinase (Chk) maintains the enzyme in an inactivated state (Okada and Nakagawa, 1989),
whereas auto/transphosphorylation of a different tyrosine residue in the kinase domain activates the enzyme (Ozkirimli and Post, 2006).
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cargo-motor interaction and motor activation independently
(Figure 4). These domains are also the region where several
independent adaptors bind to the Kinesin-3 to facilitate the
motor dimerization, which is essential for activating the
processive microtubule-dependent movement and cargo
association.

PHOSPHORYLATION-DEPENDENT
CHANGE OF TRANSPORT DIRECTION

Organelles and endosomal vesicles carrying various proteins
move bidirectionally on the microtubule and actin
cytoskeleton. In all these cases, Kinesins power the plus-end-
directedmovement on the microtubule, and almost all minus-end
directed movements are powered by cytoplasmic Dynein. In
many instances, mutually opposing motors are recruited on
the vesicle membrane by activating various small GTPases and
their adaptors (Kjos et al., 2018). For example, Rab4 activation
recruits both Kinesin-2 (Imamura et al., 2003) and dynein (Bielli
et al., 2001) on the early and late endosomal vesicles. There is also
evidence suggesting direct interactions between Kinesin and
Dynein subunits. For instance, both KLC1 and KLC2 were
shown to directly bind to the Dynein Intermediate Chain
(DIC) through the N-terminal part, excluding the TPR motifs
(Ligon et al., 2004). Kinesin-1 and Dynein were also recruited
together on mitochondria through the TRAK/Milton family
adaptors (Fenton et al., 2021). Similarly, Kinesin-2 and Dynein
were purified together with the melanosomes from Xenopus
melanocytes (Deacon et al., 2003), and the Kinesin-3 isotypes
were demonstrated to associate with cytoplasmic Dynein using
the 14-3-3 family of adaptors (Lu and Prehoda, 2013). Finally,
almost a third of the endosomal vesicles were stained with both
Kinesin-1 and Dynein (Ligon et al., 2004). The biophysical
analysis further suggested that the mechanical coupling
between the opposing motors is essential for maintaining the
processive movement of cellular organelles (Kural et al., 2005; De
Rossi et al., 2017; Akhmanova and Hammer, 2010).

These observations raise an interesting question: How are the
activities of opposing motors controlled to generate a net
unidirectional flux? In vitro experiments demonstrated that
the direction of a vesicle movement is stochastically
determined through tug-of-war, where the numerical strength
of Dynein versus Kinesin motors wins the direction (Soppina
et al., 2009; Rezaul et al., 2016). However, experimental data
obtained in vivo indicated that a type-specific activation/
inactivation of the attached motors could regulate the long
and processive bidirectional movements (Gross et al., 2000;
Gross et al., 2002; Kunwar et al., 2011). In this latter situation,
the presence of microtubule-associated proteins (Dixit et al.,
2008) and phosphorylation (Serpinskaya et al., 2014) are
suggested to switch the direction of the vesicle’s movement.
Such regulation is often reversible and does not involve
dissociating the motors from vesicles or organelles, allowing
the organelle to adjust its position continuously with respect to
the changing cytoskeleton architecture and local conditions.
Here, we discuss a few such cases where phosphorylation of a

Kinesin or activity of a specific set of kinases are identified to
regulate the organelle movement.

Studies in tissue-cultured cells indicated that stimulation with
the cytokine Tumour Necrosis Factor (TNF) leads to aggregation
of mitochondria near the microtubule-organizing centre in the
perinuclear region (De Vos et al., 1998). The treatment selectively
hyper-phosphorylated KLC and reduced the Kinesin-dependent
mitochondrial motility towards the cell periphery (De Vos et al.,
2000) but did not appear to dissociate Kinesin from the
mitochondria (De Vos et al., 1998). TNF activates several
kinases downstream. In L929 cells, KLC was phosphorylated
by two different kinases. Amongst these, the p38 Mitogen-
Activated Protein Kinase (MAPK), activated by the mixed
lineage kinase MLK2 downstream of the TNF receptor, was
shown to inhibit Kinesin-1 motility and increase the
perinuclear clustering of mitochondria (De Vos et al., 2000).
The phosphorylation target sequences are not known. The
evidence may suggest that selecting a specific signaling
downstream is likely to regulate the direction of the vesicle
movement inside a cell.

Similarly, a combination of Kinesin-2, Dynein and Myosin V
moves melanosomes inside melanocytes (Tuma et al., 1998; Rogers
et al., 1997). The Myosin V activity is required for partial dispersal
and uniform distribution of themelanophores (Rogers et al., 1997),
and a complete dispersal requires the heterotrimeric Kinesin-2
(Tuma et al., 1998). The movement is regulated by the kinases,
PKA and PKC, and the PP2A phosphatase (Reilein et al., 1998).
The PKA activation downstream of α-Melatonin Stimulating
Hormone (MSH) fully disperses the melanosome granules, and
melatonin/PMA activated PKC partially disperses the granules.
The PP2A phosphatase activity induced melanosome aggregation.
The MSH and melatonin/PMA altered Dynein subunit
phosphorylation on melanosomes, but their effects on Kinesin-2
are still unclear. The PKA-dependent phosphorylation inactivated
Casein Kinase 1ε (CK1ε), which in turn inactivated a kinase
associated with the melanosomes and prevented the activation
of Dynein by CK1ε-dependent phosphorylation of DIC (Ikeda
et al., 2011). The Dynein activation by CK1ε, thus, promoted
aggregation of the pigment granules in a fashion similar to that of
melatonin stimulation.

Together, the evidence suggests highly divergent effects of
motor subunit phosphorylation. The phosphorylation often has
opposing effects on the activation of two different types of
motors, such as a Kinesin and Dynein associated with the
same cargo, altering the directional flux. As demonstrated with
the melanosome and lysosome movements, such changes are
coupled to external stimuli affecting cellular physiology.

DISCUSSION

The analysis revealed that a host of cytoplasmic kinases involved
in signaling and metabolic regulation (Box 3) target the long-
range kinesins producing highly diversified effects. Most
phosphorylation targets in Kinesin-1 are conserved serine and
threonine residues, with some located in unique sequences only
found in mammals (Figure 1A). These observations may suggest
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that regulation of Kinesin-1 function is a constantly evolving
mechanism. Interestingly, all the phosphorylation sites located in
the tail domains of Kinesin-2 are highly conserved (Figure 3A),
though most of the tail sequences are poorly conserved,
suggesting that phosphoregulation is a fundamental aspect of
basic Kinesin-2 biology that could have evolved earlier than the
other two Kinesin families. Overall we also find that the sites of
Kinesin phosphorylation and the type of kinases acting on them
are highly divergent and family-specific, with a few notable
exceptions such as CaMKII and GSK3β (Table 1). However,
the phosphorylation targets of these two kinases are not
congruent across the families (Table 1). For example, the
GSK3 site is located in the KHC head domain, distinct from
the Kif1A tail (Figures 1, 3). Also, the same kinase, such as GSK3β
and PKA, was shown to phosphorylate both the motor (KHC) and
accessory (KLC) subunits (Table 1). Each of these phosphorylation
events imparted a unique effect. This diversity is essential for
managing the complex logistics of intracellular transport.

The phosphorylation mainly acts as a switch. For example,
phosphorylation of the KHC motor domain and the coiled-coil
stalk domain of Kinesin-3 disrupted the microtubule-dependent
motility and converted the motor to an inactive state. A similar
effect was observed in the case of Kinesin-5, -4 and -13 family
members (Garcia et al., 2009; Bickel et al., 2017; Avunie-Masala
et al., 2011; Chee and Haase, 2010; Shapira and Gheber, 2016;
Poser et al., 2020; Lan et al., 2004; McHugh et al., 2019). Further,
the phosphorylation of the C-terminal tail domain of Kinesin-2
and -3 family members resulted in either association or
dissociation of the cargo adaptors and motor activation, and
Kinesin-7 tail-domain phosphorylation activated the motor
(Espeut et al., 2008; Kim et al., 2010).

Amongst this diversity, one could also find some consensus
features of phosphoregulation. For example, phosphorylation of
KLCs at the C-terminal and the N-terminal part of KAP
disrupted cargo association and transport (Tables 1, 2). Also,
KLC phosphorylation at the N-terminal part and KHC
phosphorylation facilitated specific cargo transport in different
contexts. In comparison, phosphorylation of the Kinesin
adaptors, Fez1, Clstn1, and JIP1, generally facilitated their
association with Kinesin-1 and activated the motor, except for
one occasion, when the JIP1 phosphorylation disrupted its
association with KLC (Figure 2; Table 2). Thus, to a large
extent, phosphorylation of accessory proteins and adaptors is
likely to enhance cargo transport. The process is also coupled with
the association of the kinase cascade. For instance, the kinases
harnessed by the adaptor also modulate engagement with the JIP
scaffold. Moreover, the kinases involved in Kinesins regulation
have very different rate kinetics and distinct tissue-specific
subcellular localizations (Box 3). In this context, the
phosphorylation propensity determined by the rate kinetics of

the kinases involved is likely to tune the cargo-specific flux. For
example, a competition between the JNK and ERK could control
the axonal APP traffic by switching between the JIP1 and Clstn1
adaptors. Therefore, how the kinase property contributes to
traffic modulation would be an exciting topic of future research.

The other exciting idea that emerged from these studies is that
the subcellular localization of the kinases may have a substantial
impact on the logistics as it spatially segregates the on/off actions
to facilitate the intracellular movements from one point to
another. For instance, the localization of PINK1 with Parkin
and TRAK on mitochondria is essential for regulating its
distribution in the cell. Similarly, Kinesin-2 phosphorylation
by CaMKII produced opposite outcomes in axons and cilia
(Figure 2C). In addition, the enrichment of GSK3 at the distal
ends of growing neurites dislodged membrane-bound organelles
and TRPV receptors at the growing tips of neurites, facilitating
neurite growth.

The phosphorylation by the same kinase often produces
opposite effects on the Kinesin and Dynein. For example,
ERK1/2-dependent phosphorylation of Dynein-intermediate
chain, downstream of TRK signaling, recruits and activates the
motor, whereas ERK phosphorylation of KLC dissociates it from
Clstn1. In contrast, the GSK3β-dependent phosphorylation
disrupted both Kinesin and Dynein association with a cargo.
An equally diverse set of kinases are shown to act upon the dynein
subunits and regulate the cargo association (Tempes et al., 2020).
Evidence suggests that a complex kinase-specific regulation
determines cargo transport dynamics (Gibbs et al., 2015).
Some kinases and phosphatases acting on Kinesins and
Dynein, such as CK2, JNK and PP2A, are also stably
associated with the motor. Therefore, the motor activity
resulting from their action could also establish a dynamic
spatiotemporal distribution of these enzymes, which in turn
could influence the overall logistics—a fascinating possibility
that needs to be investigated in the future.
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