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Abstract: Staphylococcus aureus (S. aureus) is a major human pathogen that requires new antibiotics
with unique mechanism. A new pleuromutilin derivative, 14-O-[(4,6-Diamino-pyrimidine-2-yl)
thioacetyl] mutilin (DPTM), has been synthesized and proved as a potent antibacterial agent using
in vitro and in vivo assays. In the present study, DPTM was further in vitro evaluated against
methicillin-resistant Staphylococcus aureus (MRSA) isolated from dairy farms and outperformed
tiamulin fumarate, a pleuromutilin drug used for veterinary. Moreover, a murine skin wound model
caused by MRSA infection was established, and the healing effect of DPTM was investigated. The
results showed that DPTM could promote the healing of MRSA skin infection, reduce the bacterial
burden of infected skin MRSA and decrease the secretion of IL-6 and TNF-α inflammatory cytokines
in plasma. These results provided the basis for further in-depth drug targeted studies of DPTM as a
novel antibacterial agent.

Keywords: DPTM; methicillin-resistant Staphylococcus aureus (MRSA); antibacterial activity; murine
skin wound model; MIC

1. Introduction

Staphylococcus aureus (S. aureus) is a major human pathogen associated with increased
morbidity, mortality, and excess hospital costs [1,2]. It also causes skin and soft tissue infec-
tions (SSTI), including impetigo, folliculitis, furuncles, and subcutaneous abscesses [3,4].
Methicillin-resistant Staphylococcus aureus (MRSA) has aroused a growing concern and
became a significant public health threat. Every year there are approximately 80,000 inva-
sive infections individuals in the United States, resulting in 11,000 deaths annually [3,5,6].
Furthermore, decreased susceptibility and even resistance to vancomycin, daptomycin,
linezolid, and other antibiotics, have been reported in many parts of the world [7–9]. As
such, there is pressing need to develop novel antibiotics with unique mechanism of action
against this dreadful pathogen.

Pleuromutilin (Figure 1) is a natural compound that was first discovered and isolated
from cultures of two species of basidiomycetes, Pleurotus mutilus and P. passeckerianus
in 1951 [10]. Pleuromutilin derivatives selectively inhibited bacterial protein synthesis
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through interaction with prokaryotic ribosomes at the acceptor and donor site [11–13].
Modification of the glycolic ester side chain in pleuromutilin has been shown to give
derivatives with improved antibacterial activities, and has led to tiamulin, valnemulin,
retapamulin, and lefamulin (Figure 1) [14–17].
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14-O-[(4,6-Diamino-pyrimidine-2-yl) thioacetyl] mutilin (DPTM, Figure 1) is a new
pleuromutilin derivative with a pyrimidine moiety. It was first synthesized and has been
shown excellent antibacterial activity, suggesting its potential as a promising antimicrobial
drug [18,19]. In this study, we further investigated the activity of DPTM against MRSA
using in vitro and in vivo assays.

2. Results
2.1. Effect of DPTM In Vitro

The minimum inhibitory concentrations (MICs) of DPTM against two standard quality
control strains of MRSA (ATCC 29213 and ATCC 33591) and a S. aureus (CMCC 26003) have
been reported in our previous study [18]. Extensive panels of clinical isolates of MRSA
(n = 54) were assessed for their susceptibility to DPTM. We chose tiamulin fumarate as
reference drug because it was used primarily in veterinary medicine [20]. MICs for DPTM
ranged from 0.0313 to 0.25 µg/mL, while that of tiamulin fumarate were 0.125 to 1 µg/mL
(a full listing of this MIC data is in Table S1). Within these collections of clinical isolates,
MICs of DPTM were lower than that of tiamulin fumarate (Figure 2).
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2.2. Macroscopic Evaluation of Efficacy in a Murine Skin Wound Model

Bearing the excellent protection efficacy of mice infected with MRSA-29213 [18],
DPTM was further assessed for its healing effect on murine skin wound caused by MRSA
infections. After inoculation, symptoms of the skin wound and mouse viability were
monitored daily for 6 days. Mice treated with three dosages of DPTM and retapamulin
ointments had improved survival (100%) compared to positive control mice (80%). Mice
that were not infected showed no death and normal wound with a small amount of thin
exudate (Figure 3A). Most murine wounds in positive control group presented symptoms
including the increased exudate, worsened with bloody skin, and heavy or purulent
drainage (Figure 3B). Treatment with retapamulin and 1% and 2% DPTM caused improved
symptoms with some exudate remaining, and the wounds begun healing at the margin
with some crust (Figure 3C−E). However, wounds in 3% DPTM ointment treatment group
exhibited partial thickening and the crust had peeled away from the margin leaving behind
fresh skin (Figure 3F).

2.3. Bacterial Count in Treated Skin Wound

Next, we test the efficacy of a topical antibiotic treatment in the skin wound model
in which mice infected with MRSA were treated with three dosages of DPTM ointment
(Figure 4). The bacterial counts in 2% DPTM, 3% DPTM, and retapamulin ointments treated
mice were 4.40, 5.42, and 4.82 logs lower, respectively, (p < 0.01) than that in positive control
mice, whereas the 1% DPTM ointment treated group was 1.02 log lower. The 3% DPTM
ointment treated group had the bacterial count lowered by 1.05 log compared to 2% DPTM
ointment treated group (p < 0.01), but only lowered by 0.63 log compared to retapamulin
ointment treated group.
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Figure 3. Macroscopic evaluation of wound at the 6th day in the infection model. Mice (n = 10 per group) were infected
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DPTM ointment treatment group.
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2.4. White Blood Cell (WBC) Level

To further investigate the efficacy of DPTM on the murine skin wound infected with
MRSA, we analyzed the WBC which are involved in protecting the body against both
infectious disease and foreign invaders [21] in blood, using a blood biochemistry analyzer
(Hefei Jianneng Optical Instrument Co., Ltd., Hefei, China). The numbers of WBC in
blank control group, three treatment groups and retapamulin ointment group decreased
significantly compared with that in positive control group (p < 0.05). There was more WBC
in the 1% DPTM ointment group compared with that in the retapamulin ointment group
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(p < 0.05). However, no significant difference was found among the 2% DPTM, 3% DPTM,
and retapamulin ointment groups (Figure 5).
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treatment group vs. 2% retapamulin group.

2.5. Histopathological Observation

The healing tissues obtained from all the six groups of animals in our excision
wound model were processed for histopathological analysis by H&E and Masson staining
(Figure 6). At 6 d post-infection, severe inflammatory cell infiltration, inflammatory cell
accumulation, and tissue necrosis, as well as swelling and granular degeneration of muscle
fiber were commonly observed in the wound skin of mice at the positive control group at
the sixth day (Figure 6B1). It was worth noting that proliferation of myofibroblast, increase
of new capillary, and attenuation of inflammatory reaction were noticeable after treatment
with 2% and 3% DPTM and retapamulin ointments (Figure 6D1,E1,F1). Furthermore, obvi-
ous blue collagen deposition appeared in the wound after treatment with three dosages of
DPTM and retapamulin ointments (Figure 6C2,D2,E2,F2). The connection of collagen fiber
(dyed blue in Figure 6A2–F2) in treatments groups was closer than that in control group,
especially the connection of collagen fiber in 3% DPTM ointment treatment group which
showed significantly higher tightness than that of retapamulin ointment treatment group
(Figure 6E2,F2).

2.6. IL-6, TNF-α, and VEGF Levels

Primary skin infections stimulate inflammatory response which plays an essential
role in the defense against pathogens [22]. This response involves a complex interplay of
cytokines and chemokines, such as the pro-inflammatory cytokines interleukin-6 (IL-6),
tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) [23].
Therefore, we used the ELISA method to detect the changes of IL-6, TNF-α, and VEGF after
drug treatment. As illustrated in Figure 7, all treated groups, except 1% DPTM ointment,
effectively decreased IL-6 and TNF-α induced by the inflammation in comparison with
that in the control group (Figure 7A,B). To our surprise, no significant difference of VEGF
secreted in serum between treatment groups and control group was observed (Figure 7C).
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inflammatory cell infiltration and the blue arrows point at inflammatory cell accumulation.
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VEGF (C). All values are mean ± SD. # p < 0.05 indicates that the blank group, 2% DPTM, 3% DPTM, and 2% retapamulin
ointment treatment group vs. the control group; * p < 0.05 indicates 1% DPTM ointment treatment group vs. the 2%
retapamulin ointment group.
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3. Discussion

At present, MRSA displays resistance to most of β-lactam antibiotics, including
oxacillin, methicillin, amoxicillin, and penicillin [24,25]. Drug resistance acquired by MRSA
has increased clinical risk and caused serious problems worldwide [26]. Therefore, it is of
great significance to develop new drugs for the diseases infected by MRSA.

This study evaluated the potent antibacterial activities of DPTM, a derivative of
pleuromutilin, against MRSA isolated from dairy farms and against MRSA ATCC43300
in a murine skin wound model. While DPTM showed excellent in vitro inhibition against
standard strains of S. aureus and MRSA at previous MIC testing [18], activity against MRSA
isolated from clinic is lacking. We found that DPTM inhibited 61.1% strains with the
concentration of 0.0625 µg/mL, while no strain was inhibited with the same concentration
of tiamulin fumarate.

S. aureus is the top infectious pathogens responsible for SSTIs in children and adults [27].
Retapamulin, a semi-synthetic member of pleuromutilin, has been licensed in USA and
Europe as 1% ointment (Altabax) for the topical treatment of SSTIs caused by MRSA and
Streptococcus pyogenes [28]. Therefore, we established the mouse MRSA ATCC43300 skin
infection model to compare the therapeutic effect of DPTM with that of retapamulin. After
treatment, DPTM reduced the exudation of the infected skin and accelerate the healing.
Furthermore, 2% and 3% DPTM ointment significantly reduced the number of white blood
cells in the blood, indicating that DPTM displayed a certain therapeutic effect on MRSA
skin infections. The ability of drugs to promote healing of infectious wounds is related
to its antibacterial activities, reducing inflammatory reactions, and promoting epithelial
formation [22]. Therefore, the number of bacteria in the infected skin was counted to
evaluate the antibacterial effect of DPTM in live animals. The results showed that 2% and
3% DPTM ointment significantly reduced the number of MRSA.

Inflammation is one of key stages for the healing of skin wounds proceeds. S. aureus ac-
tivate the STAT3, MAPK, and NF-κB signaling pathways, which promote the expression and
secretion of pro-inflammatory cytokines, such as IL-6 and TNF-α, in keratinocytes [29,30].
It is helpful for the recovery of skin wounds to inhibit the secretion of excessive pro-
inflammatory cytokines. After treatment, DPTM ointment significantly reduced serum IL-6
and TNF-αsecretion, which indicates that DPTM could improve the inflammatory response
caused by MRSA. As a chemoattractant, VEGF recruits macrophages and granulocytes
and participates in nitric oxide-mediated vasodilation, which induces endothelial cells
to participate wound healing, thereby promoting blood vessel formation and vascular
remodeling [31,32]. However, in this study there is no significant difference of secreted
VEGF in the serum between the control group and the treatment groups. Because we did
not detect the concentration of VEGF during the initial time of administration, we could
not conclude whether VEGF had reached the peak of expression, or DPTM could not affect
the secretion of VEGF. This needs to be further studied in detail.

4. Materials and Methods
4.1. Reagents

The synthesis method of DPTM was described previously [18] in our lab. The purity of
this compound was checked by Waters 2695 HPLC (Massachusetts, USA) and quantitative
NMR analyses at 98.72%, and its structure was confirmed by IR, NMR (Supplementary
data), and HR-MS spectrometry. Tiamulin fumarate (purity: 98.5%) was purchased from
Labor Dr. Ehrenstorfer-Schäfers (Augsburg, Germany) and retapamulin (98.0%) was
purchased from (BOC Sciences, New York, NY, USA).

4.2. Bacterial Strain

All MRSA (n = 54) were isolated using brain-heart infusion (BHI) broth from fresh
milk samples which were collected from different dairy farms in northwest China at
2017–2018. The isolates were identified by sequencing the 16S rRNA universal primer
and Vitek 2 Compact (BioMerieux, Lyon, France), followed by typing the Staphylococcal
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chromosomal cassette mec (SCCmec) gene (Supplementary data). Susceptibility testing
was performed as per Clinical Laboratory and Standards Institute (CLSI) recommendations.
MRSA ATCC43300 was purchased from Beijing Beina Science & Technology Co., Ltd.
(Beijing, China).

4.3. Animals

Sixty healthy BALB/c mice (weight of 23 to 25 g; Centre of Experimental Animals of
Lanzhou University, Lanzhou, China) were housed in a comfortable room and were given
free access to standard diet and water. Mice were maintained on a 12 h light/dark cycle
at the temperature of 25 ◦C and relative humidity of 55–65%. All animals were handled
in strict accordance with good animal practice according to the Animal Ethics Procedures
and Guidelines of the People’s Republic of China, and the study was approved by The
Animal Administration and Ethics Committee of Lanzhou Institute of Husbandry and
Pharmaceutical Sciences of CAAS (No. SYXK-2018-002).

4.4. MIC Determination

The MICs of DPTM were determined by micro-dilution technique in Mueller-Hinton
broth (Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) according to the
Clinical and Laboratory Standards Institute (CLSI) guidelines [33]. The experiments were
performed in triplicate.

4.5. Skin Infection Model

MRSA ATCC43300 was grown in tryptone soy broth (TSB, Beijing Solarbio Science &
Technology Co., ltd. Beijing, China) at 37 ◦C overnight and harvested by centrifugation
at 3000 g for 10 min, followed by being washed twice in phosphate buffer saline (PBS).
Bacteria were suspended in sterile PBS at a concentration of 1012 CFU/mL. Different
amounts of DPTM (0.05, 0.10, and 0.15 g) and retapamulin (0.10 g) used in this study
were made as ointments (1%, 2%, and 3% DPTM and 2% retapamulin, respectively) with
matrix including albolene (3 g), liquid paraffin (1.5 mL), lanolin (0.1 g), and anhydrous
alcohol (0.4 mL). Wound preparation and infection protocol were modified from published
report [34,35]. In brief, mice were randomly divided into six groups and were anaesthetized
intraperitoneally with 10% chloral hydrate. The fur on mice back was shaved and the
shaved area was cleaned with gauze sponges and water. An incision deep to sarcolemma
was made through the shaved area after the alcohol disinfection. The blood from the wound
was cleaned with cotton ball and an inoculum of 0.1 mL of MRSA (at a final concentration
of approximately 1012 CFU/mL which was obtained by pre-test) in PBS was smeared
evenly on the whole wound of mice except for the blank control group which was only
treated with blank ointment matrix. After inoculation with MRSA for 4 h, the positive
control group was treated with blank ointment matrix. The treatment groups were treated
with 2% retapamulin and 1%, 2%, and 3% DPTM ointment, respectively. For each treatment
15 mg per mice of ointment was applied. The dosage for each group was continued for
5 days with 24 h intervals. After inoculation, the mice were caged separately and observed
twice daily for their clinical signs and mortality. For all groups, the experiments were
terminated 24 h (on day 6 after infection) after the last topical treatment in order to avoid
carryover effects in vitro.

4.6. Detection of WBC, IL-6, TNF-α and VEGF in Blood Serum

On day 6 after infection, the blood was taken, by excising their eyeballs, for counting
white blood cells and detecting the IL-6, TNF-α, and VEGF in blood serum by enzyme-
linked immunosorbent assay (ELISA) using the commercially available kit (IL-16: Mouse
IL-16 ELISA Kit, Boster Biological Technology co.ltd., Wuhan, China; TNF-α: Mouse TNF-
αELISA Kit, Elabscience Biotechnology Co.,Ltd., Wuhan, China; VEGF: Mouse VEGF-B
ELISA Kit, Elabscience Biotechnology Co.,Ltd., Wuhan, China).
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4.7. Counting the Colonies of MRSA and Histological Examination

To examine CFU burden within the wound skin, the survival of the mice at 6 d after
infection was used as the end-point and anaesthetized. The infected skins of five mice in
treatment groups and positive control (including one dead mouse after infection) were
sterilizing collected, homogenized, diluted (10×) and plated onto Baird-Parker agar (Hope
Bio-Technology Co., Ltd., Qingdao, China) to count the colonies of MRSA after incubation
for 16–24 h at 37 ◦C. The infected skins of the remaining five mice (including the other one
dead mouse after infection) used for hematoxylin and eosin (H&E) and Masson trichrome
staining after soaking in 10% formalin, respectively [19], and their lesions were observed
using a Nikon DS-Fi2 fluorescent microscope (Nikon, Tokyo, Japan).

4.8. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics for Windows version 24.0
(SPSS Inc., Chicago, IL, USA). The data were analyzed by One-way analysis of variance
(ANOVA), followed by Dunnett’s post-hoc tests as appropriate. Statistically significant
difference was defined as a p < 0.05 and the extremely significant difference was defined as
a p < 0.01.

5. Conclusions

DPTM demonstrated potent in vitro activity against clinical isolates of MRSA with
lower MICs than that of tiamulin fumarate. In in vivo efficacy using a murine skin wound
model, 2% and 3% DPTM ointment displayed similar effect to retapamulin to significantly
promote the healing of wound caused by MRSA and reduce bacterial count. In addition,
DPTM decrease relative number of WBC and the secretion of IL-6 and TNF-α inflam-
matory cytokines in plasma. Thus, DPTM represents a promising treatment option for
MRSA infections.

Supplementary Materials: The following are available online, Figure S1: IR, 1H-NMR and 13C-NMR
spectra of DPTM, Table S1: MIC values of DPTM and tiamulin fumarate against clinical isolates
of MRSA.
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