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Abstract: Endometrial cancer is the most common gynaecological malignancy in developed countries.
One of the largest risk factors for endometrial cancer is obesity. The aim of this study was to determine
whether there are differences in the transcriptome of endometrial cancers from obese vs. lean women.
Here we investigate the transcriptome of endometrial cancer between obese and lean postmenopausal
women using rRNA-depleted RNA-Seq data from endometrial cancer tissues and matched adjacent
non-cancerous endometrial tissues. Differential expression analysis identified 12,484 genes (6370
up-regulated and 6114 down-regulated) in endometrial cancer tissues from obese women, and 6219
genes (3196 up-regulated and 3023 down-regulated) in endometrial cancer tissues from lean women
(adjusted p-value < 0.1). A gene ontology enrichment analysis revealed that the top 1000 up-regulated
genes (by adjusted p-value) were enriched for growth and proliferation pathways while the top 1000
down-regulated genes were enriched for cytoskeleton restructure networks in both obese and lean
endometrial cancer tissues. In this study, we also show perturbations in the expression of protein
coding genes (HIST1H2BL, HIST1H3F, HIST1H2BH, HIST1H1B, TTK, PTCHD1, ASPN, PRELP, and
CDH13) and the lncRNA MBNL1-AS1 in endometrial cancer tissues. Overall, this study has identified
gene expression changes that are similar and also unique to endometrial cancers from obese vs.
lean women. Furthermore, some of these genes may serve as prognostic biomarkers or, possibly,
therapeutic targets for endometrial cancer.

Keywords: endometrial cancer; RNA-seq; gene expression; molecular signatures

1. Introduction

Endometrial cancer (EC), an adenocarcinoma of the uterus, is the fifth most common
malignancy in women and the most common gynaecological malignancy in developed
countries [1] (Ferlay et al., 2015). The incidence of EC is increasing, particularly in countries
undergoing rapid socioeconomic transitions [2]. The main risk factors are the length of
exposure to endogenous and exogenous oestrogens, obesity, diabetes, being at an early age
at menarche, nulliparity, late-onset menopause, older age, and the use of tamoxifen [3].
EC has been broadly classified into two subtypes (type I and type II) based on histological
and epidemiological observations, where patients diagnosed with type II have poorer
prognoses than patients diagnosed with type I tumours [4] A more recent classification
system based on genomic and proteomic analysis has classified EC into four categories:
POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-
number high [5].

The transcriptome is the collection of all RNA transcripts which contain messenger
RNAs (mRNAs) and non-coding RNAs including microRNAs (miRNA), long non-coding
RNAs (lncRNA), long intergenic non-coding RNAs (lincRNAs), circular RNAs (circRNA),
and ribosomal RNA (rRNA). Next-generation sequencing (NGS) has emerged as the pri-
mary technology for the unbiased profiling of transcriptomes. RNA sequencing (RNA-Seq)
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is an NGS tool which uncovers the dynamic nature of the transcriptome, including but
not limited to, transcript abundance and the nucleotide sequence of specific RNA tran-
scripts. RNA-Seq has facilitated the rapid sequencing of whole transcriptomes, particularly
valuable information contributing to our understanding of diseases such as cancer.

Previous transcriptomic studies have identified some of the molecular underpinnings
of EC, providing an insight into its pathogenesis. As such, these findings can be translated
into the clinical setting as prognostic and diagnostic biomarkers or through targeted thera-
pies [6–8]. For example, one study revealed that the lncRNA taurine upregulated 1 (TUG1)
was up-regulated in EC compared to its corresponding adjacent normal endometrial tis-
sue [9]. The lncRNA-TUG1 may function as a competing endogenous RNA to regulate
VEGFA levels by sponging miR-299 and miR-34a-5p. VEGFA belongs to a family of vascular
endothelial growth factor and is the critical regulator in angiogenesis signalling in a variety
of tumours [9]. In another study, the lncRNA colon cancer associated transcript-1 (CCAT1)
was found to be over-expressed in type I EC, and the knockdown of CCAT1 decreased cell
proliferation and colony formation in HEC-1B EC cells [8]. These findings suggest that
lncRNA-CCAT1 may promote tumour formation in EC, supporting findings presented in
other studies of various cancers [10–12]. Similarly, our previous study demonstrated the
lincRNAs LINC01480, LINC00645, LINC00891, and LINC00702 displayed a highly specific
expression for EC compared to normal endometrial tissue while also distinguishing EC
from other gynaecological cancers [6]. In a separate study, three signalling pathways:
LXR/RXR activation, the neuroprotective role for THOP1 in Alzheimer’s disease, and
glutamate receptor signalling were found to shift from being mostly up-regulated to being
down-regulated with the increasing cancer stage. As such, these pathways may play a role
in cancer progression [13]. This study also demonstrated a substantial down-regulation of
genes between early and advanced stage tumours with an altered expression pattern of
neuronal signalling pathways and markers [13].

In the current study, we report on transcriptomic alterations in EC tissues compared
with matched non-cancerous endometrial tissues from obese and lean postmenopausal
women. We explored the distribution of transcript biotypes in EC and non-cancerous
endometrial tissues, identified differentially expressed genes, and performed gene ontology
enrichment analysis of up- and down-regulated genes (ranked by p-values). Overall, our
study has identified differentially expressed histone-related genes and up-regulated gene
ontology (GO) pathways related to cell growth and down-regulated GO pathways related
to cytoskeletal rearrangement in EC tissues compared to adjacent non-tumour endometrial
tissues. Hereon matched adjacent non-cancerous endometrial tissue will be referred to as
the control tissue.

2. Results

A gene was considered expressed if it had a count per million (CPM) value of >0.1.
From the cohort of obese women, there were 41,736 genes expressed across 20 EC samples
and 41,232 genes expressed in 20 control tissue samples with 38,508 genes common between
EC and the control tissue (Figure 1A). Protein coding genes had the most overlapped genes,
with only a few uniquely expressed in EC or the control tissue (Figure 1B). The gene
category ‘other’ included small non-coding RNAs (snRNA), miscRNAs, and microRNAs
(miRNA) as described in the GENCODE Release 31 statistics (see Materials and Methods).
Similar observations are made from the lean cohort (Figure S1).
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Figure 1. Venn diagrams summarising genes by biotype in EC and control tissue from obese women. 
Presented are the (A) total genes regardless of biotype; (B) protein coding genes; (C) long non-cod-
ing (lncRNA); (D) pseudogenes; and (E) other. Numbers within Venn diagrams display the number 
of genes common to both EC and control (overlapping circles in yellow), unique to EC (orange), and 
unique to control tissue (blue). 

The top 1000 genes from the obese and lean cohort, sorted by fold change, were sub-
jected to principal component analysis (PCA). A separation between EC and the control 
tissue can be observed (Figure 2). Principal component 1 (PC1) captured 24.65% variance 
and PC2 captured 10.51% variance between EC and the control tissue. There was no ob-
vious separation between obese and lean cohorts in the PCA. 

Figure 1. Venn diagrams summarising genes by biotype in EC and control tissue from obese women.
Presented are the (A) total genes regardless of biotype; (B) protein coding genes; (C) long non-coding
(lncRNA); (D) pseudogenes; and (E) other. Numbers within Venn diagrams display the number of
genes common to both EC and control (overlapping circles in yellow), unique to EC (orange), and
unique to control tissue (blue).

The top 1000 genes from the obese and lean cohort, sorted by fold change, were
subjected to principal component analysis (PCA). A separation between EC and the control
tissue can be observed (Figure 2). Principal component 1 (PC1) captured 24.65% variance
and PC2 captured 10.51% variance between EC and the control tissue. There was no
obvious separation between obese and lean cohorts in the PCA.
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circles represent the obese cohort and triangles represent the lean cohort. 
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have a CPM value > 0.1 and expressed in ≥25% of the total number of samples in each 
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cohort, differential expression analysis yielded 12,484 differentially expressed genes hav-
ing adjusted the p-value of <0.1. Of these, 6370 were up-regulated and 6114 were down-
regulated in EC. Up- and down-regulated genes are provided in Tables S2 and S3, respec-
tively. A volcano plot in Figure 3A shows those differentially expressed genes with respect 
to EC in the obese cohort. The biotypes of each differentially expressed gene, presented in 
Figure 3B, indicates that 80.68% of up-regulated genes were protein-coding while 63.26% 
of down-regulated genes were protein coding. In contrast, only 10.19% of up-regulated 
genes were lncRNAs and 25.38% of down-regulated genes were lncRNAs. In the lean co-
hort, there were 6219 differentially expressed genes. Of these, 3196 were up-regulated and 
3023 were down-regulated. The complete list of genes that were differentially expressed 
in the lean cohort are provided in Tables S4 and S5. A volcano plot has also been generated 
for the differentially expressed genes for the lean cohort (Figure S6). Similar to the obese 
cohort, the majority of up- and down-regulated genes were protein coding (85.7% of up-
regulated and 77.87% of down-regulated), while 8.45% of up-regulated genes were 
lncRNAs and 15.51% of down-regulated genes were lncRNAs (Figure S6). 

Figure 2. Principal component analysis (PCA) of EC and control tissue of the top 1000 most varied
genes by fold-change from obese and lean women. EC samples in orange and control tissue in blue;
circles represent the obese cohort and triangles represent the lean cohort.
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Prior to differential expression, we applied selection criteria where each gene had to
have a CPM value > 0.1 and expressed in ≥25% of the total number of samples in each
cohort (obese cohort ≥ 10 samples; lean cohort ≥ 6 samples). There were 34,295 and
33,522 genes which matched these criteria in the obese and lean cohorts, respectively. In
the obese cohort, differential expression analysis yielded 12,484 differentially expressed
genes having adjusted the p-value of <0.1. Of these, 6370 were up-regulated and 6114
were down-regulated in EC. Up- and down-regulated genes are provided in Tables S2 and
S3, respectively. A volcano plot in Figure 3A shows those differentially expressed genes
with respect to EC in the obese cohort. The biotypes of each differentially expressed gene,
presented in Figure 3B, indicates that 80.68% of up-regulated genes were protein-coding
while 63.26% of down-regulated genes were protein coding. In contrast, only 10.19% of
up-regulated genes were lncRNAs and 25.38% of down-regulated genes were lncRNAs.
In the lean cohort, there were 6219 differentially expressed genes. Of these, 3196 were up-
regulated and 3023 were down-regulated. The complete list of genes that were differentially
expressed in the lean cohort are provided in Tables S4 and S5. A volcano plot has also been
generated for the differentially expressed genes for the lean cohort (Figure S6). Similar to
the obese cohort, the majority of up- and down-regulated genes were protein coding (85.7%
of up-regulated and 77.87% of down-regulated), while 8.45% of up-regulated genes were
lncRNAs and 15.51% of down-regulated genes were lncRNAs (Figure S6).
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tively. (B) Stacked bar charts show the percentage of each biotype of up-regulated genes in shades 
of green and down-regulated genes in shades of purple. 

An independent analysis of the TCGA-UCEC data was performed on 589 samples 
(35 control and 554 EC) without differentiation between obese and lean. There were 23,706 
genes which matched the filtering criterion of CPM > 0.1 in ≥25% of samples (148 samples). 
Of these, 16,474 genes were differentially expressed with 10,386 up-regulated genes and 
6088 down-regulated genes in EC shown in Tables S7 and S8, respectively. There were 
1958 up-regulated genes and 1679 down-regulated genes in common between TCGA-
UCEC and the lean cohort. Between TCGA-UCEC and the obese cohort, there were 3634 
up-regulated genes and 2759 down-regulated genes in common. 

The top 10 differentially expressed genes in obesity-related EC (top five up-regulated 
and top five down-regulated) by the adjusted p-value were selected for visualisation (Fig-
ure 4). All five up-regulated genes are protein coding with four genes encoding histones: 
H2B clustered histone 13 (HIST1H2BL), H3 clustered histone 7 (HIST1H3F), H2B clustered 
histone 9 (HIST1H2BH), and H1.5 linker histone, cluster member (HIST1H1B). The fifth 
up-regulated gene selected was TTK protein kinase (TTK). Four of the selected down-reg-
ulated genes are protein coding genes including patched domain containing 1 (PTCHD1), 
asporin (ASPN), proline and arginine rich end leucine rich repeat protein (PRELP), and 
cadherin 13 (CDH13), and the fifth down-regulated transcript is MBNL1 antisense RNA 1 
(MBNL1-AS1), an lncRNA. 

Figure 3. Differential expression analysis between EC and control tissues from the obese cohort.
(A) Volcano plot of differentially expressed genes. The x-axis is the fold-change in gene expression
between EC and control tissues and the y-axis is the log10 (adjusted p-value). Green, purple, and
grey dots represent up-regulated, down-regulated, and non-differentially expressed genes in EC,
respectively. (B) Stacked bar charts show the percentage of each biotype of up-regulated genes in
shades of green and down-regulated genes in shades of purple.

An independent analysis of the TCGA-UCEC data was performed on 589 samples
(35 control and 554 EC) without differentiation between obese and lean. There were
23,706 genes which matched the filtering criterion of CPM > 0.1 in ≥25% of samples (148
samples). Of these, 16,474 genes were differentially expressed with 10,386 up-regulated
genes and 6088 down-regulated genes in EC shown in Tables S7 and S8, respectively. There
were 1958 up-regulated genes and 1679 down-regulated genes in common between TCGA-
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UCEC and the lean cohort. Between TCGA-UCEC and the obese cohort, there were 3634
up-regulated genes and 2759 down-regulated genes in common.

The top 10 differentially expressed genes in obesity-related EC (top five up-regulated
and top five down-regulated) by the adjusted p-value were selected for visualisation
(Figure 4). All five up-regulated genes are protein coding with four genes encoding
histones: H2B clustered histone 13 (HIST1H2BL), H3 clustered histone 7 (HIST1H3F), H2B
clustered histone 9 (HIST1H2BH), and H1.5 linker histone, cluster member (HIST1H1B).
The fifth up-regulated gene selected was TTK protein kinase (TTK). Four of the selected
down-regulated genes are protein coding genes including patched domain containing
1 (PTCHD1), asporin (ASPN), proline and arginine rich end leucine rich repeat protein
(PRELP), and cadherin 13 (CDH13), and the fifth down-regulated transcript is MBNL1
antisense RNA 1 (MBNL1-AS1), an lncRNA.
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sion in CPM, dots indicate the individual sample expression values for EC (blue) and control tissue 
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tissue from obese women were selected by the adjusted p-value for a GO enrichment anal-
ysis (Figure 5). The enrichment pathways for up-regulated genes showed the enrichment 
of biological processes related to chromosome segregation, nuclear division, mitotic nu-
clear division, organelle fission, and nuclear chromosome segregation. Down-regulated 
genes enrichment categories were related to extracellular matrix organisation, cell-sub-
strate adhesion, the muscle system process, muscle contraction, and extracellular struc-
ture organisation. A full list of enrichment gene ontology categories for up-regulated and 
down-regulated genes, respectively, is shown in Tables S9 and S10. Similar GO pathways 
were enriched in the differentially expressed genes from the lean cohort (Tables S11a and 
S12a for up- and down-regulated genes, respectively. Figures S11b and S12b for up- and 
down-regulated genes respectively). Further, similar GO pathways were observed in the 
TCGA datasets in Tables S13a and S14a and Figures S13b and S14b for up- and down-
regulated genes, respectively. 

Figure 4. Expression patterns of selected differentially expressed gene between control and EC
samples from the obese cohort. Scatter plots and box and whisker plots present expression levels in
counts per million (CPM) for EC compared to control tissue with boxes denoting the interquartile
range (IQR), median represented by horizontal bar within the IQR, and vertical bars indicating
minimum and maximum values. (A–E) Expression patterns of the top five up-regulated genes in
EC and (F–J) top five down-regulated genes in EC by adjusted p-value. The y-axis shows gene
expression in CPM, dots indicate the individual sample expression values for EC (blue) and control
tissue (orange).

The top 1000 up-regulated and top 1000 down-regulated protein coding genes in
EC tissue from obese women were selected by the adjusted p-value for a GO enrichment
analysis (Figure 5). The enrichment pathways for up-regulated genes showed the en-
richment of biological processes related to chromosome segregation, nuclear division,
mitotic nuclear division, organelle fission, and nuclear chromosome segregation. Down-
regulated genes enrichment categories were related to extracellular matrix organisation,
cell-substrate adhesion, the muscle system process, muscle contraction, and extracellular
structure organisation. A full list of enrichment gene ontology categories for up-regulated
and down-regulated genes, respectively, is shown in Tables S9 and S10. Similar GO path-
ways were enriched in the differentially expressed genes from the lean cohort (Tables S11
and S12 for up- and down-regulated genes, respectively. Figures S11b and S12b for up-
and down-regulated genes respectively). Further, similar GO pathways were observed in
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the TCGA datasets in Tables S13 and S14 and Figures S13b and S14b for up- and down-
regulated genes, respectively.
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unique genes is provided in Table S15. 

Figure 5. Gene ontology enrichment analysis of protein coding genes in EC from obese women.
(A) Top 1000 up-regulated genes by adjusted p-value. (B) Top 1000 down-regulated genes by adjusted
p-value.

Following differential expression analysis, common genes (from all biotypes) were
identified across obese and lean cohorts. Overall, there were 2727 genes that were up-
regulated in both the obese and lean cohorts (p-value = 0, hypergeometric test), and 2715
genes that were down-regulated in both the lean and obese cohorts (p-value = 0, hypergeo-
metric test), (Figure 6). However, there were more up- and down-regulated genes that were
unique to EC tissues from the obese cohort (3642 up-regulated and 3399 down-regulated),
compared to the lean cohort (469 up-regulated and 307 down-regulated) (Figure 6). Inter-
estingly, there was one common gene (Clavesin 1; CLVS1) that was up-regulated in obese
EC and down-regulated in lean EC. However, there were no common genes between obese
down-regulated and lean up-regulated (Figure 6). A list of overlapping and unique genes
is provided in Table S15.
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3. Discussion

In this study, we show the alterations in gene expression in EC from a cohort of 20 obese
postmenopausal women and 11 lean postmenopausal women, adding to the increasing
body of research into the most common gynaecological cancer. We looked at the biotypes
of genes identified across EC and the control tissue, followed by differential expression
analysis and a GO enrichment analysis. Furthermore, we identified the common differ-
entially expressed genes from the obese cohort and lean cohort. This study corroborates
results from existing studies from our group and the wider scientific community.

In eukaryotes, chromatin is comprised of repeating structural units called the nucleo-
some core particles which are connected by ‘linker’ DNA. Each nucleosome is composed of
147 base pairs (bp) of DNA wrapped around a core of histone octamers [14]. The histone
octamer is made up of a central tetramer of histones H3 and H4, flanked by two dimers of
histones H2A and H2B [14]. Interestingly, four of the five top up-regulated genes selected
for visualisation were histone encoding genes namely HIST1H2BL, HIST1H3F, HIST1H2BH,
and HIST1H1B.

Nayak et al. reported that HIST1H2BL, along with 21 other histone variants, were
significantly over-expressed in recurrent breast tumours (aromatase inhibitor-resistant)
compared with the controls [15]. This study showed that the over-expression of histone
variants might be important in an endocrine response in oestrogen receptor-positive breast
cancer [15]. Another study found HIST1H3F to be up-regulated in breast cancer, however,
this study had a small sample size to examine the levels of histone members using qPCR (7
clinical BC and 10 adjacent non-cancerous tissues) which was recognised as a limitation [16].
HIST1H3F was also identified as one of four genes in a multigene classifier for larynx
carcinoma [17] and was proposed to be a novel prognostic biomarker of muscle invasive
bladder cancer (MIBC) [18]. Patients whose tissues had high HIST1H3F expression levels
had significantly longer overall survival than patients who had low HIST1H3F expression
levels [18]. HIST1H2BH along with PLK1 might serve as a prognostic biomarker of non-
small cell lung cancer patients [19]. HIST1H1B mRNA expression was significantly higher
in breast cancer tissue than normal breast tissue in basal-like breast cancer (BLBC) [20].
HIST1H1B protein was also significantly higher in breast cancer tissue compared to normal
breast tissue. As such it was proposed that HIST1H1B has the potential to be a therapeutic
target of BLBC given its association with breast cancer aggressiveness [20].

The WGCNA R package is a collection of R functions to perform a weighted correlation
network analysis (WGCNA) [21]. One function identifies sets of genes, called modules,
with similar co-expression patterns. Genes within these modules that are highly connected
are termed hub genes and are functionally important [21]. One study identified four hub
genes BUB1B, NDC80, TPX2, and TTK which were independently associated with the
prognosis of EC using a WGCNA algorithm [22]. These four genes were up-regulated
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in EC, in both obese and lean cohorts, in the current study. Tyrosine threonine kinase
(TTK) has been shown to be up-regulated in several cancers including lung cancer, gastric
cancer, and pancreatic ductal adenocarcinoma, strongly suggesting it may be critical in cell
proliferation in tumours [23–25]. In another study, TTK was significantly up-regulated in
an endometrial endometrioid carcinoma, with the knockdown of TTK inhibiting EC cell
growth as well as inducing cell apoptosis in EC cell lines (AN3CA and HEC-1-B) [26].

There were 6114 down-regulated genes in EC from the obese cohort in this cur-
rent study, with the top 10 (by adjusted p-value) consisting of 9 protein-coding genes
and 1 lncRNA. Of the top 10, patched domain containing 1 (PTCHD1) located in the X-
chromosome (Xp22.11) encodes the patched domain containing 1 protein and was the
most down-regulated by fold-change. The gene is transcribed in the brain, notably in
the cerebellum with deletions in this gene associated with autism spectrum disorder and
intellectual disability [27]. There is limited information on PTCHD1 and its involvement in
cancer. Katayama et al. identified that PTCHD1 was expressed in stromal cells from locally
advanced breast cancer tumours responsive to chemotherapy [28].

A small leucine-rich proteoglycan (SLRP) is a family of macromolecules found abun-
dantly in the ECM which functions as a structural constituent and as signalling molecule [29,
30]. Belonging to this family are asporin (ASPN) and proline/arginine rich end leucine rich
repeat protein (PRELP) which were identified as down-regulated in EC, in both obese and
lean cohorts, in this study. Asporin (ASPN), encodes a protein found in the extracellular
matrix (ECM) of cartilage [31,32]. Zhang et al. found that ASPN expression was higher in
normal endometrial tissue compared to EC tissue. Additionally, the authors speculate that
lncRNA CASC7 inhibits miR-26, inhibits ASPN, inhibits TGF-β, and promotes XIAP, to
activate the SMAD/XIAP pathway in EC, thus improving survival and the invasiveness
of endometrial cancer cells [33] PRELP protein may function as a molecule anchoring
basement membranes to the underlying connective tissue [34].

Another down-regulated gene cadherin-13 (CDH13) in obese and lean cohorts, also
called H-cadherin or T-cadherin, belongs to the cadherin superfamily and is a cell adhesion
molecule and functions as a tumour suppressor gene [35]. The down-regulation of CDH13
may be related to tumour invasiveness in EC, as it was observed in breast cancer where
cells transfected with CDH13 were less invasive [36]. Muscleblind-like 1 antisense RNA
1 (MBNL1-AS1) is an lncRNA that was also down-regulated in EC in obese and lean
patients. Its down-regulation has also been observed in prostate cancer and NSCLC
whereby the overexpression of MBNL1-AS1 repressed cell proliferation [37,38]. MBNL1-
AS1 may function as a sponge for miR-181a-5p [37] and miR-135a-5p [38]. lncRNAs have
been implicated as competing endogenous RNAs (ceRNAs), whereby these lncRNAs are
able to sponge miRNAs to regulate gene expression at the post-transcription level [39].

The Jagged2 (JAG2), Aurora Kinase A (AURKA), Phosphoglycerate Kinase 1 (PGK1),
and Hypoxanthine Guanine Phosphoribosyltransferase 1 (HPRT1) genes were previously
shown to be up-regulated in EC compared to the control samples, with a stepwise elevation
in protein expression corresponding to the cancer grade [7] In the present study, all four
genes (JAG2, AURKA, PGK1, and HPRT1) were significantly up-regulated in EC tissues
from obese women. These genes, except JAG2, were also up-regulated in EC from lean
women. AURKA belongs to the family of serine/threonine kinases and is involved in the
regulation of cell cycle progression. In another study, immunohistochemistry showed the
overexpression of AURKA in EC tissues compared with control endometrial tissue, and
AURKA overexpression was associated with the cancer grade [40]. The knockdown of
AURKA in HEC-1B cells successfully decreased AURKA mRNA and AURKA protein [40].
These findings indicate that AURKA mRNA or protein may be suitable biomarkers and a
target for EC therapy.

A previous study from our group identified that several long intergenic non-coding
RNAs were differentially expressed in EC [6]. LINC00958, LINC01480, and LINC00645
were up-regulated in EC whereas LINC00891 and LINC00702 were down-regulated in the
previous study, with the latter four showing a high specificity to EC as compared to the
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control tissue [6] This study corroborates these observations; LINC00958 and LINC00645
were both up-regulated and LINC00891 and LINC00702 were both down-regulated in
the obese cohort (adjusted p-value < 0.1). Whereas in the lean cohort, LINC00958 was
up-regulated and LINC00891 and LINC00702 were down-regulated. In another study, the
lincRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) was identified
in the peripheral blood of patients with non-small cell lung cancer (NSCLC) showing
different expression levels between NSCLC patients and the controls [41]. However,
despite MALAT-1 displaying the characteristics of an ideal biomarker (minimally-invasive,
exhibiting high specificity, and robustness), MALAT-1 was unable to discriminate between
NSCLS patients and the cancer-free controls with high sensitivity. Thus, the low sensitivity
of MALAT-1 would prevent it from being used as a single biomarker [41] This previous
study, however, clearly demonstrates that lincRNAs can be identified in blood, and as such
it is possible that lincRNAs specific for EC may be identified and used as biomarkers.

Our GO enrichment analysis of the top 1000 up-regulated genes showed that these
genes are mainly involved in cell division/proliferation such as chromosome segregation,
nuclear division, mitotic nuclear division, organelle fission, and nuclear chromosome
segregation. The top 1000 down-regulated differentially expressed genes were associated
with the rearrangement of the cytoskeleton such as extracellular matrix organisation, cell-
substrate adhesion, muscle system process, muscle contraction, and extracellular structure
organisation. All of these processes were also identified in the lean cohort and are known
to play a clear role in cancer development and progression. In contrast, processes related to
obesity were not clearly identified in these analyses.

Cervical and ovarian cancer are two other gynaecological malignancies. Several
genetic and epigenetic factors associated with these cancers have been identified. For
instance, HOTAIR has been correlated with cervical cancer recurrence [42,43] as well as
the functional role in ovarian, endometrial, and cervical cancers [44]. The copy number
and protein expression of claudin-1, CLDN1, was found to increase with the progression of
cervical cancer [45]. PTEN methylation and loss of PTEN expression are early events in
the development of cervical cancer [46]. In ovarian cancer, a panel of extracellular vesicle-
derived circulating miRNAs may be useful for an early diagnosis [47]. Cancer antigen 125
is a protein encoded by the MUC16 gene and used in diagnostic tests [48].

In this study, we observed that obese and lean endometrial cancer tissues shared more
than 2700 up- and down-regulated genes. This suggests that there is a considerable overlap
in the transcriptome of lean and obese EC. However, there were also differences between
the two with EC tissues from obese patients expressing over 7000 unique differentially
expressed genes (3642 up- and 3399 down-regulated genes) compared with EC tissues
from lean patients (469 up- and 307 down-regulated genes). These analyses indicate that
many genes that are differentially expressed in EC are related to cancer development,
independent of obesity. However, obesity does appear to play a role in the expression
of thousands of genes in ECs from obese women. Whether these genes are regulated by
obesity-related factors, such as oestrogen, or whether they impact patient prognosis is
unclear and warrants further investigation.

The limitations of our study include the small number of samples for both the obese
and lean cohorts. Therefore, future studies will investigate whether the differentially
expressed genes are also expressed in larger cohorts, and whether these genes influence
prognosis in EC. Additionally, in vitro functional studies will be conducted to determine
whether altering the expression of the top up- and down-regulated genes identified in this
study disrupt EC cell phenotypes such as cell proliferation, cell cycle progression, survival,
and migration/invasion.

In conclusion, our study has shown the networks of genes that are dysregulated in
EC tissues from obese and lean women. Our findings, along with the growing body of
transcriptomic research, may contribute to the identification of diagnostic and prognostic
biomarkers or therapeutic targets for this common cancer in women.
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4. Materials and Methods
4.1. Endometrial Cancer and Control Tissue Samples

Women were recruited to our clinical study at the Royal Hospital for Women/Prince of
Wales Private Hospital (Randwick, Sydney, Australia) with the inclusion criteria of: being
18 years or older, postmenopausal (ceased having regular periods at least 12 months prior),
a BMI of >30 kg/m2 (for the obese cohort), and planned hysterectomy for EC (diagnosis
of endometrioid adenocarcinoma on curettings, any grade). Consent was received from
all patients prior to sample collection, and all processing and experiments were approved
by the Human Research Ethics Committee (HREC) of the South Eastern Sydney Local
Health District (HREC 15/339). Clinical data were recorded in a de-identified data-base
and matching samples were stored at the Lowy Biobank UNSW, Sydney. Sections of benign
or malignant endometrial tissue were collected under sterile conditions and immediately
placed in 1 mL of Allprotect tissue reagent (Qiagen) in sterile cryovial tubes, and then
stored at −80 ◦C until processed. The endometrial tissues were powdered and the RNA
was extracted using an AllPrep DNA/RNA/Protein Mini Kit (Qiagen, Cat # 80004). For the
obese cohort, the mean BMI of patients was 38.41 and mean age was 66.7 years. This study
originally included 24 obese patients with EC, however, 4 patients were not included as the
RNA-seq data were unavailable for the matched pair of tissues [49]. For the lean cohort, the
mean BMI of the patients was 24.01 and the mean age was 70.0 years; there were 16 women
with EC, however 5 patients were not included as RNA-seq data were unavailable for
the matched pair of tissues. The averages provided for age and BMI exclude the samples
missing their respective matched RNA-seq data.

4.2. RNA Template Preparation and Sequencing

Total RNA was subjected to ribosomal RNA (rRNA) depletion and sequencing library
preparation using an Illumina TruSeq Stranded Total RNA Gold kit. Paired-end 126 bp
read length sequencing was performed using an Illumina HiSeq 2500 sequencer. A total of
6.3 × 109 paired-end reads were analysed from 40 tissue samples from the obese cohort
(20 EC tissue samples and 20 matched adjacent non-cancerous endometrial tissue) and
22 tissue samples from the lean cohort (11 EC tissue samples and 11 matched adjacent
non-cancerous endometrial tissue). Sequencing adapters were trimmed by the sequencing
facility. FastQC v0.11.8 [50] was performed on the technical replicates and then the concate-
nated technical replicates. Concatenated technical replicates were utilised in downstream
bioinformatic analyses.

The RNA-Seq data files of technical replicates for each biological sample included
in this study were concatenated into a single FASTA file per biological sample. As the
sequencing adapters were trimmed by the sequencing facility before being received, no
trimming was required in this analysis. The samples were aligned to the UCSC hg38
reference genome with HISAT2 and annotated using StringTie. Hereon matched adjacent
non-cancerous endometrial tissue will be referred to as the control tissue. Subsequent
bioinformatic analysis focused on the differential linear RNA transcriptome in EC and the
control tissues including the assignment of a gene biotype based on the gene classification
outlined in GENCODE, a principal component analysis (PCA), differential expression
analysis, and a GO enrichment analysis.

4.3. Sequence Read Alignment and Transcript Assembly

Alignment to the human reference genome (H. Sapiens UCSC hg38) was conducted
using an HISAT2 v2.1.0 [51], followed by StringTie [52] to quantify the number of reads
mapping to each gene in the reference annotation GENCODE v31. We then used a Python
script (prepDE.py) provided with StringTie to generate a read count matrix at the gene
level. Genes which had a CPM value of >0.1 were considered expressed. Genes were then
classified based on their respective biotype determined by their gene classification as de-
scribed by Gencode [53]; the classifications were protein-coding, lncRNA, and pseudogene,
and the remaining biotypes were classified as ‘other’. Venn diagrams were produced of
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the biotypes across EC and the control tissue using the Python matplotlib-venn v0.11.7
package [54].

4.4. Principal Component Analysis

To visualise the variation between samples, a principal component analysis (PCA) was
conducted. Genes were initially filtered with the criteria of a count per million (CPM) value
of >0.1 and expressed in ≥1 samples. Subsequently, the top 1000 genes by fold change were
selected and a PCA was conducted for dimensionality reduction with PCAtools v2.6.0 [55].

4.5. Differential Expression

Differential expression testing was based on normalised read counts, using a trimmed
mean of M-values (TMM) with a generalised linear model (GLM) from the Bioconductor
package edgeR [56,57]. A pairwise comparison was used as our design matrix describing
the comparison between pairs and tissue type (EC and control tissue). A tag-wise dispersion
estimate (estimateDisp) was then used by applying glmQLFit to fit a quasi-likelihood
negative binomial generalised log-linear model to the normalised read counts of each gene.
To test for statistical significance, we used glmQLFTest which uses a quasi-likelihood F-test
for coefficients in the linear model. We applied the Benjamini-Hochberg method on the
p-values to account for multiple testing and to control the false discovery rate (FDR). Genes
were determined to be differentially expressed if the adjusted p-value was <0.1. The p-value
is the probability of observing the output data under the null hypothesis.

To visualise differentially expressed genes, a volcano plot was generated with the R
package ggplot2 v3.3.2 [58]. Stacked bar charts and CPM scatter and box and whisker plots
were generated in GraphPad Prism v8.4.2.

4.6. Gene Ontology Enrichment Analysis

We used the top 1000 up-regulated and the top 1000 down-regulated genes (as deter-
mined by adjusted p-value) to conduct a gene ontology (GO) enrichment analysis utilising
clusterProfiler [59] using the enrichGO function.

4.7. Venn Diagram for Common Differentially Expressed Genes between Lean and Obese Cohort

The set() data structure in python3 was used to identify the intersection between up-
and down-regulated genes across the lean and obese cohort as well as those uniquely
expressed to a particular condition (EC or control; up- or down-regulated). Venn diagrams
were then drawn manually in Prism with the appropriate values for each section added to
the data tables.

4.8. Hypergeometric Testing

The R phyper function was used to test the probability of observing overlapping genes
by chance from up- or down-regulated genes. A p-value < 0.05 was considered significant.

4.9. Validation with the Cancer Genome Atlas (TCGA) Data

Gene expression profile data from 589 EC and control samples were downloaded
from the TCGA website (https://portal.gdc.cancer.gov/projects/TCGA-UCEC accessed
on 7 September 2022). Of the 589 samples, 35 were control samples and the remaining 554
samples were EC. Differential expression was performed with the edgeR ‘limma’ module
with a filtration criterial of CPM > 0.1 in ≥25% of the samples (148 samples). Genes with
an adjusted p-value of <0.1 were considered differentially expressed.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms231911471/s1. Table S1. Venn diagrams of biotype
distribution across EC and control—lean cohort. Table S2. Up-regulated genes in EC and CPM
values—obese cohort. Table S3. Down-regulated genes in EC and CPM values—obese cohort. Table
S4. Up-regulated genes in EC and CPM values—lean cohort. Table S5. Down-regulated genes in EC
and CPM values—lean cohort. Table S6. Volcano and stacked bar chart of differentially expressed

https://portal.gdc.cancer.gov/projects/TCGA-UCEC
https://www.mdpi.com/article/10.3390/ijms231911471/s1
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genes—lean cohort. Table S7. Up-regulated genes in EC—TCGA-UCEC. Table S8. Down-regulated
genes in EC—TCGA-UCEC. Table S9. Up-regulated gene ontology enrichment analysis—obese
cohort. Table S10. Down-regulated gene ontology enrichment analysis—obese cohort. Table S11a
and Figure S11b. Up-regulated gene ontology enrichment analysis—lean cohort. Table S12a and
Figure S12b. Down-regulated gene ontology enrichment analysis—lean cohort. Table S13a and Figure
S13b. Up-regulated gene ontology enrichment analysis—TCGA-UCEC. Table S14a and Figure S14b.
Down-regulated gene ontology enrichment analysis—TCGA-UCEC. Table S15. List of common and
unique genes across up- and down-regulated genes—obese and lean cohort.
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