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One Sentence Summary: A clinical prediction rule to prioritize SARS-CoV-2 testing improves 
daily case detection, flattens and delays the curve, and reduces hospital burden. 

 

Abstract: Prompt identification of cases is critical for slowing the spread of COVID-19. 
However, many areas have faced diagnostic testing shortages, requiring difficult decisions to be 
made regarding who receives a test, without knowing the implications of those decisions on 
population-level transmission dynamics. Clinical prediction rules (CPRs) are commonly used 
tools to guide clinical decisions. We used data from electronic health records to develop a 
parsimonious 5-variable CPR to identify those who are most likely to test positive, and found 
that its application to prioritize testing increases the proportion of those testing positive in 
settings of limited testing capacity. To consider the implications of these gains in daily case 
detection on the population level, we incorporated testing using the CPR into a 
compartmentalized disease transmission model. We found that prioritized testing led to a delayed 
and lowered infection peak (i.e. “flattens the curve”), with the greatest impact at lower values of 
the effective reproductive number (such as with concurrent social distancing measures), and 
when higher proportions of infectious persons seek testing. Additionally, prioritized testing 
resulted in reductions in overall infections as well as hospital and intensive care unit (ICU) 
burden. In conclusion, we present a novel approach to evidence-based allocation of limited 
diagnostic capacity, to achieve public health goals for COVID-19. 
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Introduction 
Coronavirus disease 2019 (COVID-19) has caused over 10 million cases and 500,000 deaths 
globally as of July 1, 2020 (1). Rapid identification of cases is critical for managing an epidemic, 
as it allows for case identification, isolation, and contact tracing of infectious people, reducing 
transmission. However, many countries, including the United States (US), have experienced 
shortages in diagnostic testing capacity (e.g. test kits, swabs, etc.), and these shortages will likely 
continue in many settings worldwide (2–4). With limited test availability, decisions regarding 
who to test are often left to clinicians or health systems, with potential guidance from national 
and international health authorities. The rationing of SARS-CoV-2 (the virus responsible for 
COVID-19) testing may default to those with more severe disease or at higher risks of 
complications, as definitive diagnosis is most critical to guide care for such patients. However, 
because of their symptoms, severely ill patients may also be more likely to self-limit contacts, 
thereby limiting the indirect benefit of their diagnostic testing on reducing transmission. 
 
When diagnostic testing is unavailable, clinical case definitions are used instead in clinical 
management and public health response (5). From its emergence in humans in late 2019 until 
early April 2020, the Centers for Disease Control and Prevention (CDC) defined a clinical 
COVID-19 case as having cough, shortness of breath, or fever. Despite recent refinements in the 
case definition (5, 6), and the identification of olfactory and gustatory dysfunction to be highly 
specific (5, 7, 8), the majority of symptomatic persons with SARS-CoV-2 infection present with 
symptoms that overlap with those of other common respiratory infections, including respiratory 
syncytial virus and influenza (9). Difficulties in differentiating between infectious etiologies 
based on clinical presentation can cause delays in diagnosis and treatment of individual patients, 
as well as in public health responses that curb transmission (e.g. contact tracing).  
 
Given limited testing capacity and the non-specific symptom profile of COVID-19 disease, tools 
to guide clinicians in how and when to use limited testing capacity are needed. Clinical 
prediction rules (CPRs) are commonly used tools to help to guide clinical management decisions, 
such as who should undergo testing or receive limited clinical resources. They provide 
standardization and consistency in care between physicians, as well as improved diagnostic 
accuracy (10). Some widely used CPRs include the Centor criteria (11) for diagnosis and 
treatment of strep pharyngitis, the Ottawa ankle rule (12) for appropriate use of X-ray in setting 
of ankle trauma, and the CURB65 score (13) for triage of patients with pneumonia. As CPRs are 
usually developed to improve patient care, their evaluation has been focused on their impact on 
patient-level outcomes; the impact of CPRs on population health, including on transmission 
dynamics of infectious pathogens, has not been widely studied.  
 
Compartmental models (e.g. SEIR or “susceptible-exposed-infected-removed” models) are often 
used to describe disease dynamics through a population. They combine epidemiological 
information (e.g. transmissibility, duration of infectiousness, reproductive number) to provide a 
picture of the population-level disease dynamics over time (14, 15), but have not yet been used to 
evaluate the impact of CPRs on population-level public health outcomes. We use an SEIR model 
of SARS-CoV-2 transmission to evaluate the population-level impacts of a clinical prediction 
rule for prioritization of testing in a setting where tests (or testing supplies) are limited. We 
define prioritized testing as the allocation of SARS-CoV-2 tests to patients more likely to be 
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infected, as predicted by a CPR. Within the SEIR model, those who test positive are immediately 
removed from the infectious class (i.e. are isolated and stop transmitting disease), lowering the 
realized transmission rate.  

Our primary objective was to measure potential impacts of prioritized testing (using the CPR) on 
the course of the SARS-CoV-2 pandemic, including the magnitude and timing of the outbreak 
peak as well as the associated impact on hospitalization and intensive care unit (ICU) burden. 
Additionally, we determined the conditions (e.g. test availability, test seeking volume, effective 
reproductive number) in which prioritized testing may result in the greatest reduction of SARS-
CoV-2 infections and hospitalizations. 
 

Results  

A parsimonious 5-variable clinical prediction rule identifies those who would test positive for 
SARS-CoV-2 

To develop a clinical prediction rule to prioritize SARS-CoV-2 testing based on probability of 
testing positive, we used data gathered from electronic medical records of patients tested for 
SARS-CoV-2. Data were gathered from a period where testing eligibility was based on 
presenting with at least one of cough, fever, shortness of breath, or a high risk of exposure given 
recent travel or contact with a laboratory-confirmed case (March 1, 2020 – April 6, 2020). We 
use the phrase test eligible to describe any person seeking a test who satisfies these conditions. 
We used a logistic regression to develop a parsimonious 5-variable CPR which included age, 
Area Deprivation Index (ADI) (16), prior exposure, smoking status, and history of travel. Our 
CPR had a cross-validated AUC of 0.69 (95% CI: 0.68 - 0.70). We explored using additional 
variables but found this only marginally improved predictive ability (AUC up to 0.71; Fig. S1 
and Table S1), at the expense of requiring much greater data entry effort by clinicians. We also 
considered alternative versions of the CPR in light of the varying availability of predictor 
variables in different clinical contexts. We explored models excluding symptoms, including vital 
signs, and including a race/ethnicity variable. Again, these did not meaningfully improve 
predictive ability (AUC up to 0.72; Table S1). Finally, we explored using random forest 
regression to fit the models, but logistic regression estimates had consistently higher AUCs. 

Prioritized testing increases the proportion of those testing positive in settings of limited testing 
capacity. 

In settings of limited testing capacity, we found that a prioritized testing approach using a CPR 
resulted in testing a greater proportion of those infected with COVID-19 compared to 
indiscriminate testing (Fig. 1). When comparing indiscriminate testing to prioritized testing, the 
absolute difference in the number of people infected with COVID-19 who were tested was 
greatest for intermediate levels of testing availability, achieving the greatest benefit to disease 
detection when between 40-60% of test eligible people received testing (vertical difference 
between solid lines in Fig. 2). However, the proportional increase in the number of people 
infected with COVID-19 who were tested was greatest for low testing capacity, with the largest 
fold changes seen when <20% of test eligible people received testing (dotted line in Fig. 2). For 
example, if the rate of SARS-CoV-2 positivity among test eligible people was 5% and there was 
test capacity for only 10% of those test eligible people, we would expect to see a nearly 3-fold 
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increase in the number of patients testing positive on a given day if using prioritized testing 
instead of indiscriminate testing (Fig. 2A).  

These results were sensitive to the proportion of SARS-CoV-2 positive patients who are test 
eligible, with greater differences between prioritized and random testing strategies seen for low 
rates of COVID-19 positivity (compare Fig. 2A-2E). Results were robust to the total number of 
test eligible persons. The average empirical AUC values recorded during resampling were 0.68, 
consistent with the CPR model AUC.  

Prioritized testing delays and flattens the peak of infections 

Using a stochastic SEIR compartmental model of transmission, we show that prioritized testing 
delays the timing and reduces the prevalence at the infection peak and reduces the total number 
of infections over the course of the pandemic (Fig. 3, Table 1). For our base parameter set, 
prioritized testing as compared with indiscriminate testing resulted in a 27 day delay in the 
timing of the infection peak and a 31% decrease in the peak number of infections.  

The differences in the timing and numbers of infections between a model with prioritized versus 
indiscriminate testing were greatest for lower values of the effective reproductive number, Re 
(Fig. 3, Table 1). Re measures the average number of secondary infections from a single infected 
individual in an actual population with immunity, interventions, and any other factors that may 
impact disease spread.  Note that here Re refers to the effective reproductive number in the 
absence of testing, so the observed, time-varying effective reproductive number, Rt, would be 
lower if a test-and-isolate strategy were also implemented.  

Increasing the proportion of infectious test eligible people (wI) had a positive impact on the 
magnitude of the differences between the indiscriminate and prioritized testing models (Fig. 3, 
Table 1). Increasing the number of tests available (Ntests) increased the differences for low values 
of Ntests but then had reduced benefits for higher values (Table 1), consistent with Fig. 2. When 
alternate CPRs with similar AUC values were considered, results varied only marginally (Table 
S1). Alternate CPRs with higher AUC values did not necessarily perform better on all metrics 
(Table S1).  We also found a lack of sensitivity in results to the proportion of exposed 
individuals E who test positive for SARS-CoV-2 (p) (Table S1). 

Prioritized testing reduces hospital and ICU bed burden  

Finally, we explored the impact of prioritized testing on hospital and ICU bed occupancy, basing 
our parameters on the outbreak in Utah. We demonstrated that prioritized testing resulted in 
reductions in the number of people-days (i.e., sum of the number of people on each day needing 
a hospital/ICU bed) where demand exceeded capacity for both hospital and ICU beds (Table 1). 
For our base parameter set, prioritized testing as compared with indiscriminate testing resulted in 
85% and 98% reductions in the number of people-days above hospital and ICU capacity, 
respectively. 

 

Discussion  

A clinical prediction rule to prioritize SARS-CoV-2 testing positively impacts both the number 
of laboratory-confirmed cases per day, as well as long-term disease dynamics when testing is 
scarce. We developed a CPR that predicts the probability that a given patient would test positive 
for SARS-CoV-2. These predicted probabilities can then be used to decide who receives 
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laboratory testing. We incorporated this model of prioritized testing for our estimated AUC into 
our SEIR model and showed the value of our CPR, with appreciable delays in the timing and 
height of the infection peak, decreases in the total number of infections, and reductions in the 
number of people-days above hospital and ICU capacity. This novel combination of analytic 
methods allowed us to highlight both the individual- and population-level benefits of the CPR.  

In spite of our CPR having only moderate discriminatory performance (AUC=0.69), our results 
show that prioritizing SARS-CoV-2 testing, even based on less-than-perfect CPRs, still has a 
meaningful impact on individual and population disease burden. Furthermore, future predictive 
models built following more extensive and improved data collection (e.g. standardized collection 
by clinicians over a longer time) may improve CPR performance, thereby further improving the 
impact of prioritized testing on community disease burden.  

When considering the individual-level impact of the CPR on test-eligible individuals, we found 
that prioritized testing yielded the greatest absolute gains for intermediate testing capacity 
(capacity to test between 40-60% of test eligible people), and highest proportional gains for low 
testing capacity. Improved diagnostic triage through prioritized testing leads to diagnosis of 
individuals earlier in their course of disease, with potential for benefit through earlier initiation 
of therapies or medical monitoring, and isolation or contact-tracing precautions (17). 

At the population level, we found notable impact of prioritized testing on COVID-19 dynamics, 
leading to reductions in overall infections and on hospital and ICU burden, as well as delaying 
the infection peak, providing more time for health systems to prepare for the surge. The 
magnitude of this impact was sensitive to several key parameters. For example, when Re was 
lowered, as may happen with the introduction of other public health interventions such as social 
distancing, the effects of prioritized testing increased. This suggests that implementing 
prioritized testing concurrently with other non-pharmaceutical interventions that reduce Re, can 
help to maximize potential gains. Increasing the proportion of infectious people who seek testing 
(wI) increases the effects of prioritized testing because of the indirect benefit (reduction of Re) of 
isolating those individuals quickly. This may occur in populations with a higher proportion of 
symptomatic individuals, such as older populations (18) or those with other known risk factors 
(19). Alternatively, the proportion of infectious individuals seeking testing could be increased 
intentionally through interventions such as contact tracing or campaigns to encourage test-
seeking behavior.  

For any given level of testing, when COVID-19 is prevalent and comprises a large fraction of the 
test eligible population, either testing strategy can be impactful in reducing transmission by 
speeding up isolation. For any given level of testing, when COVID-19 is prevalent and a small 
fraction of the test eligible population, prioritized testing using the CPR leads to greater 
population level benefit. Thus, in settings with both COVID-19 and high prevalence of 
influenza-like illness (e.g., a possible fall and winter scenario), prioritized testing may be of 
increased value. 

Use of prioritized testing is most useful in situations with limited test capacity, as the benefits of 
prioritized testing become negligible when test demand does not exceed test availability. While 
some health systems have increased their testing capacity to meet current demands, it is 
anticipated that demand will increase both as seasonal respiratory viral infections increase and in 
future waves of COVID-19. Further, many countries and regions with lower resources may 
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continue to have limited capacity for testing. Investment in a system of prioritized testing may be 
more cost-effective than the manufacturing or purchasing of more tests to meet demand. 
Additionally, this approach can be useful in future pandemic preparedness as a similar approach 
implemented in a timely manner may help maximize finite testing resources during the initial 
stages of a future outbreak, until adequate, affordable testing is available.  

Our study has a number of limitations. Our CPR was derived using data from a single health 
system, with test eligibility criteria that followed CDC guidance from early in the pandemic; 
thus, as with other diagnostic CPR for SARS-CoV-2 (20), our CPR may not be generalizable and 
requires validation in other settings. Instead, we highlight the generalizability of the approach we 
have presented, and that the individual and population level impacts of prioritized testing are 
robust to the specific CPR used (Table S2). Secondly, our model assumes that all individuals 
seeking testing would present at the same time. In most clinical settings, the implementation of 
such a CPR would involve the use of a probability threshold, set based on data from the previous 
day(s) and the expected number of test eligible people. The optimal setting of this threshold, 
given stochastic testing demands and infection dynamics, would be an area for future exploration 
during clinical trials. Third, we did not consider the implications of the sensitivity and specificity 
of SARS-CoV-2 tests, as these values are not currently well known and evolving with new tests 
and optimization of sampling techniques. Low sensitivity and specificity in the diagnostic tests 
would reduce the utility of testing in general, and thus also of prioritized testing.  

Our SEIR model assumes complete and immediate compliance of isolation by infectious 
individuals who test positive for SARS-CoV-2. While this is unlikely to be the case in reality, 
noncompliance with isolation is mathematically equivalent to reducing the number of tests 
available, which is included in our model. Conversely, if everyone with COVID-19 symptoms 
were to isolate perfectly, this would be equivalent to 100% testing of all eligible individuals and 
prioritized testing would have small marginal benefits. We note that testing is required for 
contact tracing, and more efficient confirmation of infected individuals would be expected to 
increase the efficacy of contact tracing (which we did not consider in our model). Finally, we 
assumed that infectious individuals who seek testing but do not receive a test have the same 
subsequent transmission behavior as those who do not seek testing. The transmission behavior of 
untested, infectious individuals includes other public health interventions such as social 
distancing or isolation if experiencing COVID-19 symptoms. We explored this possibility by 
varying the effective reproductive number, Re, which is reduced through other effective public 
health interventions.  

To highlight key trends in a generalizable framework, we did not incorporate demographics such 
as age or socioeconomic status into the SEIR model. More sophisticated models designed for a 
specific population would yield more precise estimates of the effects of prioritized testing for 
that given population. Similarly, we have assumed interventions are constant and effect Re 
consistently throughout each simulation. However, most interventions are transient, implemented 
and lifted in response to broader epidemiological, social, and economic cues. Models for a 
specific series of interventions would, again, provide more precise estimates of the effects of 
prioritized testing for that situation.  
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The limited availability of SARS-CoV-2 testing has hampered disease mitigation efforts in many 
locations. By incorporating a diagnostic clinical prediction rule into a transmission dynamics 
model, we have demonstrated the potential efficacy of prioritized testing for delaying and 
reducing peak infections and the consequent healthcare demand. By highlighting parameter 
regimes in which these effects are greatest, we have suggested situations in which it may be most 
efficacious to consider using a CPR to prioritize testing of testing shortages caused by the 
emergence of a novel infectious disease such as SARS-CoV-2. 

 

Materials and Methods 
Clinical prediction rule 

Data  

All patients tested for SARS-CoV-2 in the University of Utah Health (UHealth) system were 
eligible for our study. UHealth performed approximately 30% of all COVID testing in the state 
of Utah during our study period, March 1, 2020 thru April 6, 2020 (21). We created a near real-
time electronic registry of all patients tested for SARS-CoV-2 at UHealth from the hospital 
operations dashboard. Testing for SARS-CoV-2 during the study period was predominantly 
nasopharyngeal swab samples using nucleic acid amplification methods. We combined this 
registry of tested patients with additional data on demographics, clinical symptoms, and patient 
characteristics from the Enterprise Data Warehouse (EDW) which aggregates data from 
disparate data sources within the UHealth system. Patients were entered into a RedCap registry 
for manual review, with the default sort by MRN. We conducted manual chart review of the 
clinical text collected 24 hours before and after SARS-CoV-2 testing. After about two weeks of 
reviewing, we selected patients to ensure we reviewed at least 20% of tested patients for each 
day through March 31, 2020. The remaining records were those completed by the time of these 
analyses. This resulted in 1,983 patient records. We collected data on symptoms and exposure 
risk factors. Symptoms/exposure factors not mentioned in the medical chart notes were extracted 
as ‘not mentioned.’ For analyses, we assumed any symptom not mentioned was not present. 
Additional observations were dropped due to missing data, for an analytic sample size of 1,928.  

This study was reviewed by the University of Utah Institutional Review Board (IRB) and 
determined to be exempt. 

Predictive variables  

We considered the following variables in our clinical prediction rule: age (analyzed as a 
continuous variable); gender (female/male, too few patients reported non-binary gender to 
analyze separately); state ranked area deprivation index (16) based on home address zip code; 
smoking status (never, former, current, missing); binary variables for presence/absence of each 
of the following symptoms: cough, fever, shortness of breath, sore throat, nasal, headache, 
lethargy, myalgia, diarrhea, and nausea/vomiting; any comorbid condition; healthcare worker 
status (yes/no); history of out of state travel in the prior 2 weeks (yes/no); and exposure to a 
confirmed SARS-CoV-2 case (yes/no); 

Statistical Analysis  

We screened variables using random decision forests to identify the most predictive variables. 
Random forests are an ensemble learning method where multiple decision trees (1000 in this 
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analysis) are built with only a random sample of potential predictors (sqrt of the number of 
parameters) considered at each split, thereby decorrelating the trees and reducing variability (22). 
Variables were ranked by predictive importance based on the reduction in variance achieved by 
including the variable in the predictive model. Generalizable model performance with the goal of 
discrimination was assessed using 5-fold cross-validation. In each of 100 iterations, random 
forest regression and logistic regression models were fit to a training dataset (random 80% 
sample of dataset) using the top n variables, where n ranged from 1 to all predictors described 
above.  Each of these models were then used to predict the outcome (testing SARS-CoV-2 
positive) on the test dataset, and the C-statistic (area under the receiver operating characteristic 
(ROC) curve (AUC)) was recorded. After examining the relationship between number of 
predictors used and model-performance (AUC), it was determined that the top 5 predictors in the 
logistic regression model would be used in the clinical prediction rule, as this balanced predictive 
ability with parsimony.  

Modelling the effects of prioritized testing on the proportion of those testing positive in settings 
of limited testing capacity 

We first explored the effects of prioritized versus indiscriminate testing on the timescale of a 
single day (Fig. 1). On a given day, we assumed a certain number, Neligible, of people seek testing 
and are test eligible (have cough, fever, shortness of breath, or known exposure and seek testing). 
Of those, a certain proportion q would test positive for SARS-CoV-2 if given a test and the rest, 
(1-q), would test negative. We measured the proportion of test eligible, SARS-CoV-2 positive 
patients who received testing under the two testing regimes: prioritized and indiscriminate 
testing. 

For each simulation, we sampled Neligible people, with replacement, from the results generated 
during the 5-fold cross-validation of the clinical prediction rule, simulating the group of people 
eligible for testing that day. Each person in this group had both a known test result (positive or 
negative), as well as a probability of testing positive generated during cross validation of the 
clinical prediction rule described above. We also calculated the AUC of each of the simulated 
groups to check if it was consistent with the AUC of the clinical prediction rule. 

We assumed a limited number, Ntests, of SARS-CoV-2 tests were available daily. To model the 
indiscriminate testing scenario, we randomly sampled Ntests people for testing from the group of 
people eligible for testing. For the prioritized testing scenario, we ordered the list of test eligible 
people by their ascribed probabilities of testing positive for SARS-CoV-2 and tested the Ntests 
people with the highest probabilities.  

Using the known SARS-CoV-2 test result for each person, we then checked how many people 
tested positive and compared this number between indiscriminate and prioritized testing 
strategies. We explored the effect of varying Neligible, the number of test eligible people (varied 
from 1000 to 50000), q, the proportion of test eligible people who were SARS-CoV-2 positive 
(varied from 1-99%), and Ntests, the number of available tests, which is the same as varying the 
percent of test eligible people who are tested (varied from 0-100%). We simulated this scenario 
1000 times for each set of parameters. 

Modelling the effects of prioritized testing on the peak and total numbers of infections  

We also considered the effect of prioritized testing on disease spread in the population over 
longer time scales (months-to-years).  We incorporated the same processes described above into 
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a stochastic SEIR model parametrized for COVID-19. On each modelled day, we simulated the 
following steps (Fig. 1B): (1) Consider the number of individuals in each disease state—S, 
susceptible, E, exposed, I, infectious, and R, removed. Assume a fixed proportion of each group 
(wS, wE, wI, wR) are have symptoms or a travel or contact history that would make them test 
eligible each day; (2) Assume that, if tested, those in groups S and R would test negative. A 
proportion, p, of those in group E would test positive, while (1-p) would test negative. Those in 
group I would test positive. (3) Of the test eligible group, test a subset based on the number of 
available daily tests, Ntests. Select this tested subset either randomly or using prioritized testing 
with the CPR, as described above. (4) Assume those who test positive isolate immediately and 
effectively; move them into the R group. Those who test negative or are not tested remain in their 
original groups. (5) Apply the stochastic SEIR model (described below) to the population for one 
day. (6) Repeat steps 1-5 for a chosen number of days.  

Epidemiological model 

We used a stochastic SEIR model (Fig. 1) to highlight the drivers determining the impact of 
prioritized testing on disease dynamics. We assumed frequency dependent transmission with rate 
β, incubation rate σ, and removal rate γ. We did not include any birth or deaths in the population 
and deaths from COVID-19 are included in the removed compartment. Stochasticity was 
introduced into the classical deterministic framework by letting the number of new exposed, 
infectious, and recovered cases be random variables, each drawn from a binomial distribution 
with the probability of “success’’ coming from the deterministic core model. All simulation code 
is archived and available online at doi:10.5281/zenodo.3924186. 

Unless stated otherwise, parameters related to testing were wS = 0.0013, wE = 0.0013, wI = 0.072, 
wR = 0.00084, p = 0.7, and Ntests = 1000. SEIR parameters were σ = 1/5.2 (23, 24), γ = was pulled 
from a uniform distribution ranging from 1/7 to 1/4 (25–28), Re = 1.75, and β = γ * Re (29). For 
COVID-19, R0 is estimated between 2-3 (23, 30, 31) and we explored the effects of interventions 
(such as social distancing or contract tracing) implicitly by considering a range of effective 
reproductive numbers, Re, from 1.5 to 2.5. We also considered wI values ranging from 0.029 
through 0.144, and Ntests values of 500, 1000, 3000, and 5000. For full details on model 
parametrization, see Parameterization in the Supplementary Material.   

We ran simulations assuming a total population of 3.2 million, the approximate population of the 
state of Utah (32). We assumed an initial condition of 15 people in the infectious class and all 
others in the susceptible class. We ran our simulations for a time period of 2 years. For each set 
of parameters considered, we ran 1000 stochastic simulations and then calculated the mean value 
of each of the S, E, I, and R classes as well as 95% prediction intervals.  

We then calculated several metrics including the timing of the peak of the mean infection curve; 
the peak value of the mean infection curve; and the mean total number of infections by the end of 
the simulation. These metrics allowed us to compare expected outcomes between the models 
with indiscriminate testing and prioritized testing.  

Modelling the effects of prioritized testing on hospital and ICU burden  

To highlight the associated implications for healthcare demand, we also modelled the daily 
occupancy of hospital beds and ICU beds by following the recommendations of the Centre for 
Disease Control’s (CDC) working groups on COVID-19 modeling and assuming that 5% of 
infectious people require a hospital bed, and 14% of hospitalized people require an ICU bed in 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2020. .https://doi.org/10.1101/2020.07.07.20148510doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.07.20148510
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

  
 

each simulation  (33). We then calculated the mean number of people-days (i.e., the number of 
people on a given day) where demand for hospitalization exceeds Utah’s capacity of 4,869 
hospital beds and the number of people-days where demand for ICU beds exceeds Utah’s 
capacity of 687 ICU beds (34, 35).  Note that these numbers are for total hospital and ICU beds, 
not those set aside for COVID-19 patients, and thus provide an upper bound for hospital 
capacity. 
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Figures:  

 

 
Fig. 1. Effects of prioritized testing on daily testing outcomes and incorporation into an SEIR 

model. (A) Schematic comparing the testing of a subset of test eligible people using 
either indiscriminate testing or prioritized testing. Red figures would test positive for 
SARS-CoV-2 and blue figures would test negative. Gray figures are not seeking tests. 
For prioritized testing, people are arranged and then tested according to their probability 
of testing positive, as determined by the clinical prediction rule. (B) Visual depiction of 
how prioritized testing was incorporated into the daily stochastic SEIR model. People in 
each compartment seek testing with probability wS, wE, wI, and wR. If tested, a proportion 
p of those in group E would test positive. Following testing, daily SEIR dynamics occur 
with transmission rate β, incubation rate σ, and removal rate γ.  

n 
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Fig. 2. Effect of prioritized testing compared to indiscriminate testing on the percentage of 

SARS-CoV-2 positive, test eligible people, who are tested. The horizontal axis allows for 
comparison between different testing capacities. The vertical axis refers to the percent of 
SARS-CoV-2 positive, test eligible people. Dotted lines denote the fold change between 
the grey and green lines. The percent of SARS-CoV-2 positive people (proportion q) of 
those who are test eligible is 5% in (A), 25% in (B), 50% in (C), and 75% in (D). 

or 
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Fig. 3. Comparison of SEIR curves between models with prioritized versus indiscriminate testing 
for decreasing values of the effective reproductive number, Re, (A)-(E), and decreasing 
rates of test seeking among infectious individuals wI, (F)-(H). Solid line are the mean of 
1000 stochastic simulations with prioritized testing, and the dotted lines are the mean for 
the model with indiscriminate testing. Shaded regions denote corresponding middle 95th 
percentiles of simulations. (A) Re = 2.5, (B) Re = 2.25, (C) Re = 2.0, (D) Re = 1.75, (E) 
Re = 1.5, (F) wI = 0.029, (F) wI = 0072, (F) wI = 0.144. *Note that (D) and (G) have the 
same parameters, but have both been included to show sequential change as we vary Re 
and wI .  
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Fig. 4. Comparison of simulated demand for daily hospital and ICU occupancy between models 

with prioritized versus indiscriminate testing. The solid line are the mean of 1000 
stochastic simulations with prioritized testing, and the dotted lines are the mean for the 
model with indiscriminate testing. Re decreases from 2.5 to 1.5 in increments of 0.25 in 
plots (A) through (E). 
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Table 1. Effects of prioritized testing on the SEIR infection dynamics over a range of parameter 
values. All parameter values are as stated in the text, except where stated otherwise in this table. 
Each column compares the mean results from 1000 stochastic simulations of the model with 
prioritized testing to one with indiscriminate testing. Bolded entries denote the results for the 
base parameter set described in the text (i.e., Re =1.75, wI = 0.072, Ntests=1000), and are repeated 
for reference in each subsection. NA values exist where hospital or ICU demand did not exceed 
capacity for either the prioritized or indiscriminate testing model.  

 
 Delay in peak 

timing (days) 

Reduction in 

peak height 

(people) (%) 

Reduction in 

total infections 

(people) 

Reduction in 

people-days 

above hospital 

capacity (%) 

Reduction in 

people-days 

above ICU 

capacity (%) 

Re  

2.5 8 28,114 (10%) 6,610 (0%) 29,550 (7%) 145,706 (73%) 

2.25 12  19,494 (13%)  10,469 (0%) 38,842 (11%) 139,152 (77%) 

2.0 18 27,344 (16%) 20,224 (1%) 50,091 (21%) 126,428 (83%) 

1.75 27  32,321 (31%) 40,933 (2%)  76,401 (85%) 108,707 (98%) 

1.5 36 26,441 (56%) 108,342 (5%)  NA 41,616 (100%) 

wI  

0.029 7 14,570 (10%) 28,433 (1%) 34,173 (26%)  108,616 (89%) 

0.072 27 32,321 (31%) 40,933 (2%) 76,401 (85%) 108,707 (98%) 

0.144 49  54,255 (97%) 66,352 (3%) 23,023 (100%) 92,076 (100%) 

Ntests  

500 17 28,588 (23%) 20151 (1%) 66,344 (50%) 114,920 (93%) 

1000 27 32,321 (31%) 40,933 (2%) 76,401 (85%) 108,707 (98%) 

3000 26 15,697 (33%) 137,680 (6%) NA 31,098 (100%) 

5000 2 2,165 (8%) 121,334 (7%) NA NA 
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Supplementary materials and methods: 

Clinical Prediction Rule 

In additional to the CPR presented in the main text, we also explored three additional CPRs: A) a 
prediction rule using the same predictive variables as described previously in the main text, but 
NOT considering symptoms as potential predictors; B) a CPR using the same predictive 
variables as the main text AND continuous variables for SpO2 and pulse rate as collected by 
clinic personnel; C) a CPR using the same predictive variables as the main text AND a single 
variable for race/ethnicity, categorized as non-Hispanic White/Caucasian, Hispanic/Latino, 
Black or African American, Asian, Native Hawaiian and Other Pacific Islander, Other (including 
American Indian and Alaska Native), Choose not to disclose, or Unknown. Data necessary for 
the CPR presented in the main text can be collected from persons over the phone, before they 
present at a clinic/hospital, whereas supplementary Model B is a more complete set of data 
available at clinic presentation. Data for supplementary Model A is data automatically available 
from the electronic medical record along with contact tracing information. 

 

Parameterization  

We first outline how we obtained our base set of parameter values, followed by an explanation of 
the range of each parameter that we considered in light of the uncertainty in these estimates. 

To get estimates of testing demand in Utah, we assumed that Utah has had excess testing 
capacity since April 20, 2020, with a stated testing capacity of at least 6000 tests per day. Daily 
estimates of Rt for Utah were obtained for April 20 through May 20, 2020 (36). The average Rt 

value was 1.08, with no significant increase over that time (linear regression; t = -1.53, p > 0.1), 
suggesting that prevalence was approximately constant over that period. Using data from 
coronavirus.utah.gov (21), the mean total daily testing number over this period was 4207 tests 
with an average of 181 new positive tests each day. To consider the corresponding daily deaths 
resulting from cases over this period, we assumed a lag of 11 days (37), considering the daily 
deaths from May 1-June 1, 2020, with data collected from the Covid Tracking Project (38). Over 
this period, the average number of daily deaths was 2.09. We assumed an infection fatality rate 
(IFR) of 0.5%, suggesting an average of approximately 418 new cases per day over this period. 
Assuming a daily recovery probability of ~1/6 (γ in the SEIR model), an infectious individual 
has a 5/6 probability of not recovering on a given day. Thus, at the start of a given day, the 
number of infected individuals is the sum of those becoming infectious that day (~418 people), 
plus the number who became infectious the day before and did not yet recover (~418*(5/6)), plus 
the number who became infectious two days before and have not yet recovered 
(~418*(5/6)*(5/6)), etc. This is a geometric series which converges to an estimate of 2508, our 

daily estimate of the average prevalence over this three-week period. This implies that 7.2% 
(181/2508) of infectious people are test eligible daily, i.e., wI = 0.072. Assuming the infectious 
period lasts for an average of 6 days, this implies that an individual has a ~36% chance of getting 
tested during their time in the infectious class.  
 
The average number of new negative tests each day was 4021. We assumed almost all of those 
came from susceptible individuals (rather than exposed or recovered), so that the proportion of 
individuals from the S class is approximately 4021/(total population of Utah). For a total 
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population of approximately 3.2 million in Utah, this means wS = 0.0013 (i.e., 4021/3200000). 
We assumed wE= wS, as those in the exposed class are typically pre-symptomatic and thus do not 
seek testing at a higher rate. In the absence of data, we assumed wR = (1-0.36)*wS = 0.00084 , as 
~36% of recovered individuals should have been tested while infectious (based on the 
calculations above) and thus do not seeking testing again.  

To explore how sensitive these outputs are to the IFR, we varied the IFR from 0.2-1%, as 
recommended by the CDCs working groups on modeling COVID-19. For all these values, wS 
and wE remained at 0.0013 and wR decreased slightly, from wR = 0.0011 to 0.00052. wI had the 
highest sensitivity to the IFR, with wI = 0.029, 0.072, 0.101, 0.144 for IFR = 0.2, 0.5, 0.7, and 
1%, respectively. We considered WI values ranging from 0.029 through 0.144 to determine the 
effect of this parameter on model outputs. We used a value of 0.7 for p, the proportion of 
exposed individuals who, if tested, would test positive for COVID-19. To test sensitivity to this 
value, we also considered p = 0.5 and 0.9.  

 

Supplementary figures:

 

Fig. S1. Comparison of AUC achieved by number of predictive variables included, and logistic 
versus random forest regression. All variables listed in the “main text model” of Table S1 were 
considered. The final CPR included in the main text included the top-5 predictors, as this 
balanced prediction with parsimony.
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Supplementary tables: 

Table S1. Clinical Prediction Rule (CPR) models explored and their cross-validated AUCs. All CPRs were estimated using logistic 
regression. All variables considered for each model are listed per column, ranked from most to least predictive. Bolded entries denote 
variables used in the final 5-variable CPR presented in the main text. 
Clinic Prediction Rule (CPR) Model 

CV AUC† (95% CI) 

Main Text Model 

0.69 (0.68, 0.70)* 

Supplementary Model A 

0.68 (0.67, 0.69) 

Supplementary Model B 

0.70 (0.69, 0.72) 

Supplementary Model C 

0.72 (0.71, 0.73) 

 age age age age 

 ADI‡ ADI‡ pulse rate ADI‡ 

 prior exposure prior exposure ADI‡ race/ethnicity 

 smoking status smoking status spO2 prior exposure 

 travel travel smoking status smoking status 

 gender travel travel 

(following variables also 

considered but were not top 5 

predictors included in final CPR) 

any comorbidity prior exposure shortness of breath 

 shortness of breath healthcare worker shortness of breath headache 

 headache  headache myalgia 

 gender  nasal gender 

 myalgia  gender nasal 

nasal  myalgia lethargy 

lethargy  lethargy sore throat 

sore throat  fever fever 

fever  sore throat any comorbidity 

any comorbidity   diarrhea healthcare worker 

healthcare worker  healthcare worker diarrhea 

diarrhea  any comorbidity cough 

cough  cough nausea/vomiting 

nausea/vomiting  nausea/vomiting  

 . 
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* AUC including top-5 variables only 
† CV AUC stands for cross-validated area under the receiver operator curve 
‡ ADI stands for Area Deprivation Index (16) 
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Table S2. Effects of prioritized testing on the SEIR infection dynamics over additional clinical 
prediction rules and an additional range of parameter values. All parameter values are as stated in 
the text except as stated otherwise in this table. Each column compares the model with 
prioritized testing to one with indiscriminate testing. Bolded entries denote the results for the 
base parameter set described in the text, and are included for reference in each subsection.  

 
 Delay in 

peak timing 

(days) 

Reduction in 

peak height 

(people) (%) 

Reduction in 

total infections 

(people) 

Reduction in 

people-days 

above hospital 

capacity (%) 

Reduction in 

people-days 

above ICU 

capacity (%) 

Model (AUC)  

main model (0.69) 27 32,321 (31%) 40,933 (2%) 76,401 (85%) 108,707 (98%) 

A (0.68) 30 29,207 (27%) 40,138 (2%) 71,981 (82%) 108,354 (98%) 

B (0.70) 23 23,647 (21%) 36,033 (2%) 58,305 (68%) 106,483 (97%) 

C (0.72) 23 34,933 (33%) 35,045 (1%) 84,509 (87%) 111,478 (99%) 

p  

0.5 32 29087 (27%) 43,896 (2%) 71,333 (80%) 108,414 (98%) 

0.7 27 32,321 (31%) 40,933 (2%) 76,401 (85%) 108,707 (98%) 

0.9 26 27,616 (26%) 39,753 (2%) 69,283 (82%) 108,129 (98%) 
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