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Abstract: Connectivity is a fundamental issue in research on wireless sensor networks. 
However, unreliable and asymmetric links have a great impact on the global quality of 
connectivity (QoC). By assuming the deployment of nodes a homogeneous Poisson point 
process and eliminating the border effect, this paper derives an explicit expression of node 
non-isolation probability as the upper bound of one-connectivity, based on an analytical link 
model which incorporates important parameters such as path loss exponent, shadowing 
variance of channel, modulation, encoding method etc. The derivation has built a bridge 
over the local link property and the global network connectivity, which makes it clear to see 
how various parameter impact the QoC. Numerical results obtained further confirm the 
analysis and can be used as reference for practical design and simulation of wireless ad hoc 
and sensor networks. Besides, we find giant component size a good relaxed measure of 
connectivity in some applications that do not require full connectivity. 
 
Keywords: Sensor networks, connectivity, link model, node isolation probability, giant 
component, critical node density. 
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1. Introduction and Motivation 
 
Considerable studies have discussed the issues such as the capacity [1] and multi-hop routing [2-4] 

in wireless ad hoc and sensor networks, among which connectivity is a fundamental property to be 
preserved and also provides design reference for upper-layer protocols. For example, we have to 
decide a minimum node density to ensure global connectivity and provide route diversity in routing 
decisions; when we do node sleep scheduling to save energy, the connectivity of active nodes has to be 
maintained and satisfy the application's QoS requirement.  

Pioneering works [5-8] dealing with network connectivity are mostly based on a simplistic Boolean 
model with the assumption that two nodes are connected if and only if their distance is less than a 
deterministic transmission radius. Unfortunately, the real low-power wireless links are unreliable and 
asymmetric, suffering from severe propagation impairments such as path loss, multi-path fading and 
shadowing, which have great impact on the global QoC. A few papers have dealt with connectivity of 
ad hoc networks in the presence of channel randomness, fading and shadowing [9-11]. Important to 
our work is the contribution in [9], studying the node isolation probability, from which, under the 
assumption of dense networks, an approximation of one-connectivity probability can be obtained. In 
our paper, we adopt an analytical link model which best matches Mica2 Mote's [12] real link state. 
Through an in-depth derivation, local property of individual links is connected to the global network 
connectivity. We have shown through both analysis and simulation how various parameters impact the 
QoC in wireless sensor networks.  

The rest of the paper is organized as follows. Section 2 provides a short overview of both wireless 
link model and network connectivity issue. The detailed analysis of node isolation probability under an 
analytical link model is presented in Section 3. In Section 4 we do extensive simulations to evaluate 
the analysis in Section 3 and also discuss the impact of various parameters on the global QoC. Finally 
we conclude the paper in Section 5 and point out the future direction. 
 
2. Related Work 
 
2.1. Overview of Wireless Radio Link Models 

 
A lot of existing works are based on the Boolean disk model, as illustrated in Figure 1(a). Two 

nodes are either connected or disconnected depending on the transmitter-receiver distance and the disk 
radius. Recent works [2, 13] argue that the real characteristics of low-power wireless links differ 
greatly from the ideal model especially in their unreliability and asymmetry. Some studies have 
improved the disk model and consider the shadowing effect. The radiation pattern is squeezed and 
stretched as shown in Figure 1(b). It is proved in [14] that irregular radio patterns can achieve 
connectivity more easily if they can maintain an average number of functioning connections. The two 
models above are basically deterministic either with assured transmission or assured probability of 
transmission within the communication range. However, several studies [2, 13, 15-19] have pointed 
out that the communication range of a wireless node cannot be specified and they propose to use 
probabilistic link model, as shown in Figure 1(c) (the sickness of the line represents the probability of 
connection), instead of deterministic model. It is found that the successful transmission probability at a 
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given distance s, namely P(s), is a non-monotonically decreasing function to s.  P relies not only on the 
distance s between two nodes but various parameters such as the channel parameters like the path loss 
exponent, the shadowing variance and the degree of irregularity (DOI) [16], the radio parameters 
including modulation, encoding, output power, receiver noise and frame size. 

 
Figure 1. Different kinds link models. (a) Boolean disk model. (b) Shadowing model. (c) 
Probabilistic model. 

               
 

 
 
The third link model discussed above is supported by many experimental studies and significantly 

affects networks behavior. Woo et al. have identified in [2] the existence of three distinct reception 
regions in wireless links: connected, transitional and disconnected. The transitional region is relatively 
large in size and is characterized by high variance in reception rates and asymmetric connectivity. In a 
typical sensor networks, a large number of links (even higher than 50%) can be unreliable because of 
the transitional region. Ganesan et al. [17] provide a wealth of empirical data from studies of large 
scale, dense wireless network, which demonstrate that even a simple flooding algorithm entails 
complex behavior under unreliable links. Zhou et al. [16] find that radio irregularity has a significant 
impact on the routing protocols in wireless sensor networks, especially location-based routing, such as 
geographic forwarding. All these research results lead us to stress the need for realistic link models for 
wireless sensor networks. 

Several recent studies have proposed communication models based on empirical data and analyzed 
related phenomena for more accurate evaluation of upper-layer protocols. Woo et al. [2] present a 
simple synthetic link model to generate data under specific radio and environment based on an 
assumption of Gaussian distribution of the packet reception rate for given transmitter-receiver distance. 
These synthetic traces are used for simulation of passive link estimators that snoop traffic over the 
channel and estimate link qualities. Cerpa et al. [15] study the relationships between location and 
communication properties using non-parametric statistical techniques. They provide a probability 
density function that completely characterizes the relationship and develop a series wireless network 
models that produce networks of arbitrary size with empirical observed properties. The accuracy of 
their models is evaluated through a set of communication tasks like connectivity maintenance and 
routing. Lal et al. [18] propose link inefficiency as a cost metric based on detailed observations of link 
quality variation and explore how link inefficiency can be measured in energy efficient way. They find 
that only a few measurements of the channel are sufficient to obtain a good estimate of the cost metric. 

(a) (c) (b) 
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Leskovec et al. [19] concentrate on estimating the link quality between pairs of sensors. Received 
signal strength is chosen as the link quality indicator. They use dimensionality reduction technique 
such as SVM to understand the topology of the network and identify potential bottleneck of the 
network. Zhou et al. [16] establish a radio model called the Radio Irregular Model (RIM) with 
empirical data obtained from the Mica2 platform. RIM takes into account both the non-isotropic 
properties of the propagation media and the heterogeneous properties of devices. With this model, they 
find solutions to improve the communication performance in the presence of radio irregularity. 

Most important to our work is the analysis of transitional region in [13]. Different from empirical 
models which require specific radio and environment conditions, the analytical model in [13] has a 
general methodology and can be used for a number of different configurations and hardware designs. 
The incorporation of different parameters in the link model greatly facilitates our analysis of network 
connectivity in presence of unreliable and asymmetric links. Detailed description of the link model we 
use can be found in Section 3.3. 
 
2.2. Connectivity of Wireless Networks: State of the Art 

 
One of the first papers on connectivity in wireless multi-hop networks was [20], which investigated 

how far a node's message percolates for Poisson distributed nodes on an infinitely large area. More 
recently, Gupta and Kumar [5] performed a fundamental study on the connectivity of uniform 
distributed nodes in the asymptotic case. They have shown that when the covered area of each node 
equals to (logN+c(N))/N, where N is the number of nodes in the unit disk and                      , the 
resulting wireless network is asymptotically connected with probability one if ( )c N →+∞ . 
Afterwards, various methods and theories have been applied to the study of connectivity. The model of 
continuum percolation with the Poisson Boolean model is commonly used to study the phase transition 
phenomenon in wireless connectivity [14, 20-22]. Considering nodes with identical range distributed 
in an infinite two-dimensional plane according to Poisson point process, there is critical node density, 
above which there will be an infinite cluster almost surely (it is commonly abbreviated to a.s. and 
means the event happens with probability 1 if the plane is infinite), below which there will be bounded 
clusters a.s.  

Noisy links are introduced in [23] to study the impact of interference on the connectivity of ad hoc 
networks using percolation theory. It is found that there is a critical noise coefficient value above 
which the network is made of disconnected clusters. When the noise coefficient is small enough, the 
asymptotic connectivity can be achieved. Indubitably, whether two nodes can communicate with each 
other at any given distance and any moment also depends on the interference condition, which is 
caused by simultaneous communication between other nodes in the range. Due to interference, 
communication between two connected nodes may drop to lower bit rate or even become impossible at 
certain time. However, in our study we regard this case as a medium access issue instead of 
connectivity problem. In other words, when the link failure is caused by interference or collision, we 
say that the network MAC is not effective and the link capacity is reduced, instead of saying that the 
connectivity between two nodes is of lower degree. In fact, a simple collision free MAC protocol, such 
as TDMA scheme, can help achieve a better connectivity [23].  

lim inf ( )
→+∞

= +∞
N

c N
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Although geometric random graph and percolation theory applied to the study of wireless 
connectivity shows great effectiveness, their basis is a deterministic radio link model, which reduces 
their charm in real environment. To date, several papers have investigated the connectivity under 
realistic radio channel model. Fading and shadowing effects are considered. Miorand et al. [24] 
analyze connectivity issues in one-dimensional ad hoc networks using queueing theoretical approach. 
They use GI/G/∞  queue model (In GI/G/∞  queue, the arrival process follows general independent 
distribution and the service process is general random process, which corresponds to general 
transmission range distribution and general node placement statistics.) to study broadcast percolation 
problem with general node placement with fading channel. In [9], it is found that when shadowing gets 
more severe, the link probability at short distances reduces, while increases at large distances. Long-
distance connectivity probability will affect the global network connectivity and the routing 
performance, similar to the small world [25] networks extended with a few long links. It seems that 
shadowing fading improves global connectivity. However in our study, we find that the effect has been 
counteracted with the increase in asymmetric links and thus lead to limited improvement of global 
connectivity. Our work takes into account of more realistic scenarios and builds a bridge connecting 
local link property and global connectivity behavior, which makes it clear to see how local link 
parameters impact network global performance. 
 
3. Network Connectivity Analysis 
 
3.1. Node Spatial Distribution 

 
Suppose the sensor nodes are scattered from the air and the process resembles Poisson arrival in a 

service queue. Thus we use a homogeneous Poisson point process with intensity λ to model the spatial 
distribution of the nodes. This process is defined as follows [26]: 

Definition 1 Consider a measure space (X, Σ, μ), where μ is a σ-finite measure. A Poisson Point 
Process (P. P. P.) with intensity λ is a collection of random variables ( , )N A ω , A∈Σ ,ω∈Ω , defined 
on a probability space ( , , )FΩ P  such that: 
 ( , )N ω⋅  is a counting measure on (X, Σ) for each ω∈Ω . 
 ( , )N A ⋅ is the number of nodes in subarea A which follows Poisson distribution with mean λ(A): 

( )( ( ) )
!

k
AP N A k e

k
λλ −= = , all A∈Σ  (1) 

with an expected value ( ) ( ) ( )E N A Aλ ρ= = ||A||, ( )Aρ  and  ||A|| are node density and size of subarea 
A respectively. 
 If A1, A2, … are disjoint sets then N(A1), N(A2), … are independent random variables: 

1 1 2 2
1

( ( ) ( ) ... ( ) ) ( ( ) )
n

n n i i
i

P N A k N A k N A k P N A k
=

= ∧ = ∧ ∧ = = =∏  (2) 

If ρ is constant over the entire infinitely large area, the process is homogeneous. In other words, the 
outcome of N only depends on ||A|| but not on its particular location or shape. Note that a homogenous 
Poisson point process can be regarded as a case of uniform distribution of k nodes in area A, as k and 
||A|| tends to infinity but the density ρ = k/||A|| remains constant.  
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3.2. Node Non-Isolation Probability 
 

We consider an arbitrary subarea A of an infinite plane. In random graph theory [26], connectivity 
is defined as follows: 

Definition 2: A graph is said to be k-connected if for each pair of nodes there exist at least k 
mutually independent paths connecting them. In other words, a graph is k-connected if and only if 
there is no set of k-1 nodes whose removal would disconnect the graph. 

Our focus will first be on one-connectivity. Higher orders of connectivity will be discussed in the 
future work. We are interested in the critical density ρ, at which the network A is one-connected a.s. In 
this section, we derive necessary condition for the network to be one-connected. We denote P(I) as the 
isolation probability, which is the probability that a randomly chosen node has no neighbors at all. The 
probability that none of the nodes in A is isolated, denoted by P(Ī) can be the upper bound for the 
probability that the network is one-connected [9, 27], denoted by P(C). Thus we have: 

( ) ( )P C P I≤  (3) 
( ( ) ) ( ( ) )P C p P I pρ ρ= ≥ =  (4)

Equation (3) is obvious. Equation (4) means under the same network configuration, we need higher 
node density to reach one-connectivity with probability p than to reach node non-isolation with the 
same probability. We assume the isolation of different nodes in A to be independent events and the 
number of nodes in A is large, i.e. 100λ ≥ . The conditional probability of non-isolation is give by: 

( | ) (1 ( ))kP I N k P I= = −  (5) 
Thus the unconditional non-isolation probability can be written as: 

1

1

( ) (1 ( ))

1
( )

( ) ( | ) ( )

         = (1 ( ))
!

((1 ( )) )         = 
!

        

k
k

k

k
k

P I P I

k
P I

P I P I N k P N k

P I e
k

P Ie e
k

e

λ

λ λ

λ

λ

λ

∞

=

∞
−

=

∞
− − −

=

−

= = ⋅ =

− ⋅

−

=

∑

∑

∑

 (6)

Since P(I) is the probability that a randomly chosen node has no neighbors, we denote D to be the 
number of neighbors of a node, which is also called node degree. Note that D also follows Poisson 
distribution according to (1) and let the expected value of D be D0. Hence P(I) can be calculated as: 

0( ) ( 0) DP I P D e−= = =  (7) 
In the following, we calculate the mean node degree D0. Let L(i, j) denote the event that there is a 

link between node i and node j. The distance between the two nodes is known as s(i, j). Given the 
distance, the probability for L(i, j) is denoted by P(L|s). D0 can be calculated by integrating ρP(L|s) 
over the whole plane:  

2

0 0 0 0
( )  2 ( )D P s sds d P s sds

π
ρ φ πρ

∞ ∞
= ⋅ = ⋅∫ ∫ ∫  (8) 

Plugging (7) (8) to (6), we have: 
( ) exp( exp( 2 ))P I Aρ πρξ= − −  (9) 
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where 
0

( )P s sdsξ
∞

= ∫ . Let the left hand side of (9) be p, then the density ρ satisfies the following 

equation: 
2 ln pe

A
πρξρ − =  (10) 

The solution of the equation is 
1 2 ln( ( ) ) Lambertw( )

2
pP I p

A
πξρ

πξ
−

= = −  (11) 

where Lambertw(x) is the solution w of equation w·exp(w)=x. Finally, the problem has transformed to 
the analysis of  ξ  and P(L|s). In other words, the study on global network connectivity has turned into 
the analysis of local link probability. 
 
3.3. Link Probability Analysis 

 
Depending on different radio link model, the link probability P(L|s) is of different values. For 

Boolean model, either disk or irregular shape as shown in Figure 1(a) and Figure 1(b), P(L|s) is a 
logical function, equal to either 0 or 1 depending on the communication range. Hence,  

2rξ π ρ=  (12) 
where r is the real communication radius or equivalent radius for Boolean disk model and Boolean 
shadowing model. For probabilistic model as shown in Figure 1(c), P(L|s) is not deterministic 0 or 1, 
but defined as the packet reception rate (PRR) ψ over a period of time τ. In practice, ψ can be 
estimated over a moving time window. However, we can use it in simulation as a stationary variable to 
indicate the probability of instant link success or failure. 

Empirical studies have shown that the lognormal shadowing model provides more accurate 
multipath channel models than other models like Nakagami and Rayleigh models [13]. According to 
this model, the received power Pr in dB is given by: 

0 10
0

( ) ( ) 10 log ( ) (0, )Nη σ= − − +r t
sP s P PL s
s

 (13) 

where Pt is the output power,  η is the path loss exponent, (0, )N σ  is a Gaussian random variable with 
mean 0 and variance σ2, and PL(s0) is the power decay for the reference distance s0. σ can be high in 
the case of severe signal fluctuations due to irregularities in the surrounding of the receiver and 
transmitter's antennas. 

(13) does not include anisotropic properties of the radio. To incorporate it, we add a coefficient Ki 
to represent the difference in path loss in different directions. (13) can be modified as : 

0 10
0

1

( ) ( ) 10 log ( ) (0, )

1                              if =0
   if 0 360  and  

0.01821

Nη σ

−

⎛ ⎞
= − + × +⎜ ⎟

⎝ ⎠
⎧

= ⎨ ± ⋅ < < ∈⎩
=

r t i

i
i

sP s P PL s K
s

i
K

K rand DOI i i N
DOI

 
(14) 

DOI represents the degree of irregularity. The reference value is suggested by [16] to be 0.01821, 
which is measured using Mica2 mote. We can generate 360 values for 360 different directions. 
However, to make the simplicity, we just adopt 4 directions in the simulation. 
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For a modulation method M and encoding method E, the PRR ψ is defined as a function of bit-error 
rate βM, while βM is a function of SNR γ. Takeing Manchester encoding for example: 

8(2 )( ) (1 ( ))ϕ γ β γ −= − f h
M  (15) 

where f is the frame size (preamble, payload and CRC), h is the preamble (both in bytes). The value of 
βM depends on modulation, and more generally on transmitting and receiving techniques (diversity, 
equalization, etc.). Here we take non-coherent FSK for example, which is the default modulation 
scheme in Mica2 Mote. Expressions for βM is:  

21
2

γ

β
−

=M e , /1010γγ = dB  (16) 

Plugging (16) into (15), we have: 
8(2 )21( ) (1 )

2

γ

γ
− −Ψ = − f he  (17) 

The SNR γ can be obtained from (14) and is given by: 
( ) ( )γ = −dB r ns P s P  (18) 

where Pn is the noise floor which depends on both the radio and the environment. Considering an 
ambient temperature of 27°C and no interference signals, the noise floor is –115 dB [13]. Note that γ in 
(18) can also be regarded as a Gaussian random variable ( ( ), )N μ σs  with mean μ(s) and variance σ2, 
where μ(s) is given by:  

0 10
0

( ) ( ( ) 10 log ( ))μ η= − + ⋅ −t i n
ss P PL s K P
s (19) 

According to (19) and (17), given the distance and some related parameters, the PRR can be 
calculated. Figure 2 shows the analytical model of PRR to distance in one direction. It is clear that 
there is a large transitional region, in which the PRR is unstable. With the following definitions, we 
can further outline the transitional region. 

Definition 3: If the link between two nodes has a high probability (>ph) of having high PRR (>ξh), 
then the two nodes are strongly connected. The upper bound of the connected range is sl. 

Definition 4: If the link between two nodes has a high probability (>ph) of having low PRR (<ξl), 
then the two nodes are almost disconnected. The lower bound of the disconnected range is sh. 

According to definition 3 and definition 4, the region between sl and sh is the transitional region, as 
illustrated in Figure 2. This agrees with empirical observations in [2, 28]. The existence of this region 
has been explained in [13], which is the joint effect of non-perfect-threshold receiver, noisy 
environment and multi-path effects. 

With consideration of different pass loss and shadow fading along different direction, we draw 
contour plot of the reception rate for a node located at the center of the region. Figure 3 shows the 
difference of the communication area of a Boolean disk model and a shadowing fading model. Figure 
3(b) captures the real characteristic of wireless link and shows spatial irregularity as the empirical 
results in [14]. 
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Figure 2. Analytical PRR to distance, obtained from (19) and (17), Pt=-5 dB, η=3, σ=3.3, 
f=50 Byte, h=2 Byte. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 3. Contour plot for different link models. (a) Boolean disk model. (b) Log-normal 
shadowing based probabilistic model. 

  
 

 
 
 
 
 
 

 
 
 
 
 

To calculate P(Ī), the value of ξ  is crucial. As depicted in Figure 2, it is difficult to derive a 
continuous function for P(L|s). Instead, we calculate the expected value of P, denoted as E(P). Thus, ξ  
can be written as: 

0 0
( | ) ( ) ( | )ξ γ γ γ

∞ ∞ ∞

−∞
= ≈ Ψ ⋅∫ ∫ ∫P L s sds f s sd ds  (20) 

where f(γ|s) represents the probability density function of SNR. According to (17), we draw the PRR as 
a function of γ. As the power-law relationship entails a sharp threshold, linear approximation turns 
available. Ψ(γ) can be approximated as the following piecewise linear functions: 
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where γ0 and γ1 represent the receiver's range of threshold. 
 

Figure 4. The procedure of linear approximation for Ψ(γ)  and f(γ|s). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Similarly, f(γ|s) can also be evaluated by linear approximation since the interval [γ0, γ1] is relatively 
narrow compared with [μ-4σ, μ+4σ]. 
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Figure 4 shows the approximation procedure for Ψ(σ) and f(γ|s). Finally, ξ can be approximated by: 
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 (23) 

where ( )Φ ⋅  is the cdf of SNR and μ is given by (19). In fact, the upper bound of the integration can be 
any value lager than sh. The approximation deviation by lowering the integration upper bound from ∞  
to sh can be tolerated. 

In the following, we will use simulations to verify the theoretical analysis. 
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4. Simulation Results and Discussion 
 
In this section, various simulations are conducted to validate the analytical results and show how 

different parameters impact the network connectivity. n nodes are distributed in a square area A, 
following homogeneous Poisson point process. The transmission power is the same for each node. 
Analytical results are obtained under the assumption that the plane is infinite, in which there are no 
border nodes. However in simulation we cannot find such a plane. To approach the theoretical 
assumption, the best way is to eliminate the border effects. To avoid the border effect, we use a wrap-
around distance model (also called cyclic distance model) instead of usual Euclidean distance model. 
A node at the border of A is considered as being close to the nodes on the opposite border of A. Thus it 
can establish links via the borderline to these nodes. We perform simulations with the increase of node 
density ρ while changing other related parameters. For each unique setting, we repeat simulation runs 
independently 500 times and finally evaluate the average performance. In the resulting graph for each 
run, we check the analytical and real node isolation probability, one-connectivity probability, largest 
component size and giant component probability.  

For different applications, the requirement of QoC can be different. For example, a surveillance 
sensor system with one sink node requires the network to be one-connected so as to collect data from 
any node in the network. However to detect or track an intrusion [29, 30], it is required that only the 
nodes around the intrusion connect to the sink. Therefore it is argued that for some use of sensor 
networks, one-connectivity is a too stringent condition and giant component is suggested as a measure 
of connectivity instead. In classical random graph G(n,p) [26], every pair of a set of n vertices is 
chosen to be an edge with probability p. The behavior of the size of the largest component in G when 
p=c/n for c near 1 receives most interests in the field. For c<1 the size of the largest component is 
O(logn) a.s.; for c=1 the size of the largest component is Θ(n2/3) a.s.; for c>1 the size of the largest 
component is a.s. Θ(n) and the second largest component is a.s. O(logn). When c>1, the largest 
component, whose order is much larger than any other component, is commonly referred to as the 
giant component. Such random graphs are fundamental and useful for modeling problems in many 
applications. Although the link model adopted in our paper is quite different from classical one, we can 
still use the concept of giant component. In our simulation, if half of the nodes in the network are 
connected, a giant component is formed. This definition actually agrees with the third case (c>1) of the 
above description in random graph theory. It should be note that we use the following notation in the 
analysis above: f=O(g) if ( )limsup

( )n
f n
g n→∞ < +∞ ; f=Θ(g) if f=O(g) and g=O(f). 

To determine the probability of giant component and one-connectivity of a wireless ad hoc network 
graph, a simple flooding algorithm can be adopted. A random node is tagged at first, and then its 
neighbors are tagged, which subsequently continue to tag their untagged neighbors, until the 
corresponding cluster is completely formed. The procedure is repeated for all the untagged nodes until 
all the nodes in the graph are tagged. By definition, if the size of the largest cluster found is larger than 
½n, the giant component exists. For an ad hoc sensor network to be one-connected, the size of the 
largest component should equal to the total number of nodes in the network. Theoretically, there is 
another way to obtain the ratio of one-connectivity network by using Laplacian matrix. Let G=(V, E) 
be a graph on vertex with vertices V and edges E. The Laplacian matrix of a graph G with N nodes is 
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an N×N matrix L(G)=D(G)-A(G), where D(G) is the diagonal matrix of vertex degrees, 
D(G)=diag(d(vi)), vi∈V; A(G) is the adjacent matrix of G. The eigenvalues of L(G) are called the 
Laplacian eigenvalues, which are all real and nonnegative. The set of all N Laplacian eigenvalues 
λ1≥λ2≥…≥λN-1≥0=λN is called the Laplacian spectrum of a graph G.  

Theorem 1: If the graph G has C connected components, then L(G) has exactly C zero eigenvalues 
(other eigenvalues are positive). Based on Theorem 1, the graph is one-connected if L(G) possesses 
only one zero eigenvalue. The probability for one-connectivity is estimated from a representative 
sample of ad hoc sensor networks' connectivity graph as the ratio between one-connected graph and all 
sample graphs. 

Figure 5 shows the simulated results. Each subplot corresponds to a different configuration. Figure 
5(a) serves as a benchmark for comparison. The critical node densities in different scenarios are 
reported in Table 1. Through comparing and analyzing the 7 groups of simulated data, we draw the 
following conclusions and give the explanations. 

 
Figure 5. Simulated results for different settings. (a) Benchmark. (b) Change path loss 
exponent η. (c) Changing shadowing variance σ. (d) Change encoding method E. (e) 
Change transmission power Pt. (f) Change frame size f. (g) Changing area size ||A||. 
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Figure 5. Cont. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 In all simulation cases, as the node density increases, the network graph becomes denser and the 
transition from low connectivity to nearly full connected or appearance of giant component is quite 
sharp over a small range of ρ. The phenomenon consists with the results in [22] which uses the 
theory of continuum percolation. No matter what kind of radio link model adopted, either Boolean 
disk model or more realistic model with fading and shadowing, the phenomenon of phase transition 
exists, which gives us a tool for analyzing and determining resource efficient regime of operation 
for wireless sensor networks. For example, following the settings in Figure 5(a), it tells us that for 
the nodes with identical transmission power, distributed in an area of 20000 m2 according to 
homogeneous Poisson process, the node density must be higher than 0.007 to form giant 
component and higher than 0.0125 to reach one-connectivity. The density threshold is an energy-
efficient point of operation, in that to the left of this threshold the network is disconnected with 
high probability, and to the right of this threshold, additional energy expenditure results in a 
negligible increase in the high probability of connectivity.  
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 In all simulation cases, the non-isolation probability serves as the upper bound for probability of 
one-connectivity. Generally, the difference between the two probabilities is non-negligible. 
However as node density increases, the two probabilities converge to 1. This result agrees with 
inequality (3). With respect to critical node density, this means that 

( ( ) ) ( ( ) ) ,  >0. As 1,  0.ρ ρ δ δ δ= = = + → →P C p P I p p  (24) 
For p=90%, the critical node densities for each setting are listed in Table 1. It is observed that when 
the shadowing effect σ is of a large value (σ=10), the difference δ becomes very small over the 
whole node density range. This can be explained by the fact that as σ increases, the increase in long 
links and the decrease in short links have reduced the correlation between links. As a result, the 
geometric random graph behavior approaches generic random graph behavior and the probability of 
one-connectivity approaches the probability of non-isolation.   

 
Table 1. Critical density for giant component, one-connectivity and non-isolation under 
different settings, comparison of analytical and simulation results. 

Settings 
ρ(P(G)=90±.05%) 
(m-2) simulation 

ρ(P(C)=90±.05%)
(m-2) simulation 

ρ(P(Ī)=90±.05%)
(m-2) simulation 

ρ(P(Ī)=90±.05%)
(m-2) analysis 

(a) 7.00 · 10-3 1.25 · 10-2 1.22 · 10-3 1.25 · 10-3 
(b) 1.15 · 10-3 2.27 · 10-2 2.21 · 10-3 2.15 · 10-3 
(c) 4.50 · 10-3 1.07 · 10-2 1.07 · 10-3 6.00 · 10-3 
(d) 4.80 · 10-3 8.75 · 10-3 8.50 · 10-3 8.00 · 10-3 
(e) 5.00 · 10-3 9.00 · 10-3 8.70 · 10-3 8.70 · 10-3 
(f) 7.50 · 10-3 1.33 · 10-2 1.30 · 10-3 1.32 · 10-3 
(g) 7.00 · 10-3 1.40 · 10-2 1.35 · 10-3 1.32 · 10-3 

 
 It should be noted that, the analytical performance of non-isolation probability closely matches the 

real non-isolation probability in different settings except when σ is large (σ=10), as shown in 
Figure 5(c). This is also reflected in Table 1 with minor difference between the simulating and 
analytical critical density for P(Ī) except when σ=10. In some related papers [10-11], it is argued 
that a large value of σ helps the network to be connected because the number of added long links is 
larger than the number of removed short links. However, it should be note that the network also 
suffers severe link asymmetry as the shadowing variance increases. The analytical approach has 
underestimated the asymmetry problem, which leads to an overestimate of network connectivity. In 
practical, the analytical values have to be calibrated with certain asymmetry coefficient to match 
the simulated data. Besides, in practice, some realistic issue like antenna diversity, battery power 
difference etc. will also cause link asymmetry and is more complicated to simulate. We will leave 
it as future work. 

 Comparing Figure 5(b) with Figure 5(a), we can see that the path loss decreases the connectivity of 
the network. The reason is obvious since the higher η, the faster the decay of the signal strength, 
resulting in a shortened transmission range. The simulated result agrees with the analytical one. 
Similar is Figure 5(e) and 5(g) compared with Figure 5(a). As the transmission power increases, the 
average transmission range also increases accordingly, thus a lower node density is sufficient to 
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make the network connected with the same high probability, as shown in Table 1. The giant 
component probability shows consistent tendency. 

 Figure 5(d) shows the impact of a different encoding scheme. The connectivity is better using 
SECDED encoding than Manchester encoding. This result is due to the error correction capabilities 
of SECDED, which comes at a cost of energy efficiency (encoding ratio 1:3) while Manchester 
does not provide error correction and the encoding ratio is 1:2. Simulated results for different 
encoding schemes agree with the expected analytical behavior. 

 Figure 5(f) shows the connectivity performance as the packet size is doubled. It can be observed 
that the performance merges to 1 at a slightly higher node density. The impact of packet size on the 
global connectivity is not obvious compared to other parameters. 

 The impact of area size ||A|| on the connectivity is straightforward. As the sub-area size gets larger, 
to reach the global connectivity requires higher node density. The quantity can be estimated via 
equation (10). However, to form a giant component, the probability has not been affected by the 
area size ||A||. 
In summary, a higher transmission power, larger shadowing variance and more complicated 

encoding method can improve the network connectivity. However, it is energy inefficient to sacrifice 
the transmission power for better QoC unconditionally; higher shadowing variance σ2 can increase the 
chance of link asymmetry and typically comes with a higher path loss exponent η; complicated 
encoding method consumes more system resource (energy, memory space etc.) and takes more time. 
With reference to the improvement space of each parameter, one should better balance the connectivity 
performance and the sacrifices of resource and energy. Other techniques such as collaborative radio 
[31] and multiple antennas [10], although effective in theory to improve global connectivity, need 
more detailed infrastructure design and proof of their effectiveness in practice. In all simulation cases, 
we find that the giant component probability converges to 1 much faster than one-connectivity. In 
some applications, a few isolated nodes or small clusters outside the giant component do not change 
the overall performance. In that case, a lower node density is sufficient for operation. Besides, the 
largest component size is also an alternative of connectivity measurement. It not only provides 
information about the network is one-connected or not, but also the fraction of the connected part. 
Thus a random size of largest component can be designated satisfying different requirement of QoC.  
 
5. Conclusions and Future Work 

 
In this paper, we have presented an analytical procedure of calculating the node non-isolation 

probability based on a generalized radio link model in wireless sensor networks. The non-isolation 
probability is the upper bound of one-connectivity probability. We use a combination of analytical and 
simulation-based methods to study the impact of various parameters on the connectivity behavior. The 
results can be applied for practical design and simulation in wireless ad hoc and sensor networks. For 
example, given the environmental and node configuration, we can determine the minimum density 
needed to achieve a one-connected network or less strictly, form a giant component, according to 
different requirement of QoC. 

Several issues remain for future work in this area. First, this paper only focus on the connectivity in 
the spatial domain, it is also interesting to study the temporal dynamics of wireless connectivity. For 
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more challenging dynamic environment, statistics of time-varying links are required; second, the giant 
component size needs further analytical study. It is important if an explicit expression could be derived 
for the giant component probability or largest component size; third, this paper assumes the node 
distribution follows homogeneous Poisson point process. However, in many real-world scenarios, the 
nodes are in an inhomogeneous distribution. Bettstetter et al. in [32] has proposed an algorithm to 
create random inhomogeneous distribution. We believe the more generalized distribution model will 
lead to more convinced analytical and numerical results. Fourth, it will be interesting if we incorporate 
the context of MAC layer, say IEEE 802.15.4, so that connectivity is more information based than pure 
physical link. Finally, k-connectivity is a more generalized measure of global connectivity and 
provides more redundancy for routing choice. In other words, one-connectivity is just a special case 
for k-connectivity. Some analysis has been conducted in [33], but still need further investigation. The 
procedure may find some similarities, but the result is of greater generality. 
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