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Stipa baicalensis Steppe
Jie Qin* , Ming Li, Haifang Zhang, Hongmei Liu, Jianning Zhao* and Dianlin Yang*

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China

CO2 fixation by autotrophic microbes has a significant effect on the carbon cycle in
temperate grasslands. Nitrogen (N) deposition in soil has been steadily increasing for
decades, which has consequences for soil microorganisms. However, the impact of this
deposition on the diversity and abundance of CO2-fixing soil microorganisms remains
unclear in temperate grasslands. In the present study, the cbbL gene, a key gene
in the Calvin–Benson–Bassham cycle that encodes the large subunit of ribulose-1,5-
bisphosphate carboxylase/oxygenase, was used to study CO2-fixing microbes under
different rates of N addition (0, 15, 30, 50, 100, and 150 kg N ha−1 yr−1) in a 9-
year field experiment in a temperate grassland. The results showed that N addition
led to significant reductions in cbbL gene abundance and genetic diversity and altered
cbbL gene community composition. High N addition enhanced the relative abundances
of Acidiferrobacterales and Rhizobiales but reduced those of Burkholderiales and
Rhodobacterales. Structural equation modeling further revealed that N addition primarily
reduced cbbL genetic diversity by increasing the soil NO3-N content and decreasing the
soil pH. N addition indirectly reduced cbbL gene abundance, possibly by increasing the
soil N/phosphorus (P) ratio and decreasing the soil pH. These findings suggest that N
addition increases the soil available N and causes soil acidification, which may inhibit
growth of CO2-fixing microbes to some extent.

Keywords: nitrogen deposition, grassland, diversity, cbbL gene, CO2-fixing microbes

INTRODUCTION

During the past few decades, the amount of nitrogen (N) deposited from the global atmosphere
due to human activities has significantly increased, and developing countries experiencing the
most rapid increases (Gruber and Galloway, 2008). Researchers predict that global N deposition
will reach 195 Tg N yr−1 by 2050 (Galloway et al., 2004). At present, concerns regarding global
atmospheric N deposition are primarily focused on Western Europe, North America, and East Asia
(mainly China) (Mo et al., 2008). From 1961 to 2008, the proportion of N deposition increased by
59% in China (Lu and Tian, 2014) and reached 10–18 kg N ha−1 in the northern grasslands of the
country (Zhang et al., 2008; Liu et al., 2011). The rate of atmospheric N deposition is increasing
annually and is expected to accelerate in the future (Neff et al., 2002). N deposition changes the
physicochemical properties of soil, including with respect to soil acidification and the N–P balance
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(Hong et al., 2019), altering soil microbial diversity
(Wang C. et al., 2018), and affecting the global ecosystem
(Penuelas et al., 2013).

The terrestrial biosphere currently absorbs approximately 30%
of anthropogenic CO2 emissions (Arora and Melton, 2018).
In the past, it was generally believed that carbon fixation
was primarily dependent on plant photosynthesis and that soil
microorganisms contributed to the carbon cycle by participating
in the degradation of organic matter rather than by CO2 fixation.
The role of microorganisms in carbon sequestration may also be
underestimated (Hart et al., 2013). Microbial phototrophic CO2
fixation accounts for a substantial proportion of global primary
productivity (Guzman et al., 2019). However, the contributions
of microbial biomass to soil organic matter appear to be much
higher than the 1–5% reported by other researchers (Simpson
et al., 2007). Lipids, carbohydrates, and proteins have been
observed to be produced directly from the CO2 taken up by
microorganisms (Hart et al., 2013). CO2-fixing microorganisms
are a group of microorganisms that, like plants, transform
atmospheric CO2 into organic matter. Soil autotrophic bacteria
are important for sequestrating atmospheric CO2 (Lynn et al.,
2017) and affect the renewal and circulation of organic matter.
The CO2-fixing capacity of soil microbes has received widespread
attention. However, the factors affecting CO2-fixing microbes
are not well known.

The autotrophic microbial community was previously
characterized by targeting the large subunit (encoded by the cbbL
gene) of form I ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco) (Zhao et al., 2018). The cbbL gene is an established
biomarker that is useful for studying autotrophic bacteria in
various soil ecosystems owing to its widespread geographic
distribution, functional significance, the increasing number of
published sequences of this gene from chemoautotrophs, and
its utility in assessing autotrophic microbial diversity in various
habitats (Ge et al., 2016; Yue et al., 2019).

The cbbL-containing bacteria has gene have been linked to soil
available N (Zhou et al., 2019), soil pH (Li M. Q. et al., 2020), and
soil organic carbon (SOC) (Xiao et al., 2014; Li et al., 2018). First,
increased soil available N may affect cbbL-containing bacterial
abundance by altering the balance of C/N or N/P ratios (Dong
et al., 2019). Second, variations in soil pH are likely to regulate the
responses of cbbL containing bacteria to environmental changes
(Zhao et al., 2018; Li P. P. et al., 2020). Finally, alterations in SOC
levels can lead to changes in the abundances of cbbL-containing
bacteria, particularly upon significant changes in SOC levels
(Huang et al., 2018). The relative contribution of these drivers
may vary between ecosystems. N deposition is expected to have
positive or negative effects on cbbL gene-containing CO2-fixing
microorganisms, which may depend on soil available nutrients
and the intensity of N addition, potentially leading to changes
in the composition of the cbbL gene community. In addition, N
deposition can enhance the soil N content and change the soil pH,
which in turn may influence the cbbL gene-containing CO2-fixing
microorganisms (Zhou et al., 2019).

Arid and semiarid ecosystems account for approximately 41%
of the global land area (Ferrenberg et al., 2015). The vegetative
growth of these ecosystems is restricted by many environmental

factors, including soil moisture, highlighting the importance of
soil CO2-fixing microbes (Guo et al., 2015). The Stipa baicalensis
steppe represents one of the most widely distributed temperate
grassland communities in Eurasia and is primarily located on
the eastern Mongolian Plateau and in most of the Songliao
Plain of China. Although CO2-fixing microorganisms make
important contributions to ecosystem functions and processes
(Zhao et al., 2018), we are only beginning to understand how
their communities are shaped by N deposition. In the present
study, we conducted field-simulated N deposition experiments to
assess the response of soil CO2-fixing microbes to different levels
of N addition in temperate grassland to address the following
two questions: (1) how do the abundance and diversity of cbbL-
containing bacteria respond to N addition, and (2) what soil
environmental factors mediate the response of cbbL-containing
bacteria to N addition? We hypothesized that N addition affects
cbbL-containing bacteria by altering soil physicochemical factors
(Xiao et al., 2014; Zhou et al., 2019). The results of the present
study provide a theoretical basis for the investigation of soil
microbial carbon sequestration potential and soil carbon cycles
in temperate grasslands. Research on this topic is important for
predicting the possible changes in soil carbon sequestration in
grassland ecosystems under changes in N deposition.

MATERIALS AND METHODS

Site Description
The field survey was conducted on the Stipa baicalensis steppe,
which is located in the Hulun Buir grassland (48◦30′N, 119◦42′E;
765 m) of the Inner Mongolia Autonomous Region, China (Qin
et al., 2020). The experimental area has a typical temperate
continental monsoon climate with warm summers, cold winters,
an annual precipitation of 396 mm and an annual mean
temperature of –0.7◦C. Most precipitation (66%) in this region
occurs in the summer months, and the soil type is primarily
a Haplic Calcisol (according to the Food and Agriculture
Organization classification). The native vegetation in the study
area consists of grasses dominated by species such as Stipa
baicalensis and Leymus chinensis. Common species include
Cleistogenes squarrosa, Carex pediformis, Filifolium sibiricum,
Achnatherum sibiricum, Thalictrum petaloideum, Serratula
centauroides, Melissitus ruthenica, and Carex duriuscula.

Experimental Design and Field
Measurements
The experimental simulation of N deposition began in 2010, and
a randomized block design with four replicates was adopted.
Six experimental treatments were performed to simulate current
and future N deposition levels such that 24 plots (each 8 m by
8 m) were established. The natural level of N deposition in the
Inner Mongolian grassland is approximately 18.1 kg Nha−1 yr−1

(Zhang et al., 2008). N was added to the six experimental
treatments (Stevens et al., 2004; Liu et al., 2011; Lu and Tian,
2014) at 0, 15, 30, 50, 100, and 150 kg N ha−1 yr−1 (designated as
N0, N15, N30, N50, N100, and N150, respectively). N was added
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twice a year (mid-June and mid-July) by spraying plots with an
aqueous solution of NH4NO3.

Sampling and Chemical Analyses
Soil sampling was conducted on 10 August 2018 in each of
the 24 plots. Before sampling, the litter layer (litter, roots,
and stones) was carefully removed. Soil samples were collected
from 10 random points across each plot using a soil corer
(0–15 cm deep with a 2 cm inner diameter) and mixed to
obtain one representative composite sample. The soil samples
were placed in self-sealing bags for storage at 4◦C. The samples
were immediately transported to the laboratory and divided
into three subsamples. Subsamples for ammonium N (NH4-N)
and nitrate N (NO3-N) concentration analyses were stored at
4◦C for no longer than 1 week, and the subsamples used for
soil pH, SOC, and total P (TP) analyses were air dried. The
soil physicochemical factors differed under different levels of N
addition (Supplementary Table 1). The subsamples used for gene
abundance and high-throughput sequencing analyses were stored
at –80◦C.

Soil Physicochemical Factors
Soil pH was measured using a soil to water ratio of 1:2.5 using
a Delta 320 pH meter (Mettler Toledo Instruments, Shanghai,
China). The SOC content was determined with a macro elemental
analyzer (Vario MAX C/N; Elementar Analysensysteme, Hanau,
Germany). The total N content was determined by Kjeldahl
digestion, and the total P concentration was measured using
the ammonium molybdate method following H2SO4-H2O2-HF
digestion. The soil available N (the sum of NH4-N and NO3-N)
was measured with an FIA Star 5000 flow-injection autoanalyzer
(Foss Tecator, Höganäs, Sweden).

Soil cbbL Gene Quantification
Genomic DNA was extracted from each soil sample using a
PowerSoil DNA Isolation kit (MoBio Laboratories, Carlsbad, CA,
United States) according to the manufacturer’s protocol. The
integrity and yield of the genomic DNA were assessed by 0.8%
agarose gel electrophoresis.

The copy number of the target gene in the DNA samples
was determined using the absolute quantitative method. The
abundance of the cbbL gene was determined by real-time
PCR (Applied Biosystems 7900, United States) with the
primers K2f (5′-ACCAYCAAGCCSAAGCTSGG-3′) and V2r (5′-
GCCTTCSAGCTTG CCSACCRC-3′). Each DNA sample was
diluted 10 times, and 2 µl of the diluted DNA (approximately
150 ng of DNA) was then taken as the reaction volume. The 18 µl
reaction mixture contained 10 µl of 2 × Taq MasterMix (Takara
Bio Inc., Shiga, Japan), 0.5 µl each of the specific forward and
reverse PCR primers (Invitrogen, Shanghai, China), and 7 µl of
H2O. The cycling parameters involved predenaturation at 95◦C
for 5 min, followed by 30 cycles of 94◦C for 30 s, 55◦C for 30 s,
and 72◦C for 30 s, which was followed by a final incubation
at 72◦C for 10 min. The assays were performed using three
technical replicates per sample. A 10-fold dilution series (101105)
of plasmid DNA harboring the cbbL gene was used to generate a
PCR standard curve. At the end of the PCR amplification, the

melting curve was analyzed, and a single melting curve peak
was observed for each sample. The cbbL copies were calculated
according to the parameter threshold cycle (Ct) obtained using
the 7500 software (version 1.0.6).

Illumina MiSeq Sequencing of the cbbL
Gene
Using TruSeq v1/v2 kits (Illumina, San Diego, CA, United States),
adaptors A and B, the former of which harbored an 8-nucleotide
barcode sequence, were added to the forward and reverse primer
sequences, respectively. DNA was detected by 1% agarose gel
electrophoresis after genomic DNA extraction. Specific barcoded
primers or fusion primers with misplaced bases were synthesized
according to the specified sequencing region. The same primer
set (K2f [5′-ACCAYCAAGCCSAAGCTSGG-3′] and V2r [5′-
GCCTTCSAGCTTG CCSACCRC-3′]) and a thermal profile
for real-time PCR were used for cbbL gene amplification
with Illumina MiSeq sequencing. The PCR products of the
same sample were mixed and detected by 2% agarose gel
electrophoresis. Then, the PCR products were recovered via gel
extraction using an AxyPrep DNA gel recovery kit (Axygen
Inc., Union City, CA, United States) and a Tris-HCl elution
and were detected by 2% agarose electrophoresis. All the PCR
steps were performed with a Mastercycler Gradient (Eppendorf,
Hamburg, Germany). The resulting purified amplicons were
pooled in equimolar concentrations and paired-end sequenced
on an Illumina MiSeq PE300 platform (Illumina, San Diego,
CA, United States) by Allwegene Technology Co., Ltd. (Beijing,
China). The raw sequence data were submitted to the National
Center for Biotechnology Information Sequence Reads Archive
under accession No. PRJNA633225.

The cbbL gene sequences were checked for close relatives
to known cbbL sequences in GenBank (the National Center
for Biotechnology Information database) using the BLAST
program1. Trimmomatic (version 0.36) and PEAR (version 0.96)
were used to manipulate the FASTQ data. The sliding-window
strategy was adopted using a window size set to 50 bp, an average
mass value of 20, and a minimum reserved sequence length
of 120. FLASH (version 1.20) and PEAR were used to merge
the two end sequences according to the overlap relationship
of the PE. The minimum overlap was set to 10 bp, and the
mismatch rate was 0.1 to obtain the FASTA sequence. The
raw data were screened, and sequences were removed from
consideration if they were shorter than 200 bp, had a low-
quality score (≤20), contained ambiguous bases, or did not
exactly match primer sequences and barcode tags. Clean tags
were clustered (or denoised) to generate operational taxonomic
units (OTUs) using the UPARSE method (version 9.2) (Edgar,
2013) and the UNOISE method (Rognes et al., 2016). The
sequences were clustered into OTUs at a similarity level of 97%
(Edgar, 2013), resulting in the identification of 1542 OTUs,
from which 1528 OTUs were extracted. A rarefaction curve
was constructed by the random sampling of sequences and the
number of OTUs that they represented (Amato et al., 2013).
Sample rarefaction curves can be used to check the rationality

1http://blast.ncbi.nlm.nih.gov/Blast.cgi
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of the data (Supplementary Figure 1). If the curve tends to
be flat, more data will only generate a small number of new
OTUs, indicating that the amount of sequencing data used is
reasonable. The Shannon–Wiener curve (Edgar, 2013) is an
index that reflects the diversity of microorganisms in a sample
and is constructed using the microbial diversity index of each
sample at different sequencing depths to reflect the microbial
diversity of each sample with different sequencing quantities
(Supplementary Figure 2). If the curve tends to be flat, the
amount of sequencing data is large enough to reflect most of the
microbial information in the sample. The alpha diversity indices
of the cbbL-harboring bacteria were calculated with MOTHUR
software at a 97% similarity based on the OTU clustering results.

Data Processing and Analysis
ANOVA was performed to test the effects of the N addition
gradient on cbbL gene abundance, cbbL OTUs, Shannon index
values, bacterial phospholipid-derived fatty acids (PLFAs) and
dominant cbbL-containing bacteria using IBM SPSS 20.0. Fisher’s
least significant difference (LSD) multiple range test was used
to determine the significance of differences among the N
addition treatments.

Correlation analysis was used to assess how cbbL gene
abundance and cbbL OTUs were related to the Shannon index
using IBM SPSS 20.0.

We estimated the strength of the relationships between N
addition and NO3-N and NH4-N contents, the N/P ratio, pH,
cbbL gene abundance and cbbL diversity by structural equation
modeling (SEM) using IBM AMOS 21.0. In this model, we
hypothesized that N addition may directly alter the abundance
and diversity of the cbbL gene and indirectly change the NO3-
N and NH4-N contents, N/P ratio and pH value. We used
the chi-square test (χ2), goodness-of-fit index (GFI), root mean
square error of approximation (RMSEA) and Akaike information
criterion (AIC) to assess the degree of fit of this model.

The overlap of the number of OTU groups under different
N addition treatments is represented by a Venn diagram.
Principal coordinate analysis (pCoA) was used to visualize
the differences in cbbL gene communities among the different
N addition treatments using the R software environment
(version 3.6.1). To determine if N addition altered cbbL gene
community composition, a permutational analysis of variance
(PERMANOVA) analysis was conducted with the Bray–Curtis
similarity index using the R software environment (version
3.6.1). The biomarkers with significant differences in abundance
between groups under the different N addition treatments
were identified by linear discriminant analysis effect size
(LEfSe; score = 3).

RESULTS

Effect of Nitrogen Deposition on cbbL
Gene Abundance and Diversity
The results showed that compared to the N0 treatment, the N150
treatment reduced the cbbL gene abundance, with an observed
decrease of 8% (Figure 1A and Supplementary Table 2), whereas

no differences were observed among the N0-N100 treatments.
The OTUs decreased with increased N addition. Compared to
the N0 treatment, the N150 treatment significantly reduced the
OTUs by 9% (Figure 1B and Supplementary Table 2), whereas
no significant differences were observed among the N0-N100
treatments. N addition significantly affected the Shannon index
(P < 0.001; Figure 1C and Supplementary Table 2). Compared
to that of the N0 treatment, the Shannon index decreased
by 10.0 and 22.69% under the N100 and N150 treatments,
respectively, whereas no differences were observed among the
N0–N50 treatments. No significant differences were observed in
the other cbbL genetic diversity indices (Chao1, observed species,
and PD whole tree) with different N addition levels (P > 0.05;
Supplementary Table 2). The results showed that compared to
the N0 treatment, the N100 treatment enhanced the bacterial
PLFAs, with an increase of 75% (Supplementary Figure 3 and
Supplementary Table 2).

Effect of Nitrogen Deposition on the
Composition of the cbbL Gene
Community
Under the different levels of N addition, 1061 common OTUs
were observed, representing 69.7% of the total OTUs. The N0,
N15, N100, and N150 treatments had 18, 13, 19, and 13 specific
OTUs, respectively (Figure 2A). The PCoA results showed that
the cbbL gene communities clustered strongly based on different
N addition levels (Figure 2B). The PERMANOVA results for
the cbbL gene communities was consistent with those of the
PCoA and could explain 46.99% of the variation in the cbbL-
containing bacterial communities under different N addition
levels. Specifically, the first coordinate (PCoA1) separated the
N100 and N150 treatments from the other N treatments (N0,
N15, N30, and N50), while the second coordinate (PCoA2)
explained the remaining 8.95% of the dissimilarity.

At the phylum level, members of the phylum Proteobacteria
were the dominant cbbL-containing bacteria (relative
abundance > 80%), the relative abundance of which increased
with increasing N addition (P < 0.001; Figure 3A and
Supplementary Table 2). The results showed that compared
to the N0 treatment, the N150 treatment enhanced the relative
abundance of Proteobacteria, with an observed increase of 11%
(Supplementary Table 3), whereas no differences were observed
among the N0–N50 treatments.

At the class level, Gammaproteobacteria (45.4–56.2%
relative abundance), Betaproteobacteria (11.25–20.25% relative
abundance), and Alphaproteobacteria (12.75–25.75% relative
abundance) were the dominant cbbL-containing bacteria
(Figure 3B). The relative abundances of Gammaproteobacteria
and Alphaproteobacteria were enhanced with increasing N
addition (P < 0.01; Figure 3B and Supplementary Tables 2, 3).
Compared to the N15 treatment, the N150 treatment significantly
increased the relative abundance of Gammaproteobacteria by 8%.
Compared to the N0 treatment, the N150 treatment significantly
increased the relative abundance of Alphaproteobacteria by 13%.
The relative abundance of Betaproteobacteria was significantly
decreased under the N100 and N150 treatments, whereas no
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differences were observed among the N0–N50 treatments
(P < 0.001; Supplementary Table 3).

At the order level, Acidiferrobacterales (23.00–34.25% relative
abundance), Chromatiales (21.5–27.5% relative abundance),
Burkholderiales (11.00–20.00% relative abundance), Rhizobiales
(1.0–20.00% relative abundance), and Rhodobacterales (5.50–
13.00% relative abundance) were the dominant cbbL-containing
bacteria (Figure 3C). The N100 treatment significantly increased
the relative abundance of Acidiferrobacterales, whereas no

differences were observed among the N0–N50 and N150
treatments. Compared to the N0 treatment, the N150 treatment
significantly increased the relative abundance of Rhizobiales by
19%, whereas no differences were observed among the N0–
N100 treatments. The relative abundance of Burkholderiales and
Rhodobacterales was significantly decreased in the N100 and
N150 additions, whereas no differences were observed among the
N0–N50 treatments (P < 0.001; Figure 3C and Supplementary
Tables 2, 3).
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The structure of the cbbL -containing gene community
changed under N addition in 10 families (Supplementary
Figure 4). Under the N100 treatment, significant differences

in cbbL-containing microbes occurred in the families
Acidiferrobacteraceae (order Acidiferrobacterales) and
Sphingomonadaceae (order Sphingomonadales). Under
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the N150 treatment, a significant difference in cbbL-
containing microbes occurred in the family Bradyrhizobiaceae
(order Rhizobiales).

Factors Affecting cbbL-Containing
Microbes
The correlation analysis results showed that the Shannon
index was positively correlated with cbbL gene abundance
(r2 = 0.464, P = 0.022; Supplementary Figure 5). The number
of OTUs was positively correlated with cbbL gene abundance
(r2 = 0.620, P = 0.001; Supplementary Table 4). The abundance
of cbbL-containing microbes was significantly correlated with soil
properties. The cbbL gene abundance (r2 = 0.473, P = 0.002;
Supplementary Table 5) and the Shannon index were negatively
correlated with total N (r2 = 0.541, P = 0.006; Supplementary
Table 4), while the Shannon index was negatively correlated
with NO3-N (r2 = 0.596, P = 0.002; Supplementary Table 5)
and NH4-N (r2 = 0.521, P = 0.009; Supplementary Table 5).
A positive correlation was observed between pH and the number
of OTUs (r2 = 0.443, P = 0.03; Supplementary Table 5), cbbL
gene abundance (r2 = 0.442, P = 0.031; Supplementary Table 5)
and the Shannon index (r2 = 0.634, P = 0.001; Supplementary
Table 5). In addition, the cbbL gene abundance (r2 = 0.460,
P = 0.024; Supplementary Table 5) and the Shannon index
(r2 = 0.598, P = 0.002, Supplementary Table 4) were negatively
correlated with the N/P ratio. There was a positive correlation
between C/N and the number of OTUs (r2 = 0.438, P = 0.032;
Supplementary Table 5), cbbL gene abundance (r2 = 0.552,
P = 0.005; Supplementary Table 5) and the Shannon index
(r2 = 0.606, P = 0.002; Supplementary Table 5). No correlations
were observed between cbbL-containing microbes and SOC levels
(Supplementary Table 5).

The SEM results explained 70% of the variation in cbbL gene
abundance (Figure 4A and Supplementary Table 6) and showed
that N addition indirectly affected the cbbL gene abundance by
altering the soil N/P ratio and soil pH. However, the contribution
of available N was highly limited. The SEM explained 88% of
the variation in the diversity of cbbL-containing microbial OTUs.
In addition, the SEM results (Figure 4B and Supplementary
Table 6) showed that N addition indirectly affected the diversity
of cbbL-containing microbes by altering the soil NO3-N content
and soil pH.

DISCUSSION

In the present study, we investigated the responses of CO2-
fixing microbes to N additions through a 9-year controlled
experiment conducted in temperate grassland. Three primary
results emerged: (1) N addition reduced the cbbL gene abundance
and the diversity of cbbL-containing microbes; (2) the decrease
in cbbL-containing microbial diversity was associated with an
increase in NO3-N content and pH; and (3) N deposition
reduced cbbL gene abundance, possibly by altering the soil
pH and N/P ratio.

Treseder (2008) previously observed that microbial
biomass decreased by 15% under N deposition, indicating

that atmospheric N deposition would inhibit the growth and
reproduction of soil microorganisms in 28 regions worldwide.
Our results demonstrated that high N addition reduced both cbbL
gene abundance and diversity. Research findings on the effects
of N addition on microbial diversity have been inconsistent.
The results of a previous meta-analysis revealed that N addition,
particularly high N addition (above 100 kg N ha−1 yr−1),
decreased soil microbial diversity, although the effects may vary
among different ecosystems (Wang C. et al., 2018). In contrast,
Zhou et al. (2019) observed that cbbL gene diversity was lowest
under 0N addition conditions and that there was a positive effect
of nutrient addition on soil cbbL gene diversity after 26 years
of fertilization. Under long-term field fertilization, an increase
in soil available nutrients has been shown to promote cbbL
gene abundance and diversity (Yuan et al., 2012). Our results
showed that high N addition (150 kg N ha−1 yr−1) decreased
the cbbL gene abundance and diversity in temperate grasslands
after 9 years of N addition. Thus, the different response patterns
among various plant community compositions and long-term
fertilization may depend on the ecosystem environment.

The decreased cbbL gene abundance and diversity were
observed to be linked to changes in soil properties, particularly
the concentration of NO3-N, the soil pH and the N/P ratio,
associated with N addition. As N addition increased, the NO3-
N content and the N/P ratio increased significantly, whereas
the soil pH decreased significantly (Supplementary Table 1).
The soil pH decreased with the increased addition of NO3-N,
which is consistent with the results of previous studies (Zeng
et al., 2016; Wang Q. et al., 2018; Hong et al., 2019). Zhao et al.
(2018) also observed that cbbL gene abundance was significantly
correlated with soil pH. N addition has been shown to result
in an imbalance in the soil N/P ratio in terrestrial ecosystems
(Vitousek et al., 2010; Li et al., 2016). The soil N/P ratio appeared
to have a negative effect on cbbL gene abundance, with the N/P
ratio being the key influencing factor. The soil available N content
was previously shown to be significantly correlated with the gene
abundance of CO2-fixing microorganisms (Huang et al., 2018; Du
et al., 2019). However, the contributions of NH4-N and NO3-
N contents to the cbbL gene abundance were limited under N
addition conditions in our present study.

Nutrient availability can alter microbial diversity (Zhang et al.,
2012). Our results showed that N addition primarily reduced the
diversity of cbbL-containing microbes by altering the soil NO3-N
concentration and pH. Zhao et al. (2018) previously reported that
high concentrations of available N increase the diversity of CO2-
fixing microorganisms. These results contrast with our findings,
which indicated that high NO3-N concentrations suppress the
diversity of CO2-fixing microorganisms. Soil microorganisms are
becoming increasingly vulnerable due to increasing N deposition
in grasslands (Wang C. et al., 2018).

N addition consistently altered cbbL gene community
composition. The order Acidiferrobacterales was previously
identified as the dominant group of CO2-fixing of microbes in
temperate grassland, while Rhizobiales became the dominant
order under high N addition. Zhou et al. (2019) observed that
Proteobacteria was the dominant known soil cbbL-containing
bacterial phylum with the highest abundance after 26 years
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FIGURE 4 | Structural equation modeling (SEM) of the effects of N addition on soil physicochemical factors (pH, NO3-N, NH4-N, and the N/P ratio) and CO2-fixing
microbes [cbbL gene abundance (A) and cbbL diversity (B)]. The final model resulted in a good fit to the data. ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05. For cbbL gene
abundance: χ2 = 6.575, df = 6, P = 0.362; RMSEA = 0.065; GFI = 0.919 and AIC = 36.575. For cbbL diversity: χ2 = 6.575, df = 6, P = 0.362; RMSEA = 0.065;
GFI = 0.919; and AIC = 36.575. The number above the arrow indicates the standardized path coefficient, and the width of the arrow indicates the effect size of the
relationship. The percent (gray) variance explained (R2) is shown above each variable. The blue arrows indicate a significant positive relationship (P < 0.05), while the
red arrows indicate a negative relationship (P < 0.05).
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of fertilization. Consistent with their results, we observed that
the relative abundance of Proteobacteria was greater than
80% and increased with N addition. Compared to low and
intermediate rates of N addition, the CO2-fixing microbial
community characteristics were different under the N100 and
N150 treatments. The relative abundances of Acidiferrobacterales
and Rhizobiales were higher in the N100 and N150 treatments
than those observed in the other treatments. Consistent with our
results, Zhang et al. (2017) observed that the relative abundance
of Acidobacteria increased at a high N level. The response
of Acidiferrobacterales is primarily caused by N addition and
pH changes (Ramirez et al., 2012). Our results showed that
members of the order Rhizobiales became the dominant CO2-
fixing microbes under the N150 treatment (from a 1% relative
abundance under N0 addition to a 20.25% relative abundance
under N150), which might play a significant role in microbial
CO2 fixation. Research on grassland and forest ecosystems has
also demonstrated that Rhizobium is the dominant bacterium
among carbon-fixing microorganisms (Guo et al., 2015; Li et al.,
2018; Zhao et al., 2018). The dominant populations of CO2-
fixing microorganisms in different research areas vary greatly
and are ultimately determined by soil properties and genetic
characteristics (Tolli and King, 2005).

Soil organic carbon is one of the most significant factors
influencing the abundance and diversity of cbbL-containing
bacteria (Yuan et al., 2012; Xiao et al., 2014; Li et al., 2018),
but our results indicated that SOC contributed little to the
changes in CO2-fixing microbes under N addition. Research
shows that the SOC concentration, particularly significant
changes in SOC concentration, has a significant relationship
with the diversity and abundance of cbbL-containing bacterial
communities (Osborn et al., 2000; Yuan et al., 2012). In our
present study, N addition did not alter the SOC concentration
(Supplementary Table 1). Another N deposition study also
reported no impact of N addition on SOC (Schleuss et al., 2019).
Such patterns suggest that the contribution of SOC to CO2-
fixing microbes is highly limited under the N addition conditions
studied. This inconsistency in the results suggests that other
important factors besides SOC may trigger changes in CO2-fixing
microbes. We also considered other factors that could potentially
impact CO2-fixing microbes in response to N addition, such
as the N/P ratio. Several previous studies have reported that
the N/P ratio, particularly under P deficiency, is crucial under
N addition conditions and impacts CO2-fixing microbes (Dong
et al., 2019). Consistent with their results, we observed significant
negative correlations between the N/P ratio and the abundance of
CO2-fixing microbes.

In the present study, the coregulatory mechanism of soil
available N and pH is the most likely factor responsible for
the observed loss of the abundance and diversity of CO2-
fixing microbes under high N addition. First, N deposition
can influence the soil available N concentration (Liu et al.,
2013), where high NO3-N levels may inhibit CO2-fixing
microbial activity. The increased concentration of NH4-N did
not significantly influence CO2-fixing microbial diversity. Since
effects of NH4-N and NO3-N on soil CO2-fixing microbial
diversity have been observed, with the increasing proportion of

NO3-N in N deposition, the impact of N deposition on soil CO2-
fixing microbiota may become more severe (Liu et al., 2013).
However, observations on the effects of soil NH4-N were from
one grassland ecosystem, and whether the same phenomenon
will happen in other systems should be further studied. Second,
the significant positive correlation between the changes in the
abundance and diversity of CO2-fixing microbes and the changes
in soil pH and SEM results both indicated a link between CO2-
fixing microbes and soil pH. Soil pH changes in soil co-occur
with interactions among soil available nutrition (e.g., available
N) (Lammel et al., 2018), masking many indirect effects of pH
on soil CO2-fixing microbes. High levels of N addition can
drive soil acidification both directly and indirectly (Guo et al.,
2010). The consequence of soil acidification is the destruction of
microecological balance, which leads to the loss of a stable and
healthy soil environment (Wan et al., 2020) and is unfavorable
for CO2-fixing microbial growth.

CONCLUSION

To the best of our knowledge, this is the first study to report the
negative effects of N addition on the CO2-fixing microbes present
in temperate grassland. We showed that N addition primarily
reduced the abundance and diversity of CO2-fixing microbes
by altering soil available N and soil pH. These findings suggest
that N addition can alter CO2-fixing microbes and indicate
the importance of the coregulation of soil available N and pH
under N addition. The contribution of SOC to alterations in
the various CO2-fixing microbes under increased N addition
was very limited. As different effects of NH4-N and NO3-N on
soil CO2-fixing microbial diversity were observed in the present
study, we further speculate that with the increasing proportion
of NO3-N in N deposition, the impact of N deposition on soil
CO2-fixing microbiota may become more severe.
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Supplementary Figure 1 | Sample rarefaction curves. F, Fo, S, and T represent
the experimental replicates.

Supplementary Figure 2 | Shannon–Wiener curves. F, Fo, S, and T represent the
experimental replicates.

Supplementary Figure 3 | Effects of N addition on the bacterial Plfas. The
different letters above bars indicate significant differences based on the Lsd
multiple range test (P < 0.05). The central mark in each box indicates the average
value, the central line indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The whiskers extend to
the most extreme data points that are not considered outliers, and the outliers are
labeled with the ‘+’ symbol.

Supplementary Figure 4 | Cladogram showing carbon dioxide-fixing microbial
community compositions under different N addition treatments (LefSe; score = 3).
The six rings of the cladogram represent the domain (innermost) phylum, class,
order, family, and genus. The enlarged circles in dark green, blue, and red are

differentially abundant taxa identified as taxonomic biomarkers under the
different treatments. Lineages with linear discriminant analysis scores with a
threshold value of 3.0 were used to identify the degree of differentiation between
treatments.

Supplementary Figure 5 | Relationship between the cbbL Shannon index values
and abundance. The solid red line indicates a significant relationship, and the
shaded area shows the 95% confidence interval of the fit.

Supplementary Table 1 | Soil physicochemical factors under different N addition
levels.

Supplementary Table 2 | Results (F values) of an Anova of the effects of N
addition on bacterial Plfas, cbbL gene abundance, Otus, the Shannon index, and
the relative abundance of dominant cbbL-containing microbes.

Supplementary Table 3 | Soil cbbL-containing microbes under different N
addition levels.

Supplementary Table 4 | Correlation analysis between the bacterial Plfas and
cbbL Otus, abundance, and Shannon index values.

Supplementary Table 5 | Correlation analyses between soil properties and the
cbbL Otus, abundance, and Shannon index values.

Supplementary Table 6 | Structural equation modeling of the effect of N addition
on the cbbL diversity (Otus) and abundance through all plausible interaction
pathways. The tables show the unstandardized path coefficients (estimates),
standard error of regression weights (S.E.), critical values for the regression
weights (C.R.), and levels of significance of the regression weights (P).
∗∗∗ Indicates P ≤ 0.001, ∗∗ indicates P ≤ 0.01, and ∗ indicates P ≤ 0.05.
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