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Abstract: Glycogen synthase kinase-3 beta (GSK-3β) is an enzyme pertinently linked to neurode-
generative diseases since it is associated with the regulation of key neuropathological features in
the central nervous system. Among the different kinds of inhibitors of this kinase, the allosteric
ones stand out due to their selective and subtle modulation, lowering the chance of producing side
effects. The mechanism of GSK-3β allosteric modulators may be considered still vague in terms
of elucidating a well-defined binding pocket and a bioactive pose for them. In this context, we
propose to reinvestigate and reinforce such knowledge by the application of an extensive set of in
silico methodologies, such as cavity detection, ligand 3D shape analysis and docking (with robust
validation of corresponding protocols), and molecular dynamics. The results here obtained were
consensually consistent in furnishing new structural data, in particular by providing a solid bioactive
pose of one of the most representative GSK-3β allosteric modulators. We further applied this to
the prospect for new compounds by ligand-based virtual screening and analyzed the potential of
the two obtained virtual hits by quantum chemical calculations. All potential hits achieved will be
subsequently tested by in vitro assays in order to validate our approaches as well as to unveil novel
chemical entities as GSK-3β allosteric modulators.

Keywords: neurodegenerative diseases; GSK-3β; allosteric modulators; computer-aided drug design;
cavity detection; binding pose; shape similarity; docking

1. Introduction

Neurodegenerative diseases are pathologies that affect the central nervous system
(CNS), comprising medical conditions and ranging from common migraines to more
serious and difficult-to-treat pathologies, such as Parkinson’s disease (PD) and Alzheimer’s
disease (AD) [1]. With the world’s population aging, neurodegenerative diseases have
become a common cause of morbidity and mortality in the elderly [2]. In 2016, the Global
Burden of Disease Study estimated that there were 43.8 million people living with dementia
around the world, with a total of 9 million deaths per year caused by neurodegenerative
diseases [1,3].
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The enzyme glycogen synthase kinase-3 (GSK-3) is a ubiquitous and highly conserved
serine/threonine protein kinase, occurring in the isoforms α (alpha) and β (beta), that
plays a fundamental role in the emergence and worsening of CNS and neurodegenerative
diseases such as AD [4]. GSK-3β acts as phosphorylating tau proteins, which are known to
stabilize the microtubules by securing tubulin assembly. In the CNS, the levels of GSK-3β
are higher and, with aging, its expression tends to increase. This may, thereby, cause
the accumulation of tau proteins in the cytoplasm, leading to microtubule disassembly,
loss of neuronal integrity, and, eventually, neurofibrillary tangle (NFT) formation [5,6].
Additionally, recent studies have shown that overexpression of GSK-3β is associated with
increased β-amyloid production, local plaque-associated microglial-mediated inflamma-
tory responses, and memory impairment [7].

When it comes to GSK-3 regulation/modulation, one should note that there are
several complex mechanisms under study due to its role in a wide range of biochemical
processes and signaling pathways [8]. Worthy of mention, this kinase may be inhibited
by various endogenous substrates [9], such as bivalent zinc ions [10], in addition to being
actively or passively involved in different pathways, e.g., Wnt/beta-catenin, TP53, Notch,
and others [11]. Moreover, GSK-3 can be related to transcriptional and/or translational
mechanisms as these pathways are regulated by micro-RNAs [11,12] and also because it
is capable of modulating post-translational modifications of histones [13], for instance.
Nevertheless, we emphasize that further introduction will describe aspects concerning the
development of small-molecule inhibitors and their related GSK-3β modulation.

One of the most studied GSK-3β inhibitors is lithium, which is used as a pharma-
cological alternative to treat psychiatric disorders such as bipolar disorder as well as
neurodegenerative diseases (e.g., AD and PD) [14]. Lithium is a traditional and noncompet-
itive inhibitor of the enzyme that does not hinder the binding of the substrate (adenosine
triphosphate, ATP) and other protein residues to be phosphorylated within the catalytic
(orthosteric) site [15]. The most accepted hypothesis of its mechanism of action is that
lithium competes with magnesium in a GSK-3β site sensitive to lithium, preventing the
magnesium from binding. As a consequence, the ATP conformation is destabilized in
the catalytic cavity, preventing it from being cleaved and, therefore, inhibiting enzyme
activity [15,16].

Also commonly reported is the class of GSK-3β inhibitors known as ATP competitive
inhibitors, which compete for the same site as ATP in the enzyme’s orthosteric cavity, and
from which compounds with considerable bioactivity are known (such as indirubin and
hymeldiasine, among others) [17–19].

Non-ATP competitive inhibitors—which generally include substrate-competitive and
allosteric inhibitors—have been studied as an alternative to ATP-competitive inhibitors
since they potentially cause fewer side effects, despite presenting lower potency/affinity
towards GSK-3β. Within this class, we can highlight tideglusib, which inhibits GSK-3β
irreversibly but does not block the whole pool of enzymes within cells; it has reached phase
II clinical trials [19,20]. Nevertheless, commonly and unfortunately, there is no further
elucidation on how (and by which mechanism) non-ATP-competitive compounds exert
inhibition, and there is also a lack of information concerning which cavities (or pockets) of
GSK-3β they act on.

Palomo et al. [21] applied a computational methodology to map potential and common
pockets found on the surface of GSK-3β by means of fpocket software, thus describing the
presence of 7 different well-maintained (conserved) cavities. Such pockets were numbered
and classified as follows: (1) ATP active site; (2) substrate site; (3) axin/fratide binding
site; (4) allosteric site; (5) allosteric site; (6) allosteric site; (7) allosteric site. These last four
were highly indicated as potential allosteric sites, as depicted in Figure 1. This data should
be useful to track non-ATP-competitive inhibitors’ mechanisms and also to establish a
distinction as to when they could, indeed, act as allosteric inhibitors.
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Figure 1. Representation of the 7 cavities/pockets present in GSK-3β. Image prepared using PDB ID 1PYX in Pymol [22].
Adapted with permission from Palomo et al. J. Med. Chem. 2011, 54, 8461–8470 [21]. Copyright 2021 American Chemical Society.

According to Silva et al. [19], there are few classes of GSK-3β allosteric inhibitors
discovered so far, and there are still some peculiarities of respective mechanisms to be
unveiled. For instance, palinurin, a compound found in marine organisms, was revealed as
a new class of GSK-3β allosteric inhibitors, with IC50 = 1.9 µM, along with suggestions that
it should bind to allosteric Pocket 5 (from Figure 1) [23]. Other studies have also revealed
further classes of GSK-3β allosteric modulators that would possibly bind to Pocket 7, such
as benzoxazinones [24], indoles [24], benzothiazepinones [25], and benzothiazinones [26,27].
These classes of scaffolds are depicted by representative compounds in Figure 2.

Figure 2. Representation of different classes of GSK-3β allosteric inhibitors potentially binding to corresponding pockets.

Regardless, one should note that allosteric inhibition of this enzyme clearly points
to potential advantages, such as higher selectivity and mild-to-high potency, minimizing
side effects overall due to ligands from different classes being able to bind at specific
cavities [23,28]. Moreover, it is worth mentioning that overinhibition of GSK-3β might
be disfavorable due to the activation of Wnt signaling, and, thus, allosteric modulation
appears to be a mild option for the optimal inhibition level of this enzyme [24,29].

Another important study [21,28] reported the discovery of the class of quinolonic
derivatives as important allosteric modulators of GSK-3β through interaction with al-
losteric Pocket 7. Among this class, compound 1 (VP07) stands out (see Figure 2), with
IC50 = 2.8 µM, measured by in vitro enzyme activity assays. It is worth mentioning that
the compound 1 inhibition mechanism was unequivocally described as allosteric after the
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execution of kinetic studies employing double-reciprocal plots, in which the ATP/substrate
concentration is maintained and the substrate/ATP/inhibitor concentrations are varied.

Furthermore, compound 1 has presented promising neuroprotective properties and
therapeutic potential, as revealed by tests in human samples from patients with congenital
myotonic dystrophy type 1 and spinal muscular atrophy. In addition, other analogs of 1
were also designed and tested, e.g., compounds 18 and 24, which were also able to show
good activity towards the allosteric modulation of GSK-3β [28]. As for the interaction mode
of compound 1 with allosteric Pocket 7, this was described using only a blind-docking
procedure—a docking simulation in which the entire surface of the protein is considered in
order to assess which cavity the ligand presents greater affinity towards—using only one
docking software.

In this way, it would be extremely convenient to deepen these studies concerning the
allosteric cavities of GSK-3β, i.e., to reinforce the proposition of possible allosteric pockets
as well as to evaluate the bioactive poses of allosteric inhibitors towards the binding pockets
of such enzymes. Moreover, one should take into account the important aspect that there is
no crystallographic complex of this enzyme structure, with allosteric ligands, deposited in
Protein Data Bank (PDB, https://www.rcsb.org/, accessed on 18 May 2021) yet.

Therefore, the objective of this work is to apply a diverse and robust set of method-
ologies to reinvestigate, and maybe reinforce, the allosteric mechanism suggested [21,28],
especially regarding which of the four allosteric cavities previously described has indeed
greater druggability with compound 1 (i.e., which binding pocket has greater ability to
interact with it). Moreover, we further evaluate its most likely corresponding mode/pose
of interaction (i.e., bioactive pose). Our methodologies consist of cavity detection, ligand
3D-shape analysis and docking (with the validation of corresponding protocols/queries),
and molecular dynamics (MD); thus, we are able to provide new structural data that
should expand the knowledge of GSK-3β allosteric inhibition. We further used the best
proposed bioactive pose of 1 for the prospect of new allosteric modulators by ligand-based
virtual screening (LBVS) and analyzed the potential of the two representative virtual hits
by quantum chemical calculations. These two, plus other virtual hits, will be tested by
in vitro assays, soon to be published. Finally, we expect that the results provided in this
work will contribute to the development of new allosteric modulators of GSK-3β, which is
a relevant kinase to be used as a target to treat neurodegenerative diseases.

2. Results
2.1. Detection and Prediction of the Potential of Allosteric Pockets

In order to explore and detect the pockets present on the GSK-3β surface, five different
software/webservers—also commonly classified as “binding site predictors” or “ligand-
binding cavity detectors”—were employed, i.e., fpocket [30], Superstar [31], metaPoc-
ket [32], Sitemap [33], and PARS [34]. In general, these software exert pocket detection
algorithms, which allow the visualization of each cavity shape/volume along with corre-
sponding calculated “scores” values, according to the potential of the cavity to interact
with potential ligands and/or drugs.

fpocket and Superstar allow the visualization of the shape of the pockets, ap-
parently indicating a more compatible format of allosteric Cavity 7 with compound
1 (see Figure 3a,b). fpocket, in addition to well-defining the pocket compatible with
compound 1, provided feature spheres that characterize the cavity occupancy by po-
lar groups (brown) and nonpolar groups (white), partially indicating a preference for
the apolar/hydrophobic chain of 1 to accommodate close to the Thr330 residue and
corresponding hydrophobic pocket.

https://www.rcsb.org/
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Figure 3. (a) Cavity detected using fpocket, represented here by brown (polar groups) and white (apolar groups) spheres.
(b) White mesh shape of cavity predicted by Superstar. (c) Best scoring pocket by metaPocket, represented by white mesh
(cluster of sites indicated in consensus by three methodologies) and pink spheres (mass center of the global site). (d) Sitemap
cavity occupied by white spheres. (e) Cavity with the highest potential of representing an allosteric site, according to PARS.
All images were produced using Pymol [22], showing Pocket 7 of GSK-3β (1PYX.pdb).

metaPocket mapped Cavity 7 in consensus by means of three different methodologies
(LigsiteCS, fpocket, and Ghecom), indicating both the pocket clustered by these three,
considering the respective spatial similarities (in blank mesh) as well as the center mass of
such clustered pocket (in pink spheres), indicating the nearby residues with the greatest
potential for interaction (see Figure 3c). Furthermore, metaPocket provided a z-score for
Cavity 7, with a value of 3.25 (only smaller than the z-score value of the catalytic site, 22.94),
thus indicating its high propensity to act as an interaction/binding site.

Sitemap indicated the regions that best define the mapping of Cavity 7 (Figure 3d),
indicated by white spheres, in addition to assigning the second-highest score of 0.898 (also
only lower than the 1.021 catalytic site) for such allosteric cavity. The other colors mapped
by this software indicate the pharmacophoric patterns of the site, which will be discussed
later (see Section 2.3).

The software PARS assesses the volume, flexibility, and structural conservation of
the amino acid residues that constitute the cavity of interest. It was able to indicate three
independent spheres that make up Cavity 7 (Figure 3e). The first ranked yellow sphere
underneath Arg209 was best scored as the putative allosteric site, i.e., considered the
largest one, with a p-value of 0.71 and structural conservation of 12.60%. The secondly
ranked yellow sphere showed a p-value of 0.79 and 25.80% of conservation, while the third
light blue sphere presented a p-value of 0.47 and 56.90% of conservation. The three of
them together, especially the first and third spheres, should globally indicate that Pocket
7 represents the most promising allosteric site in comparison to the whole structure and
further cavities present on the GSK-3β surface.

2.2. Docking Assessment—Pocket Perspective

A preliminary docking assessment was carried out in order to detect which GSK-
3β allosteric pocket should present greater accommodation and binding affinity with
compound 1. For this, GOLD [35,36], Glide [37,38], AutoDock [39,40], and FRED [41,42]
software were employed to run docking simulations of 1, individually, in each of the four
allosteric cavities (from Figure 1), and the respective score values were compared.
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In consensus, the four docking software indicated a more favorable score value for
1 docked in Cavity 7 than in the other three allosteric pockets, as can be seen in Table 1.
However, in Figure 4, one may observe that the best punctuated poses, obtained by each
software, do not show homogeneity in relation to their poses. In other words, the docking
pose of 1 in Cavity 7, obtained using GOLD and FRED, accommodated the hydrophobic
chain under Arg209, while Glide and Autodock accommodated the quinolonic ring in this
same region.

Table 1. Score values obtained using docking software GOLD, Glide, Autodock, and FRED for compound 1 against the four
allosteric cavities (4, 5, 6, and 7) of GSK-3β.

GOLD-CHEMPLP Glide-XP (Kcal/Mol) Autodock-Binding Energy
(Kcal/Mol) FRED-Chemgauss4

Cavity Cavity Cavity Cavity

4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

54.88 71.20 56.07 88.36 −4.47 −5.85 −2.92 −6.13 −2.45 −4.12 −3.32 −6.98 −3.99 −3.46 −4.36 −5.53

Figure 4. Representation of the docking poses obtained for compound 1 within each allosteric cavity (4, 5, 6, and 7) of
protein GSK-3β (1PYX.pdb) using GOLD, Glide, Autodock, and FRED software. Image prepared in Pymol [22].

Therefore, based on the results observed so far, it is not possible to conclude which is
the most representative pose (supposed bioactive pose) of 1 in Pocket 7. For this reason,
in the next section, we describe the application of other complementary computational
methodology to clarify this.

2.3. Evaluation of Compound 1 Pose within Allosteric Pocket 7

Three types of software were used to map contour/surface areas as well as generate
pharmacophoric hotspots, with the purpose of clarifying the visualization of the pose of
compound 1 in a coherent way (i.e., taking into account its structural and physicochemical
characteristics) against allosteric Cavity 7 of GSK-3β. This complementary step was
necessary, considering that the preliminary docking study (Section 2.2) indicated different
poses (in terms of conformation and orientation) for 1 in Cavity 7.
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The first software used here was Superstar [31], which generated contour maps and
pharmacophoric hotspots, allowing us to infer that: the aliphatic C chain of compound 1
must be favorable close to residues Arg328, Thr330, and Pro331 (Figure 5a,d); the presence
of a group C=O just above the N-H of Ser236 is quite likely (Figure 5c), and aromatic C are
likely under Arg209 (Figure 5b).

Figure 5. (a–c) Contour maps generated with Superstar based on CSD/PDB data, using propensity function and the
respective probes; red dots indicate a chance 2× higher of the probe being found in that position than randomness; green 4×
and blue 8×. (d) Pharmacophore hotspots generated by Superstar considering the CSD database; spheres in green (aliphatic
or aromatic C-H), blue (nitrogen, N), and red (oxygen, O). (e–h) Surface maps generated by GRID using the respective
probes in different ranges of energy interactions. (i) Surface maps generated by Sitemap; maps in yellow (hydrophobic),
red (hydrogen bond acceptor), and blue (hydrogen bond donor). All images show Pocket 7 of GSK-3β (1PYX.pdb); where
possible, compound 1 (Glide pose) was superimposed for analysis.

Similar to Superstar, the software GRID [43] generated contour maps (by means of
molecular interaction fields (MIFs)) that showed possible interactions with the probes
applied. It was possible to strongly deduce that the aliphatic C chain tends to be close to
the Thr330 residue (Figure 5f,h), N-H below Arg209 (Figure 5e), and C=O just above the
N-H of Ser236 (Figure 5g).

Finally, Sitemap [33] indicated the same interactions mentioned above for the two
software, in addition to confirming that the aliphatic C chain of 1 should be better accom-
modated in the hydrophobic pocket of Cavity 7, which consists of residues Arg328, Thr330,
and Pro331 (Figure 5i).

2.4. Refinement and Validation of Docking Protocols—Pose Perspective

The results obtained using the four docking software previously mentioned revealed
that AutoDock and Glide generated poses for 1 in agreement with contour map evaluations,
while GOLD and FRED generated poses with inverted orientations within allosteric Cavity
7 of GSK-3β. Thus, in order to obtain an even more reliable pose of 1 (in view of the
different docking methodologies as well as the other previously used methodologies), a
docking assessment was carried out to clarify the ‘pose issue’ in two steps. First, different
protocols were evaluated for each software through refinement and variations of the
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parameters/settings to run docking simulations. In a second step, validation of the best
protocols was performed for each software using a set of 40 compounds (1 and its analogs,
with known IC50 values against the allosteric inhibition of GSK-3β [28]; 27 actives and 13
inactives; threshold of 20 µM).

Each protocol (that is, each adjustment of the parameters used in each docking sim-
ulation) was initially tested for analysis by obtaining the pose of compound 1 in Cavity
7. Then, they were expanded to evaluate the poses obtained for the 40-molecules dataset.
In this way, the most significant/efficient protocols of each software were selected during
the second stage, in which a validation by ROC (receiver operating characteristic) curves
was carried out to evaluate the protocol with greater capacity to rank active/inactive
compounds among the set of 40 analogs (see Tables S1 and S4).

After evaluating different protocols for both GOLD and Glide, the best ones were
selected and plotted as ROC curves (see Figure S1) along with the docking results obtained
by the unique protocols applied for Autodock and FRED. It is observed that among the four
evaluated software, Glide presented a higher AUC (area under the curve) value, that is, a
greater capacity to distinguish and classify the active and inactive compounds contained
in the set of 40 analogs of 1. Thus, in this previous validation, Glide was considered the
software with the best performance to predict poses and assign the respective score values
in docking simulations, considering the limited set of compounds that was used (we try to
overcome this issue below—see Section 2.5).

2.5. Optimizing Docking Validation

In order to optimize docking validation, especially concerning the use of a larger
dataset, with known allosteric inhibitors of GSK-3β, we expanded the dataset to 88 com-
pounds (including 37 actives and 51 inactives), considering an IC50 threshold value of 20
µM to sort them into active/inactive. Table S1 shows the dataset of 88 GSK-3K allosteric
inhibitors, compiled from the literature, and their respective IC50 values.

In addition, we performed docking validation with the addition of decoys generated
by the webserver DUD-E [44], considering the structure of 37 active compounds, which
resulted in ca. 50 decoys per active compound.

The same procedures for the validation of the best docking protocols for each software,
using the restricted dataset of 40 compounds, as previously presented in Section 2.4, were
applied here for this new set of 88 compounds, with and without the decoys generated
by DUD-E. In this manner, the ROC curves were plotted, and the corresponding AUC
values were obtained (as shown in Table 2 and Figure 6, as well as in Table S4 with other
relevant metrics).

Table 2. AUC values obtained in corresponding ROC curves plotted for docking and shape similarity (vROCS) validations,
where queries refer to poses of compound 1 obtained by the corresponding docking software and applied to the dataset of
88 compounds, with and without decoys.

Docking
Validation 88 Compounds 88 Compounds +

Decoys
vROCS

Validation 88 Compounds 88 Compounds +
Decoys

GOLD 0.843 0.705 GOLD query 0.760 0.745
Glide 0.840 0.685 Glide query 0.744 0.756

Autodock 0.328 0.376 Autodock query 0.695 0.749
FRED 0.350 0.695 FRED query 0.745 0.758

OMEGA query 0.684 0.684

In green: software that corroborate pose prediction studies (cavity detection and surface mapping); in red: software that do not corroborate;
in bold: highest AUC values for corresponding green/red group in each situation. See also Table S4.
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Figure 6. Docking validation by ROC curves and the respective AUC values obtained by each software using (a) dataset
of 88 compounds and (b) 88 compounds plus decoys. vROCS validation by ROC curves and the respective AUC values
obtained by each query of corresponding software using (c) dataset of 88 compounds and (d) 88 compounds plus decoys.

Table 2 shows that when considering only the 88-compounds dataset, GOLD and
Glide showed similar and equivalent AUC values, next to 0.8, and Autodock and FRED
were also equivalent but with AUC values next to 0.3. A similar observation can also be
made regarding the AUC values obtained with the 88-compounds dataset plus the decoys
generated. This demonstrates that GOLD and Glide show better performance in actives
ranking, even when the structural diversity of the compounds was expanded for the set
of 88 compounds (and even with decoy addition). In particular, FRED similarly showed
improvement in its performance (according to its AUC values, which rose from 0.350 to
0.695) when applied to the set of 88 compounds plus decoys.

In general, one should note that GOLD and Glide showed equivalent performance in
both docking and vROCS validations (see also metrics in Table S4). Nevertheless, taking
into account that Glide corroborates previous pose prediction studies (cavity detection,
surface mapping, and the literature [21]), whereas GOLD has not, leads us to infer that
Glide’s results were more reliable among the evaluated software.

2.6. Shape Similarity and Query Validation

In order to validate different queries to be used in a 3D shape similarity search by
ROCS [45] (or vROCS [46]), the four best docking poses of compound 1, generated by each
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docking software (GOLD, Glide, Autodock and FRED), and one energy-minimized confor-
mation generated by OMEGA [47] were submitted as queries. Two datasets consisting of
88 compounds and/or 88 compounds added with decoys were used. It is worth noting
that such datasets were previously submitted to max 300 conformers per molecule using
OMEGA [47].

We thus proceeded with such validation in a similar way as docking validation, i.e.,
using ROC curves and the corresponding AUC values. Figure 6 and Table 2 (also Table S4)
show, respectively, the ROC curves and AUC values obtained using each query.

One may observe that for all the queries used, the AUC values obtained were above
what is considered random (AUC = 0.5). In general, they present reasonable and apparently
equivalent values to rank the ‘actives’ and ‘inactives’ contained in each dataset. However,
we considered that the Glide pose (see Figure 7) showed greater reliability due to the
fact that, in general, it consensually showed higher AUC values for both docking and
shape similarity validations in addition to corroborating with the studies of pose/pocket
predictions and map surfaces (performed in Sections 2.1 and 2.3).

Figure 7. (a) Well classified and reliable pose of 1 within allosteric Cavity 7 of GSK-3β (1PYX.pdb), obtained by Glide
docking software. Image produced in Pymol [22]. (b) Conformational pose of 1 presented by vROCS, showing its shape (in
transparent grey) and its color chemical features (aromatic rings in green, hydrogen bond acceptors in red, hydrogen bond
donors in blue, and hydrophobic groups in yellow).

2.7. Molecular Dynamics Study

With a view to the evaluated results obtained up to this point and aiming to further
confirm the docking pose capable of representing a more reliable bioactive pose of com-
pound 1 in allosteric Cavity 7 of GSK-3β, we conducted a molecular dynamics (MD) study.
For this, we used the docking poses obtained by the Glide and GOLD software as input
files in the MD simulations, considering that one is in inverted conformation to the other.

In this way, we could obtain important information about the dynamic behavior of
the compound’s poses in the function of 100 ns trajectories and in solvated medium. Such
simulations allow us to analyze the stability of the complexes formed with each pose
within the respective allosteric pocket, as well as the flexibility of the residues present in
the enzyme. These data were achieved by obtaining results concerning solvent-accessible
surface area (SASA), total radius of the gyrate of the protein in space (Rg), root-mean-square
fluctuation (RMSF), and root-mean-square deviation (RMSD) for the protein complexes
and RMSD only for each ligand (pose) during trajectory, as presented in Figure 8.
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Figure 8. Results obtained by MD simulations carried out for the two poses of compound 1, previously obtained with
Glide (black) and GOLD (red), and the respective protein–ligand complex structures within allosteric Pocket 7 of GSK-3β.
Resulting graphs showing (a) SASA, (b) Rg, (c) RMSF for the complexes, (d) RMSD for the complexes, and (e) RMSD only
for ligands (poses).

To determine the stability and integrity of the protein complexes during each trajec-
tory, we evaluated their compaction using the SASA and Rg measurements, which were
extracted every 2 fs and plotted in graphs (Figure 8a,b, respectively). With regard to the
SASA of GSK-3β, both protein complexes remained compact during the trajectory, i.e., their
secondary and tertiary structures were maintained during the entire simulation without
unfolding. This information can be especially observed through corresponding values of
~190 nm2, which did not show significant variation. Such information from the SASA was
confirmed by analyzing the graphs of Rg measurements. One can see that there were also
no large variations in Rg values in both simulations, showing that the structural dimension
of the complexes remained constant throughout the trajectory and, therefore, confirming
that the protein complexes remained compact and stable.

Regarding the RMSF graphs (Figure 8c), one may note that the protein complexes
with both poses showed four peaks next to 0.4 nm, indicating a large fluctuation in the
amino acids that make up these regions. From these, the first two peaks are represented by
one next to Phe67 and the other around Phe93; in fact, both residues are part of Pocket 2
from GSK-3β (see Figure 1), which corresponds to the substrate pocket. We speculate that
their considerable fluctuations could indicate corresponding modulations as a consequence
of the allosteric binding of compound 1 in Pocket 7. However, further data to confirm
this may need to be further investigated. Moreover, from the literature, suggestions to the
allosteric modulation of 1 bound to Pocket 7 were made by inferring that residue Glu211
approximates that of Lys205 [28]. In our work, we also checked a considerable RMSF peak
for this first residue, which might corroborate this information.

In addition, the balance and stability of complex formation were also analyzed by
evaluating the RMSD measurements along the trajectory. From Figure 8d, we can then
observe that there were no large variations in the RMSD values in both simulations. More-
over, RMSD mean values for Glide and GOLD were 0.238 ± 0.031 and 0.265 ± 0.025 nm,
respectively, which could mean a slight indication of better stability for the complex with 1
(pose from Glide) in GSK-3β Pocket 7.
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Finally, we analyzed the RMSD values only for the ligands (poses) of each complex
(Figure 8e). From this analysis, it was possible to evaluate whether the ligands remained
in their initial pose (i.e., in their docking poses in terms of conformation + orientation)
of the simulation throughout the trajectory or if the dynamics of the system (protein,
ligand, solvent) favored their movement, leading to readjustments in their poses as the
consequence of other interactions formed between their complexes with the protein. We
observed that the Glide pose (black) showed constant RMSD ~0.3 Å, whereas the GOLD
pose (red) showed some variations of RMSD ~0.2 Å. These RMSD values are different
only by a unit of 0.1 and should not, in general, indicate a significant difference between
them. On the other hand, observable variations of the GOLD pose should suggest that
its positioning during the trajectory might adopt different poses, for instance, due to the
movement of its long and flexible aliphatic chain.

2.8. Virtual Screening

Given the obtainment of our reliable predicted bioactive pose for compound 1 (using
Glide, see Figure 7), we used such pose in a virtual screening (VS) campaign. For this
purpose, we applied ligand-based methodology (LBVS), that is, 3D shape similarity using
the software ROCS, inputting our predicted pose as a query and applying it to three selected
and prepared databases with millions of commercial compounds (details in Section 4.9).

Hence, we filtered the databases with ROCS, retrieving the 5000 top-ranked molecules
according to the respective ROCS TanimotoCombo indices (ROCSTC; shape + color) indices.
Moreover, screening was carried out through 3D electrostatic similarity using EON, select-
ing the 1000 top-ranked EON TanimotoCombo indices (EONTC) from each database. See
Table S2 regarding the number of compounds filtered in each step of our VS campaign.

In sequence, compounds were submitted to pharmacokinetic and toxicological (ADME/Tox)
predictions using QikProp and DEREK, respectively.

Lastly, we applied our previously developed and reliable docking protocol (using
Glide) in order to evaluate the ability of survival compounds to establish consistent inter-
molecular interactions within allosteric Pocket 7 of GSK-3β. Furthermore, visual inspection
of their structures was narrowly conducted to then select the most promising compounds
with structural diversity. We selected ~30 compounds to purchase and perform in vitro
enzymatic assays; however, we will only reveal two structures and the corresponding
properties, which, in fact, are also included in further quantum chemical calculations
analysis (see Section 2.9).

Compounds LCQFGS01 and LCQFGS02 presented structural diversity when com-
pared to query compound 1. Table 3 shows their ADME/Tox properties, which indicate the
preferable physicochemical parameters and also a better profile of both these compounds to
act as GSK-3β allosteric modulators through the CNS. In addition, Figure 9 shows docking
simulations performed for both virtual hits, showing the ability of their poses to keep
important interactions in GSK-3β allosteric Cavity 7 (the same observed for 1).

Table 3. Comparison of score values obtained by ROCS, EON, and Glide docking as well as ADME/Tox properties for
compounds 1, LCQFGS01, and LCQFGS02.

Compound ROCS
TC

EON
TC

Glide
XPscore MW PSA (QP)logPo/w

(QP)logBB HOA% (QP)PCaco
(QP)PMDCK

1 2.000 2.000 −6.13 429.55 118.58 5.84 −2.04 94.2 375.19 171.46
LCQFGS01 0.884 0.720 −5.919 312.81 48.79 5.13 −0.42 100 2782.34 4074.68
LCQFGS02 0.917 0.672 −5.622 269.34 57.19 3.01 −0.35 100 1421.35 1121.06
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Figure 9. Representation of docked poses of LCQFGS01 and LCQFGS02 within GSK-3β (1PYX.pdb) allosteric Cavity 7,
obtained by Glide-developed docking protocol. Hydrogen bonds in yellow, and halogen bonds in purple. Images produced
in Pymol [22].

2.9. Quantum Chemical Studies

In this section of the work, we selected five compounds to investigate the relationships
between their quantum chemical features and their potential to perform intermolecular
interactions within allosteric Pocket 7 of GSK-3β. The five selected compounds correspond
to compounds 1, 18, and 24 (as three reference compounds from the literature [28] and
also the most active ones (lowest values of IC50, see Table S1) towards GSK-3β allosteric
inhibition), along with compounds LCQFGS01 and LCQFGS02 (as two potential hits
obtained by our VS campaign in Section 2.8).

The idea is to compare the ability of these two virtual hits to perform the inhibition of
GSK-3β allosterically in a similar manner to those three reference compounds in terms of
the results observed from such quantum chemical calculations. It is worth emphasizing
that the exact docking poses of all five compounds were kept during this study.

Following the procedures described in Section 4.10, in a preliminary evaluation to
choose the most appropriate basis set for quantum chemical calculations, we observed that
basis set B3LYP/6-311++G(2d,2p) released a higher mean average energy of formation
than B3LYP/6-311+G(d,p) for the five selected compounds (see Table S3). Assuming that
the greater such energy, the more stable the respective compounds, we considered that
basis set B3LYP/6-311++G(2d,2p) was greatly indicated for energetic analysis in further
calculations.

Moreover, we calculated the highest occupied molecular orbital (HOMO), the lowest
unoccupied molecular orbital (LUMO); the GAP between LUMO and HOMO, the ionization
potential (IP), and the spin density for the five compounds, as shown in Table 4.

Table 4. Calculated quantum chemical properties for the five selected compounds using DFT/
B3LYP/6-311++G(2d,2p).

Compound HOMO (eV) LUMO (eV) GAP * IP (Kcal.mol−1)

1 −6.42 −1.94 4.48 181.06
18 −6.19 −1.79 4.40 174.75
24 −6.46 −1.86 4.60 182.23

LCQFGS01 −6.59 −1.77 4.82 192.97
LCQFGS02 −6.10 −1.03 5.07 177.12

* GAP = |ELUMO − EHOMO|.

From Table 4, one can see that all values of HOMO were superior to −6.00 eV. Com-
pounds 18 and LCQFGS02 presented the highest HOMO values of −6.19 and −6.10 eV,
respectively, whereas LCQFGS01 showed the lowest HOMO value of −6.59 eV. Regarding
LUMO energy values, compound 1 was the lowest (−1.94 eV), followed by compounds
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24 (−1.86 eV) and 18 (−1.79 eV), while LCQFGS02 presented the highest LUMO value
of −1.03 eV. In addition, the calculated GAP values—meaning the difference between
LUMO and HOMO energy values—were able to show that 18 should be the most reac-
tive compound as it presented the lowest value of 4.40 eV, followed by 1 (4.48 eV) > 24
(4.60 eV) > LCQFGS01 (4.82 eV) > LCQFGS02 (5.07 eV). Furthermore, compounds 1, 24,
and LCQFGS01 showed IP values higher than 180 kcal/mol, while 18 and LCQFGS02
showed the lowest IP values of 174.75 and 177.12, respectively.

It is worth noting that in general terms, low GAP values are related to high reactivity
and low chemical stability of compounds (and vice-versa), whereas HOMO and LUMO
relate to the ability to donate and accept electrons, respectively [48–50]. Additionally,
IP is related to nucleophilicity and the electron-donating ability of compounds [51,52].
Nevertheless, here, we extrapolate these chemical reactivity concepts laterally, interpreting
them in terms of the ability of compounds to perform intermolecular interactions with the
amino acid residues of GSK-3β.

Figure 10 depicts the HOMO and LUMO orbital distributions throughout the chemical
structures of each of the five selected compounds. Additionally, to facilitate comprehension,
Figure S2 shows their 2D color maps in terms of blue and red portions of molecules with
the corresponding predominance of each frontier molecular orbital (FMO) character.

Figure 10. (a) HOMO and (b) LUMO of compounds 1, 18, 24 (most active reference GSK-3β allosteric modulators) and our
two virtual hits, LCQFGS01 and LCQFGS02.

One may observe from Figure 10 that compounds 1, 18, and 24 have shown the HOMO
homogeneously distributed on their quinolone moieties (blue portion, see Figure S2), which
indicates the important role of such a group (and the attached substituents) to HOMO.
Regarding the LUMO of these same compounds, they have similarly shown an overall
distribution on the corresponding quinolone moieties, indicating that in contrast and
parallel to HOMO results, they tend to act as electrophiles. However, the long aliphatic
hydrocarbon chain (the hydrophobic part of molecules) has not been included as important
for either HOMO or LUMO.

In fact, this corroborates the expected behavior of these compounds when bound to
allosteric Pocket 7 of GSK-3β since the quinolone moiety is presumably interacting with
Arg209 by three possible intermolecular forces: cation-π (between N+ from Arg209 and π-
conjugated electrons from quinolone), hydrogen bond (between N-H from Arg209 and C=O
in Position 4 of quinolone ring), or electrostatic/ionic. Despite the HOMO predominance
on the Arg209 N terminal side chain [53], this could be allowed in view of the versatility of
the kind of interaction for these three. Such corroboration has been shown by our docking
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studies (and the corresponding interactions) as well as in literature [28]. Moreover, for
these three compounds, we see that their oxygen—from carbohydrazide C=O, next to
the hydrophobic chain—possesses ready-to-interact electron pairs in accordance to the
depicted HOMO orbitals, which should allow the formation of the important hydrogen
bond with the N-H of Ser236.

For compounds LCQFGS01 and LCQFGS02, the corresponding red portions (see
Figure S2)—i.e., methylenehydrazide and carbamide moieties, respectively—played a key
role to the HOMO, especially indicating that their C=O group might indeed form the
important hydrogen bond with the N-H of Ser236. Besides this, their LUMOs, distributed
through corresponding moieties of halogenated benzene and pyridine, respectively, make
sense since they also can interact with Arg209, which shows a HOMO character as well [53].
Moreover, in the specific case of LCQFGS01, this analysis also corroborates the possibility
of forming a halogen bond between its Cl and the N-H of Arg209 (see Figure 9).

Lastly, spin density contributions were also evaluated (see Figure S3), considering that
this should measure chemical stability and that the electron donation capacity depends
on their cation-free radical stability. The difference between the HOMO and spin density
distribution shows each group involved in radical stabilization using numerical values. In
the blue portion (see Figure S2) of compounds 1, 18, and 24, there was a higher contribution
in radical stabilities, with a highlight to the presence of nitrogen and oxygen atoms in
the quinolonic ring and electronic distribution in their planar structures. Compound
LCQFGS01 showed greater spin density and a HOMO concentrated in its red portion,
with a smaller distribution when compared to LCQFGS02; thus, these data, in general,
corroborate the analyses made for the FMOs.

3. Discussion

It is worth mentioning that Palomo et al. [21] performed a comparison between several
GSK-3β PDB structures using only fpocket software in order to ascertain the consensual
presence of the seven cavities that were found in these different structures, from which
Cavities 4, 5, 6, and 7 have shown to be allosteric in potential. Here, in a complementary
way, we evaluate which one among the cavities previously described as allosteric would
have the greatest potential to interact with inhibitors/ligands (especially with compound 1).

Our approach, in this work, started by analyzing all possible (shallow or buried)
cavities detected on the surface of GSK-3β. Using five different software/webservers, all
of them indicated in consensus that Cavity 7 presents a higher likelihood of representing
an allosteric site as well as reasonable druggability scores, usually only smaller than the
actual active site of GSK-3β. Considering these results of cavity detection and prediction of
their potential among the four allosteric cavities previously described, Cavity 7 is, indeed,
potentially indicated as a cavity more likely to interact with a given orphan molecule, e.g.,
a non-ATP-competitive inhibitor of such enzymes.

From preliminary docking results (Section 2.2), 1 has shown to bind more effectively
(in terms of each scoring function used in each software) when bound to allosteric Pocket
7 rather than the other three allosteric pockets. This points to the existence of higher
compatibility of the physicochemical/structural features of compound 1 within such a
pocket. In fact, considering that two types of software (GOLD and FRED) predicted a
binding pose inverted with relation to poses predicted using the other two types of software
(Glide and Autodock), this might indicate that the actual pose of 1 inside Cavity 7 could
be indifferent. This pose independence, however, was further investigated in order to
evaluate which docking methodology furnishes greater/more reliable pose prediction.

In addition, it is worth stressing that compound 1 presents 14 rotatable bonds and its
C11H23 hydrocarbon aliphatic chain allows the structure to adopt many conformations,
regardless of the conformational search algorithm employed by each docking software
(Glide and FRED = systematic search, while GOLD and Autodock = stochastic search). The
differential factor between docking pose predictions is, therefore, most represented by the
scoring functions implemented in each software.



Int. J. Mol. Sci. 2021, 22, 8252 16 of 27

The GOLD CHEMPLP scoring function might match some aspects/characteristics
of the FRED Chemgauss4 score function. As far as we may speculate, there are multiple
linear potentials to model the van der Waals and repulsive terms included in CHEMPLP (in
addition to hydrogen bonding terms [36]) that may work similarly to the shape interaction
terms implemented in Chemgauss4, which are based on distances measured by van der
Waals radii between atom models of heavy atoms [54]. This, but not only this, should
indicate why both programs posed compound 1 inverted in relation to Glide and Autodock
(of which their scoring functions are most known for their empirical-based features [55]).
Nevertheless, we recognize that tracking down the factors that are involved in docking
scoring functions that could provide different results in pose prediction should not be that
obvious, and further tests will be necessary to clarify this.

Regardless, in order to clarify the most representative pose (supposed bioactive pose)
of compound 1 in Pocket 7, i.e., what its possible mode of interaction in terms of orientation
and conformation is, in Section 2.3, we also performed a study concerning surface, contour
maps, and pharmacophore hotspot analysis using three complementary and independent
software. These consensually indicated regions or chemical groups are most favorable
in the places compatible with the compound 1 pose predicted by Glide docking. The
superposition (see Figure 5) of 1 in close contact to residues that constitute allosteric Cavity
7 in GSK-3β was well-suited and showed coherent ligand–protein interactions, and, thus,
we had one more reasonable argument to reinforce such a binding pose prediction.

In fact, we emphasize that three key interactions were depicted by this potential
pose of 1 (obtained by Glide) within GSK-3β allosteric Cavity 7: the hydrogen bond
between C=O of its carbohydrazide group and the N-H of the Ser236 backbone; cation-π
(or electrostatic) interaction between its quinolone moiety and Arg209; and hydrophobic
interactions between its aliphatic chain and hydrophobic regions Thr330, Pro331, and
Arg328. This has also been previously described elsewhere [28] and corroborated by our
contour map evaluation.

Regarding docking validation, we recognize that in previous docking validation
(Section 2.4), a small set of compounds was used as allosteric inhibitors of GSK-3β; as they
all came from the same series of 40 analogs with high structural similarity, it is likely that
the results provided are limited. Therefore, it would be preferable to use compounds with
greater structural diversity to validate the docking protocols and evaluate their efficiencies
in proposing docking poses for different molecules towards GSK-3β allosteric Cavity 7.

In this way, in Section 2.5, we expanded the validation dataset in the docking assess-
ment to include other compounds that have been found in the literature. Other works
retrieved from the literature [24–26] revealed potential allosteric inhibitors, proved by their
non-ATP-competitive inhibition at the GSK-3β catalytic site, and inferred how these com-
pounds could bind to allosteric Cavity 7 by means of experiments or docking simulations
(see Section 4.4).

Furthermore, we also performed similar validation procedures to ROCS queries, as
showed in Section 2.6. For this task, the best-ranked poses of 1, obtained by each docking
software, were evaluated with respect to their use as a reference/query to run ROCS [45].
This software, which is based on shape similarity, requires a reliable pose (in terms of
conformation) to perform a comparative search in the databases of compounds and rank
them according to ROCSTC values.

For both validations (Table 2 and Figure 6), one should realize that the use of the
expanded set of 88 compounds increases the structural diversity of the active/inactive
compounds in relation to the series of 40 compounds used previously, also increasing the
sample space of molecules and the respective domains of applicability for both docking
protocols/programs and queries in ROCS. Thus, the validation procedure becomes more
difficult, in which a more robust performance of each software evaluated will be required
so that they present themselves as reliable.

In some cases, there was a decrease in the AUC values when considering decoys—
which should further expand the structural diversity of the set—for example, for GOLD



Int. J. Mol. Sci. 2021, 22, 8252 17 of 27

and Glide in docking validation (see Table 2). This may be attributed to the fact that there
are trivial differences between the assets and the decoys generated or even due to the fact
that they have not very dissimilar physicochemical properties.

Additionally, considering the high flexibility of molecule 1 (14 rotatable bonds) and
its analogs, it is expected that among the 300 conformers for the inactive analogs of 1
(generated using OMEGA in a previous step to ROCS overlays), many conformation
options will be generated, in which there will be a possible conformation with a high
overlay, with 1 used as query, consequently resulting in a high ROCSTC value.

MD simulations were carried out to compare the stabilities of each potential complex
formed between compound 1 in its two predicted poses by Glide and GOLD within
allosteric Pocket 7 of GSK-3β. In general, results were equivalent, with slight indications
that the Glide pose could form a more stable complex, indicated by its obtained RMSD
values along the MD trajectory (see Figure 8d,e). Analysis of the MD results was consistent
and also allowed us to check the potential of 1 to inhibit such enzymes allosterically. Studies
in this sense may be a path to further explore, for instance, the analysis of the behavior of
virtual hits towards GSK-3β allosteric inhibition.

Thus, after the investigation using different in silico tools and considering that
compound 1 is a non-ATP-competitive inhibitor that acts on an allosteric site (thus
confirmed by in vitro assays [28]), the results point in a consensual manner to the
fact that it is most likely that 1 acts in allosteric Cavity 7 of the GSK-3β enzyme. In
addition, we emphasize that this is indicated by all studies carried out (in Section 2.1,
Section 2.2, Section 2.3, Section 2.4, Section 2.5, Section 2.6, Section 2.7) and, moreover,
corroborates previous findings [28]. Finally, the pose of 1 (in terms of conformation
and orientation, i.e., the ‘supposedly bioactive pose’), obtained by docking software
Glide and the corresponding protocol (Figure 7), is the most reliable and robust one for
prospecting ligand-based studies and seeking novel chemical entities or scaffolds.

Application of all of our virtual hypotheses and proposals to reinforce the reliability of
the binding site and the ‘supposedly bioactive pose’ of compound 1 as a GSK-3β allosteric
modulator could be firstly validated by using such content to perform the search for new
structures with prospective intention. We emphasize that with the term ‘supposedly bioac-
tive pose’, we refer to the orientation (together with the conformation) that such a ligand
must assume, in three-dimensional space, in a most energetically favorable accommoda-
tion within the pocket (and with intermolecular interactions consistent with amino acid
residues). This supposedly triggers a modulation in the activity of the enzyme, subse-
quently igniting other biochemical processes that will lead to an (un)expected biological
effect/response.

Of course, objectively, obtaining such a crystallographic complex would be ultimately
relevant. However, within our scope, performing virtual screening with the knowledge
developed here and retrieving available existing chemicals to test if their inhibition potential
is similar to the used reference is also a meaningful approach from our point of view.

Our robust VS pipeline was conducted in view of the filtering compounds most
likely to present 3D shape similarity with the (query) docked pose of 1 since we filtered
out many more compounds by this methodology—more than 13 million molecules were
filtered out with ROCS, resulting in 15,000 molecules). In this sense, the ROCSTC values
were pretty reasonable for the remaining compounds even after the application of other
filters/methodologies (see Table 3).

Furthermore, we note the importance, in this study, of evaluating the ADME properties
of GSK-3β allosteric inhibitors that will be selected by VS. This enzyme presents a wide
range of functions in the body. In fact, although present in other compartments of the
organism, this enzyme is overexpressed in the CNS of patients with neurodegenerative
diseases, so that a given GSK-3β inhibitor to treat such diseases must have more affinity to
the CNS than to the blood (which will distribute the drug to other compartments). This
tendency can be controlled beforehand, in the previous steps of the design of inhibitors, by
calculating and selecting the preferable values of the parameter logBB (Blood/Brain).
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At the end of the VS pipeline, our visual inspection to pick compounds was performed
in view of the docked poses (using Glide protocol), which showed valuable interactions
(see Figure 9). This allowed us to carefully select compounds with promising activity
towards the aimed target in addition to positively evaluated ADME/Tox profiles.

Quantum chemical studies also allowed us to check if our two selected virtual hits
presented potential to interact in allosteric Pocket 7 of GSK-3β in a similar way as the
reference compounds (already known as active allosteric modulators). Our calculations
have provided interesting findings in this sense, especially with regard to HOMO and
LUMO analysis.

Frontier molecular orbital is a relevant concept in chemistry, and it can be used
extensively to describe the chemical reactivity behavior for a given molecule. HOMO
represents the ability to donate electrons, being directly related to ionization potential,
while LUMO represents the electron-accepting ability and its energy is associated with
electronic affinity [48–50]. However, these molecular properties are global, and they can be
related to chemical stability and reactivity; in this particular work, we stress that we made
interpretations in terms of the ability of compounds to perform intermolecular interactions
with the residues of the GSK-3β allosteric pocket.

Compounds LCQFGS01 and LCQFGS02 have shown energetic features, calculated
by quantum chemical software, that agree with docking propositions, thus indicating their
potential to allosterically inhibit GSK-3β by equivalent interactions in the same studied
allosteric pocket.

In this way, all computational methodologies applied in this work will be validated by
future experimental validation. Our two virtual hits exposed here, along with further hits
obtained by VS as potential GSK-3β allosteric modulators, will be evaluated by in vitro
enzymatic assays, with additional confirmation of the corresponding mechanism of action.

4. Materials and Methods
4.1. Pocket Detectors/Predictors

We employed fpocket [30], SuperStar [31], metaPocket [32], Sitemap [33], and PARS [34]
to detect and predict the pockets present on the GSK-3β surface. These software usually
exert pocket detection algorithms that allow the visualization of each cavity shape/volume
along with corresponding calculated ‘scores’ values, according to the potential of the cavity
to interact with potential ligands and/or drugs. We highly recommend that available
details of each software in the corresponding references be checked in order to understand
their particularities.

It is worth mentioning that we ran all software using a GSK-3β structure (PDB ID
1PYX) as input, and, when the software did not provide a default preprocessing workflow,
the referred structure was treated by adding hydrogens, removing water molecules and
other ligands/cofactors from the complex, and excluding the B subunit/chain from the
protein structure using Maestro software [56].

4.2. Docking Simulations

Regarding the main ligand employed in docking simulations, i.e., compound 1, this
was prepared by the procedure established as default for molecules in this work, except
when mentioned. Such procedure consisted of drawing its structure in the software
ChemDraw [57] and copying it in SMILES format; this was then imported into Ligprep [58],
which was run using an MMFF force field, calculating partial charges for atoms and
generating possible ionization states by Epik at pH = 7.0 ± 1.0. Finally, the resulting file
was exported in mol2 format for use. It is worth mentioning that this procedure resulted in
a tautomeric form of 1, in agreement with previous studies on minimum energy tautomeric
predominance, as published elsewhere [28].

In advance of performing docking simulations, the protein structure was prepared
by a procedure established as default in this work. Such procedure consisted of initially
importing the Protein Data Bank (PDB, https://www.rcsb.org/, accessed on 18 May 2021)

https://www.rcsb.org/
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structure of the enzyme GSK-3β (PDB code 1PYX) into Protein Preparation Wizard soft-
ware [59,60]. Then, its preprocessing was done by checking the following functions:
assignment of bond orders using the CCD (Chemical Component Dictionary) database [61],
addition of hydrogens, generation of disulfide bonds, use of Prime to fill missing loops
and side chains, and removal of water molecules; only monomer A was kept, excluding
monomer B, as well as ligands, cofactors, and metals; heavy atoms were converged and
minimized to 0.30 Å of RMSD using the OPLS3 force field.

Each allosteric pocket investigated by docking methodologies in this work was defined
by the following centroids (in terms of spatial coordinates): Pocket 4 (x = 30.09, y = −3.98,
z = 30.83), Pocket 5 (x = 46.11, y = 20.74, z = 31.39), Pocket 6 (x = 40.28, y = 10.02, z = 46.49),
and Pocket 7 (x = 11.78, y = 13.15, z = 38.33). In order to facilitate interpretation, note that
these sequential enumeration of pockets corresponds to previous depiction in literature [21].

Preliminary docking simulations (results in Section 2.2) were carried out using default
settings in each of the 4 four docking software. Further details of docking protocol refine-
ment are shown in Section 4.5. Next, we only cite a few particularities from each default
setting in each of the four docking software.

In GOLD, scoring function CHEMPLP and a sphere radius of 10 Å (centered at the
centroid of each cavity) were used. In Glide, scoring function extra precision (XP) and grids
of 10 × 10 × 10 Å (centered in each centroid) were used. In Autodock, default settings were
used along with grids of 40 × 40 × 40 Å, centered in each centroid. In FRED, first, we used
spruce4docking [62] to process the apo structure of GSK-3β (1PYX.pdb; previously prepared
as described above) in order to generate ‘receptors’ for each pocket and thus indicate a
representative residue for each pocket. Then, compound 1 was processed by OMEGA [47]
to generate 300 conformers and submitted to docking run in (default) Standard mode.

4.3. Generation of Contour/Surface Maps

We employed Superstar [31], GRID [43], and Sitemap [33] to generate contour and
surface maps using the GSK-3β structure (PDB ID 1PYX). Such protein structure was
prepared as described in Section 4.1 in advance of running the software.

Superstar uses the empirical method to calculate maps that represent the propensity
of a functional group (probe group) to bind at different positions around a protein-binding
site. The software uses data from the Cambridge Structural Database (CSD) and the Protein
Data Bank (PDB), using the IsoStar knowledge base as an intermediary [31].

GRID allows us to detect energetically favorable binding sites for functional groups on
macromolecules by employing molecular interaction fields (MIFs) and different chemical
probes. Its method is based on ‘grid points’ that are superimposed on the given protein, and
the potential energy of each probe is then calculated using a predetermined chemical group
The most important probes include water, the methyl group, amine, nitrogen, carboxy
oxygen, and hydroxyl [43].

Sitemap performs contour maps calculation by identifying the hydrophobic, hydrogen-
bond donor, the hydrogen-bond acceptor, and metal-binding regions on the protein using
a grid of ‘site points’. For hydrophobic and hydrophilic character, the average of van der
Waals interaction energy (over the original site and extended points of the probe–receptor)
is computed; for the properties of donating/accepting hydrogen bonds, the algorithm is
able to calculate and suggest which regions are preferred [33,63].

4.4. Dataset Compilation

As a starting point, we used the known set of 40 GSK-3β allosteric inhibitors (analogs
of compound 1) synthesized, with IC50 values measured, as reported [28].

In a preliminary search of the literature, we checked that there were not too many
compounds reported specifically as GSK-3β allosteric inhibitors despite a considerable
number of orthosteric inhibitors of the enzyme. Furthermore, lots of inhibitors have been
previously described as non-ATP-competitive; however, a lack of data concerning which
allosteric pocket should host such inhibitors does not allow researchers to use these data.
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Exhaustive mining for more compounds was carried out, and we ended up finding
more than 48 compounds that could be reliably considered, as shown in Table S1 (with
references), totaling a compiled dataset of 88 GSK-3β allosteric inhibitors that should act in
allosteric Pocket 7.

4.5. Refinement of Docking Protocols

Default settings (as procedures described in Section 4.2) were applied to previously
prepared protein structures of GSK-3β (PDB 1PYX) and ligands (compound 1 plus further
compounds of the dataset).

For all the software used here, i.e., GOLD, Glide, Autodock, and FRED, the results were
programmed to generate 10 docking poses for each molecule; in some cases, fewer poses
were generated (according to the energy cutoff established by each software). The poses
obtained for each molecule were visually inspected and, thus, separated into ‘clusters’
(sets/families) of apparently better-overlapping poses that represented more homoge-
neous/significant poses. Among the family with the most significant poses, the one with
the best score value was selected as the representative pose. When the results of the poses
were very dispersed (low homogeneity between the poses), the pose with the best score
was simply selected as the representative one for that molecule.

Constraints were not used in any of the software. In addition, different centroids (x, y,
and z coordinates) were evaluated in relation to the distance between the main residues
that constitute Cavity 7. Additionally, for GOLD and Glide, changes were also evaluated
in relation to the flexibility of the side chains of the residues Arg209 and Ser236.

The following parameters were systematically varied in GOLD: sphere size spanning
from 7 to 12 Å; CHEMPLP, ChemScore, and GoldScore score functions; population size
and operations in ‘GA settings’; and allowing (or not) the inversion of N (amide) during
the generation of conformers. Final docking protocol selected in GOLD was: centroid
of x = 11.78, y = 13.15, z = 38.33; 10 Å sphere radius; 4 rotamers allowed for Ser236; the
CHEMPLP scoring function.

In Glide: length of each grid side, varying from 10 to 20 Å; SP and XP score functions,
allowing (or not) the inversion of N (amide) during the generation of conformers. Final
docking protocol selected in Glide was: the same centroid as GOLD; the XP scoring function;
not allowing N inversion; keeping the Ser236 residue flexible.

In Autodock, besides default settings, we also tried to run it as described in the
literature [21]. The final docking protocol selected in Autodock was: centroid x = 10.508,
y = 13.154, z = 37.338; grid of 40 × 40 × 38 Å with a spacing of 0.375 Å; Lamarckian GA
(200 number of GA runs, 200 population size, 2,500,000 max number of evals); Ser236 flexible.

In FRED, we ran docking simulations in Standard, High, and Low resolutions (https://
docs.eyesopen.com/applications/oedocking/fred/fred_opt_params.html#cmdoption-fred-
dock_resolution, accessed on 18 May 2021). Final docking protocol selected in FRED was:
indication of Ser236 to pick Pocket 7 in receptor generation by spruce4docking, then
running docking in Standard resolution.

4.6. Validation of Docking Protocols

In order to validate each docking protocol developed for each docking software, we
applied a validation procedure that consisted of obtaining docking scores (for each best
pose) for the dataset of 88 compounds, including and not including additional DUD-E [44]
decoys that were generated.

It is worth noting that previous, simple docking validation (Section 2.4) was carried
out using only the small dataset of 40 known GSK-3β allosteric inhibitors (13 inactives
against 27 actives) retrieved from the literature [28].

Decoys are potentially inactive structures, computationally generated from the input
of active compounds on the webserver and the DUD-E database, with a view to presenting
similar physicochemical properties but different chemical structures and topologies. These
decoys were generated at http://dude.docking.org/generate (accessed on 18 May 2021)

https://docs.eyesopen.com/applications/oedocking/fred/fred_opt_params.html#cmdoption-fred-dock_resolution
https://docs.eyesopen.com/applications/oedocking/fred/fred_opt_params.html#cmdoption-fred-dock_resolution
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using the structures of 37 actives, leading to the generation of 50 decoys per active com-
pound, i.e., ca. 1850 decoys. Thus, the decoys and 51 inactive compounds (retrieved from
the 88-compounds dataset) were summed up and used against 37 known actives (also from
the 88-compounds dataset), obtaining a classification dataset totaling ca. 1901 ‘inactives’
against 37 actives.

In this way, validation procedures were applied to the GOLD, Glide, Autodock, and
FRED docking software, considering the respective score values, ranked (sorted from
best to worst) in accordance with the corresponding binary codes, and indicating the
activity/inactivity of the respective compounds, that is, 1 for active and 0 for inactive.
The ROC curves were constructed using the Screening Explorer webserver (http://stats.
drugdesign.fr/, accessed on 18 May 2021) [64] and were evaluated by the respective
AUC values.

Validations through the analysis of ROC curves allow us to evaluate the capacity of a
given methodology/model to correctly classify active compounds (i.e., compounds with
known biological activity demonstrated by experimental results) within a set containing
inactive compounds. In general, compounds are classified with respect to true/false
positive/negative ratios and are represented in terms of sensitivity and specificity. Thus,
for the construction of the ROC curves, sensitivity (y-axis) is correlated in the function
of 1-specificity (x-axis), while sensitivity is defined by the ratio of true positives and the
1-specificity by the ratio of false-positives classified by the model. It is possible to evaluate
ROC curves by the respective values of AUC, with values close to 1.0 indicating ideality and
better performance of the model, while the value of 0.5 indicates a random classification by
the model [65,66].

4.7. Shape Similarity and Query Validation

The best docking pose of compound 1 that was obtained by the best-chosen protocol
developed for each software was validated to check its potential use as a query in a 3D shape
similarity search using the software vROCS. Please note that we used vROCS, an alternative
version to ROCS, which is generally preferred in validation studies, facilitating ROC-AUC
curve analysis; it operates in an identical way as ROCS but allows graphic visualization.

Moreover, in addition to the poses of the 4 docking software, the minimal energy
conformation for compound 1, generated by OMEGA, was used as a pose, which is a
strategy also recommended by the ROCS developers for the use, validation, and selection
of queries [54,67].

The database of active compounds consisted of 37 molecules, and the database of
inactive compounds consisted of either 51 molecules from the compiled dataset (see
Table S1) and/or ca. 1901 ‘inactives’ when decoys were included (see Sections 2.5 and 4.6).
All databases were previously submitted to 300 conformer generation using OMEGA [47].

To classify/rank the molecules, the respective values of ROCSTC resulting from
vROCS were considered. Such ROCSTC values vary from 0 to 2, with values closer to 2
showing a high overlap in terms of shape (ShapeTanimoto) and chemical characteristics
(ColorTanimoto) between a given conformation of a molecule and the query used. From the
generated results, the ROC curves were then plotted and the corresponding AUC values
were obtained in a similar way to that described in Section 4.6.

4.8. Molecular Dynamics Studies

MD studies were conducted using high-performance computing (HPC) from Centro de
Computação de Alto Desempenho at the University of São Paulo (USP). For MD simulations,
we used GROMACS 2019.3 software [68,69] with the Charmm36 force field [70], and
ligands were parameterized by CGenFF [69,71]. We obtained the initial coordinates to
conduct the MD simulations from the docking poses of the ligands obtained by Glide and
GOLD (as described in Sections 4.2 and 4.5).

We placed the GSK-3β (PDB ID 1PYX) protein in a cubic box, with vectors 9.36× 9.36× 9.36 nm,
and solvated it with 24,715 water molecules of TIP3P [72]. To neutralize charges in this system, we

http://stats.drugdesign.fr/
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added 6 ions of Cl− [69,73]. The total simulation time was 100 ns, with an integration time
of 2 fs. To minimize the system, we used the Steepest Descent method to avoid unfavor-
able contacts between atoms, and we archived the convergence at potential energy below
500 kJ/mol.nm [73]. After that, we used the NVT and NPT sets for the balance/equilibrium
runs, keeping the pressure constant at 1 bar through the Berendsen barostat and a tem-
perature of 300 K, with time couplings of 2.0 and 0.1 ps, respectively [69,73]. Finally, we
performed the structural analysis on the trajectory production, following the same protocol
recently published [73].

4.9. Virtual Screening Campaign

We conducted a VS campaign, mostly represented by a ligand-based approach, using
3D shape similarity with the software ROCS. Table S2 shows the filtering of compounds.

Three databases were used in this work: Chembridge CNS [74], eMolecules [62],
and Princeton [75]. Together, they sum ca. 13,000,000 molecules that are commercially
available. These were prepared by application of FILTER [47], with default parameters
and the following additional filter settings: maximum of 2 chiral centers, 5 ring systems,
20 atoms by ring system, 16 rotational bonds, and 55 rigid bonds. The use of FILTER
is highly recommended [54] to eliminate unwanted/useless/unviable compounds in a
molecular modeling pipeline—in advance of conformer generation and processing by
OMEGA—mainly with respect to molecules bearing too many rotatable bonds (high
flexibility) and rings (especially flexible ones). In sequence, OMEGA [47,76] was used to
generate 300 conformers per molecule, considering the default parameters, except for the
energy window set to 9.0 kcal/mol and RMSD adjusted to 0.6 Å (adaptations of our research
group [77]). As the ROCS and EON software require conformational diversity between the
structures of the query compound and other database molecules to perform overlap by
shape and electrostatics, respectively, this processing step to generate the conformers using
OMEGA is essential during the preparation of databases.

In ROCS [45,78], we used our predicted bioactive pose of compound 1 as a query and
applied it to 3 selected and prepared databases. Hence, we filtered databases with ROCS,
retrieving 5000 top-ranked molecules according to corresponding ROCSTC (shape + color)
indices; moreover, screening was carried out through 3D electrostatic similarity using
EON [79], selecting the 1000 top-ranked EONTC indices from each database.

In sequence, compounds were submitted to pharmacokinetic and toxicological (ADME/Tox)
predictions using QikProp and DEREK, respectively. QikProp criteria to filter the most
promising compounds were established considering CNS drug-likeness reports [80–82]
and adapted by us, as follows: MW ≤ 360, PSA ≤ 90 Å2, (QP)logPow = −2.0 − 6.5;
(QP)logBB > −0,5; heteroatoms ≤21; human oral absorption > 80%; (QP)PCaco > 500 nm/s;
(QP)PMDCK > 500 nm/s. DEREK toxicity endpoints (carcinogenicity, genotoxicity, cardiotox-
icity, hepatotoxicity, neurotoxicity, among others, for both mammals and bacteria) were
predicted and rejected when respective alerts were fired as plausible, probable, or certain.

A final applied filter consisted of our previously developed and reliable docking
protocol (using Glide) in order to evaluate the ability of survival compounds to establish
consistent intermolecular interactions within the allosteric site of GSK-3β. Furthermore,
visual inspection of their structures was narrowly conducted to select the most promising
compounds with structural diversity.

4.10. Quantum Chemical Calculations

We performed quantum chemical calculations using GaussView 6.0 [83] and Gaus-
sian 09 [84] software. In order to evaluate the energy of each compound—ensuring that
their corresponding original docking poses (conformation + orientation) were kept—we
employed two different methods of B3LYP hybrid density function theory (DFT) and the
respective 6-311+G(d,p) and 6-311++G(2d,2p) basis sets [85–87]. In advance of choosing
which basis set would be applied, we selected the one that presented greater stability
according to the release of formation energy (see Table S3).
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Following the procedure previously reported [52,88], we calculated the highest occu-
pied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), the
GAP between LUMO and HOMO, the ionization potential (IP), and the spin density.

The topology of the frontier orbitals, HOMO and LUMO, was visualized with Gaussview
software [83] and the ionization potential (IP) for each compound was calculated as the energy
difference between a neutral molecule and the respective cation-free radical, i.e., following
the equation IP = Emolec
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where ax, ay, az are the time-dependent components of accelecration along the x, y and z
axes recorded at vehicle’s CG and g is the acceleration due to gravity.

THIV is the velocity, expressed in (km/h), at which a hypothetical occupant’s head
(represented by a point mass) hits the surface of the hypothetical vehicle’s interior. The
value is calculated according to the procedure defined in the norm [29]. The trajectory
of the hypothetical head and THIV are calculated from the parameters measured in the
determination of the vehicle’s CG. A general equation describing THIV is as follows:

THIV =
√

Vx2(T) + Vy(T)
2, (2)

where Vx, Vy are the x and y components of theoretical velocity of the head with respect to
the vehicle.

3. Problem Description
3.1. Model Definition

To simulate the crash scenario, a numerical model was developed consisting of soil, a
vehicle and a lighting pole. The assumptions of all simulations were as follows:

• FEA was conducted with implementation of massive parallel processing (MPP) LS-
Dyna R10.1.0 explicit code.

• The soil was modeled using constant stress solid FEs with one integration point and
with stiffness-based hourglass control. The average FE size was 30.0 mm. The elements
were coupled with smoothed particle hydrodynamics (SPH) particles [30–34], which
were used to represent the area within direct interaction with the lighting pole. The
soil area in the present study was larger than the requirements presented in [1], with
dimensions of 3.6 m, 5.3 m and 1.9 m for width, length and height, respectively. This
choice was made due to the possible large deformation of the soil during lighting pole
deflection depending on the constitutive model used. To couple the SPH particles
within the area of direct interaction with the lighting pole, a kinematic constraint
method in which the particles are tied to the Lagrangian surface was applied in order
to maintain the continuity of the soil. The outer surfaces of the soil area were fixed.

• The SPH soil was modelled using the renormalization approximation, which is rec-
ommended for most applications [35]. A sensitivity study of particle density is not
presented, since a very small influence on the results was observed. Ultimately, a
regular grid of particles was used with a space between particles equal to 20.0 mm.
Moreover, the recommended artificial bulk viscosity coefficients Q1 = 1.0 and Q2 = 1.0
were used for the SPH soil [35].

• The representative traffic pole with a height of 8.0 m and a diameter of 142.0 mm and
56.0 mm in the bottom and in the upper part of the pole, respectively, was adopted. The
pole was mainly made of steel and was mounted into the ground at a depth of 1.6 m.
To represent the ground–lighting pole interaction, a contact between the pole column
and bottom plate was used. For the sake of a better presentation, the SPH soil was
divided into two parts located above and below the bottom plate (Figure 1). The pole
was discretized using fully integrated Lagrangian Belytschko-Tsay (BT) shell elements.

• For the vehicle, the widely used and deeply validated Suzuki Geo Metro FE model
was adopted [20,25–27] as modified by the Department of Mechanics of Materials
and Structure, Gdańsk University of Technology, Poland [26]. The model consists of
14,709 shell elements and 820 solids. Additionally, spring and discrete dampers are
used to model shock absorbers. The majority of the parts in the model are modelled
using piecewise linear plasticity material model with erosion criteria.

• The interactions between all parts in the model were simulated using a penalty function
approach adopting Coulomb’s friction model [36–38]. In addition to friction properties
between vehicle and lighting pole, the Coulomb’s friction coefficients of µ = 0.1 and
µ = 0.4 for steel–steel and tire–ground pairs were used in the model, respectively.

+ − Emolec.
In this step of the work, we selected five compounds to investigate the relationship

between their quantum chemical features and their potential to perform intermolecular
interactions (within allosteric Pocket 7 of GSK-3β). These five selected compounds corre-
spond to compounds 1, 18, and 24 (as three reference compounds from the literature [28]
and also the most active ones (lowest values of IC50) towards GSK-3β allosteric inhibi-
tion; see Table S1), along with compounds LCQFGS01 and LCQFGS02 (as two potential
hits obtained by our VS campaign). The idea was to compare the ability of these two
virtual hits to perform inhibition (inhibit GSK-3β allosterically) in a similar manner to
those three reference compounds in terms of the results observed from such quantum
chemical calculations.

5. Conclusions

GSK-3β is undoubtedly a relevant protein kinase that is associated with multiple
pathways of neurodegenerative diseases, thus representing a promising therapeutic target
addressed to drug candidates in this context. Despite the fact that previous findings
have suggested the advantageous strategy of inhibiting this enzyme kinase by allosteric
modulators, mainly in view of their lowest chance of causing side effects, there are still
some caveats regarding such a mechanism. Therefore, we performed an extensive in silico
study, considering the main representative GSK-3β allosteric modulator, in order to revisit
and reinforce the findings of which allosteric pocket this should bind as well as which pose
interacts with the enzyme.

Methodologies ranged from cavity detection, ligand 3D shape analysis and docking
(with validation of corresponding protocols/queries), and MD, and the results were consis-
tent enough to provide new structural data, expanding the knowledge of GSK-3β allosteric
inhibition. In order to apply the data gathered from our investigations, a 3D shape similar-
ity VS campaign was conducted to validate our studies as well as increase the chemical
and biological diversities of the compounds for this purpose. From this, we present two
potential hits that succeeded in the ADME/Tox desired profile for CNS therapeutics and
also in docking studies and quantum chemical analysis. Both these potential hits, plus
further virtual hits that were obtained, will be tested by experimental in vitro assays in
order to confirm their promising abilities to act as GSK-3β allosteric modulators.
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AD Alzheimer’s disease
ADME/Tox Absorption, distribution, metabolism, and excretion/toxicity
APP Amyloid precursor protein
ATP Adenosine triphosphate
AUC Area under the curve
B3LYP Becke, 3-parameter, Lee–Yang–Parr
CNS Central nervous system
DFT Density function theory
EONTC EON TanimotoCombo indices
FMO Frontier molecular orbital
GSK-3β Glycogen synthase kinase 3 beta
HOA% Human oral absorption in %
HOMO Highest occupied molecular orbital
IP Ionization potential
LBVS Ligand-based virtual screening
LUMO Lowest unoccupied molecular orbital
MAPT Microtubule-associated protein tau
MD Molecular dynamics
MIFs Molecular interaction fields
MW Molecular weight
NFTs Neurofibrillary tangles
PD Parkinson’s disease
PDB Protein Data Bank
PSA Polar surface area
(QP)logBB Logarithm of blood-brain barrier predicted by QikProp
(QP)logPo/w Logarithm of partition coefficient in 1-octanol/water predicted by QikProp
(QP)PCaco Permeability across Caco-2 cells predicted by QikProp
(QP)PMDCK Permeability across Madin-Darby Canine Kidney cells predicted by QikProp
Rg Radius of gyrate
RMSD Root-mean-square deviation
RMSF Root-mean-square fluctuation
ROC Receiver operating characteristic
ROCSTC ROCS TanimotoCombo indices
SASA Solvent-accessible surface area
VS Virtual screening
XPscore Glide extra precision score values
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