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Abstract

Motivation: Molecular property prediction is a hot topic in recent years. Existing graph-based models ignore the
hierarchical structures of molecules. According to the knowledge of chemistry and pharmacy, the functional groups
of molecules are closely related to its physio-chemical properties and binding affinities. So, it should be helpful to
represent molecular graphs by fragments that contain functional groups for molecular property prediction.

Results: In this article, to boost the performance of molecule property prediction, we first propose a definition of
molecule graph fragments that may be or contain functional groups, which are relevant to molecular properties,
then develop a fragment-oriented multi-scale graph attention network for molecular property prediction, which is
called FraGAT. Experiments on several widely used benchmarks are conducted to evaluate FraGAT. Experimental
results show that FraGAT achieves state-of-the-art predictive performance in most cases. Furthermore, our case
studies show that when the fragments used to represent the molecule graphs contain functional groups, the model
can make better predictions. This conforms to our expectation and demonstrates the interpretability of the proposed
model.

Availability and implementation: The code and data underlying this work are available in GitHub, at https://github.
com/ZiqiaoZhang/FraGAT.

Contact: sgzhou@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The goal of drug discovery is to find new molecules with desired
properties, including pharmacological, toxicological, pharmacoki-
netic properties, etc. (Schneider et al., 2020; Zhong et al., 2018).
Using prediction models to evaluate these properties of a designed
molecule is an essential step in the whole drug discovery process.

Conventional methods build prediction models by using the
underlying physical mechanisms of molecules (Esposito et al.,
2004). In the past decade, the rapid development and wide applica-
tion of artificial intelligence (AI) techniques have shown its great
success in many areas, especially in computer vision and natural lan-
guage processing (NLP). With the increasing amassment of access-
ible drug data, AI techniques are being introduced into drug
discovery, and a number of AI-based models for molecular property
prediction have been developed (Jiménez et al., 2018; Liew et al.,
2009; Melville et al., 2009; Peng et al., 2020). Particularly, with the
development of graph neural networks (GNNs) in recent years (Kipf
and Welling, 2017; Veli�ckovi�c et al., 2018), graph-based molecular
property prediction is becoming a hot research topic (Coley et al.,

2017; Duvenaud et al., 2015; Gilmer et al., 2017; Kearnes et al.,
2016; Xiong et al., 2020; Zhou and Li, 2017).

The graph-based molecular property prediction models view
molecules as graphs with attributes and use graph neural networks
to extract features from these graphs (Liu et al., 2019). Usually,
graph embedding is first exploited to encode the information of in-
put molecules into feature vectors, then a network (e.g. a fully con-
nected network, or FCN in short) is used to do prediction based on
the feature vectors.

However, most of the existing models treat molecules as flat
structures. These models first calculate the node embedding of each
atom in a molecule, and then the graph embedding of the molecule
is obtained by using a readout function. Obviously, the hierarchical
structures of molecules are ignored.

According to the knowledge of chemistry and pharmacy, it is
known that several atoms can form small atomic groups, which can
further form larger atomic groups, and then these larger groups con-
stitute molecules (Muller, 1994). A molecule may consist of many
atomic groups, while some specific atomic groups will determine its
certain molecular property. For instance, the binding between a
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molecule and any of its targets is in essence the interaction between
some specific atomic groups of the molecule and the target protein
(Guvench, 2016). These atomic groups are called functional groups.
So functional groups are important features for molecule property
prediction. However, extracting functional groups from molecules is
computationally expensive.

In the literature, several methods split molecular graphs into
small subgraphs to predict molecular properties. Armitage et al.
(2019) proposed the FraGVAE model for molecular property predic-
tion on some small datasets. This model uses a variational autoen-
coder to encode molecules. Each molecule is split into circular
groups of radius 1, and all of these small groups constitute a frag-
ment bag. Then, the fragment bag and the original molecular graph
are encoded respectively. Liu et al. (2019) introduced N-Gram
Graphs for molecule property prediction, inspired by n-grams typic-
ally used in the NLP field. The N-Gram Graph model breaks a mo-
lecular graph into a set of n-gram walks, i.e. a walk of length n in
the molecular graph, which are viewed as fragments. A word
embedding model is then used to embed each vertex into node
embedding. And finally, a simple GNN with no learnable parame-
ters is adopted to generate graph embedding based on the node
embeddings. Although the above-mentioned methods split mole-
cules into fragments, which are not guaranteed to be real (or valid)
atomic groups in the sense of chemistry and pharmacy. Particularly,
these fragments may break an aromatic ring into invalid groups (see
Supplementary Fig. S1). Therefore, functional groups relevant to the
molecular properties may not be represented by these fragments.

In this article, to boost the performance of molecule property
prediction, we first define fragments of molecule graphs in a chem-
ical-interpretable way, and then propose a fragment-based molecu-
lar property prediction model with a multi-scale graph attention
network. In this model, molecules are broken into fragments that
may be or contain functional groups of the molecules, and graph at-
tention networks are used to encode multi-scale structural informa-
tion of molecules at three levels. To the best of our knowledge, this
is the first GNN-based model that tries to use fragments to represent
functional groups of molecules for molecular prediction. The model
is evaluated on 14 benchmark datasets, and experimental results
show that our model achieves state-of-the-art performance in most
cases. Furthermore, we also perform case studies, and the results
show that when a molecule graph is split into two fragments, and at
least one of them is functional group relevant to molecule properties,
the FraGAT model achieves better prediction, which conforms to
our expectation and demonstrates the interpretability of the pro-
posed model to certain extent.

The rest of this article is organized as follows: Section 2 presents
the proposed method in detail. Section 3 is performance evaluation.
And Section 4 concludes this article.

2 Materials and methods

2.1 Molecular fragments
Here, we first give a chemical-interpretable definition of fragments,
and introduce a simple yet effective method to extract fragments
from a molecule.

2.1.1 Fragment definition

Considering the latent relationship between functional groups and
molecular properties, the motivation of this work is to build a model
to leverage this relationship to make predictions. However, it is non-
trivial to extract the functional groups relevant to molecule proper-
ties from all possible atomic groups that constitute a molecule. So,
the basic idea is to split molecule graphs into fragments that repre-
sent the atomic groups among which there might be functional
groups. Then, by using these fragments to characterize a molecule, a
neural network model may be able to learn the latent relationship.
Here, the difficulty is twofold: how to define the fragments and how
to extract such fragments from molecules.

For the convenience of discussion, in this work atomic groups
are classified into two types: (i) Small atomic groups that contain no

acyclic single bonds (hydrogen-depleted), which are called basic
atomic groups, e.g. –OH, –NH2, –X, etc. (ii) Large atomic groups
that are formed by the combinations of basic atomic groups through
acyclic single bonds, such as carboxyl, tolyl, etc. We call them com-
bined atomic groups.

Both these two types of atomic groups may be relevant to the
properties of molecules. For example, a –X can affect the metabol-
ism property and toxicity of a drug. And the influence of an xylyl
that consists of two methyls and a benzene ring on the toxicity of a
molecule is much stronger than that of a tolyl, which consists of one
methyl and a benzene. However, the structure difference between
one and two methyls is not large enough to explain the toxicity dis-
parity. This indicates that both basic atomic groups and combined
ones should be covered by the fragments used to represent
molecules.

Considering that most atomic groups in a molecule connect with
the other parts by acyclic single bonds (Ertl et al., 2020), the acyclic
single bonds can be seen as boundaries of atomic groups. So we give
a formal definition of fragments as follows:

Definition 1.Given a hydrogen-depleted molecular graph, fragments in-

clude small subgraphs that are generated by breaking all of the acyclic

single bonds, and large subgraphs formed by the combinations of small

subgraphs that are connected in the original molecular graph. We call

the small subgraphs basic fragments, and the large subgraphs combined

fragments of the molecule graph.

Figure 1 is an example to illustrate the fragments of an aspirin molecule.

Based on the definition above, both basic functional groups and com-

bined functional groups of a molecule can be represented by single

fragments.

2.1.2 Fragment extraction

According to Definition 1, we can enumerate all of the fragments in
a molecule. However, considering that the structures of organic
chemicals are complex, which usually consist of long backbones and
many branches, the number of acyclic single bonds in a molecule
may be very large, as shown in Supplementary Table S1. And the
number of possible fragments grows exponentially with the number
of acyclic single bonds. So, it is computationally expensive to

Fig. 1. The fragments of an aspirin molecule according to Definition 1. The acyclic

single bonds in aspirin are highlighted by red lines. The molecule is first split into

basic fragments by breaking all of the acyclic single bonds, then these basic frag-

ments are combined iteratively to form combined fragments
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enumerate all fragments of a molecule. Here, an alternative is pro-
posed to efficiently solve this problem as follows:

Given a molecule, all acyclic single bonds are denoted as break-
able bonds. During the training phase, each time when the molecule
is fed into the model, a breakable bond is randomly chosen to be
broken. Thus, two subgraphs are generated. Obviously, these two
subgraphs conform to the definition of fragments. So, we get two
fragments, or a fragment-pair, of the molecule each time. In such a
way, computational cost and memory consumption for model train-
ing can be substantially reduced.

While in the evaluation phase, if we still use the randomly break-
ing strategy for each test molecule, the prediction will be too ran-
dom. So we employ a data-augmentation method for testing. As
shown in Figure 2, each molecule is augmented to a batch of ‘sam-
ples’ by breaking different breakable bonds. The batch size is Nb—
the number of breakable bonds. All these samples are fed into the
model, which results in a batch of predictions. The mean of these
predictive results is taken as the final prediction of this molecule.

With this strategy, though each time the model is fed only two
fragments of a molecule during the training phase, with the increase
of training epochs, the model is trained with more and more frag-
ment pairs (at most Nb unique fragment pairs). As a whole, the
model is trained with enough information of each molecule, though
not all information in the molecule. Actually, this strategy is a trade-
off between predictive performance and computational efficiency.

2.2 Network structure
The network structure of our proposed model FraGAT is shown in
Figure 3a. FraGAT uses three branches to extract and encode multi-
scale structural features of a given molecule. In the first branch (the
upper one in Fig. 3a), the original molecular graph is fed into the
feature extractor, which encodes the original molecular graph into
an embedding vector that carries the entire structural information of
this molecule. In the second branch (the middle one in Fig. 3a), the
original molecular graph breaks into a fragment-pair, which are fed
into the extractor to obtain the embedding vectors of these two frag-
ments. In the third branch (the bottom one in Fig. 3a), each frag-
ment-pair is abstracted to two super nodes (each of which
corresponds to a fragment) connected by the broken bond. Thus, a
junction tree (a tree-structured scaffold over the fragments) (Jin
et al., 2018) is generated. The embedding vectors of the two frag-
ments extracted in the second branch are used as the initial features
of the two super nodes. The junction tree is encoded by the feature
extractor to obtain the connectivity information of fragments. The
embedding vectors obtained through the tree branches are then con-
catenated as the representation vector of the processed molecule.

A FCN is used to predict the properties of molecules based on
the extracted representations. The prediction task can be either clas-
sification or regression. Cross-entropy and mean-squared error are
used as the loss function for classification and regression,

respectively. And for datasets used for multiple tasks, we have
‘all ¼

P
‘taski

, where ‘taski
is the loss function of the ith task.

2.3 Attentive FP and attentive layers
In Xiong et al. (2020), the authors proposed a graph neural network
structure called Attentive FP to encode structural information of
molecules based on graph attentive networks (GATs). It has been
shown that Attentive FP outperforms previous works, including
GCN (Graph Convolutional Network) and MPNN (Message
Passing Neural Network) (Xiong et al., 2020; Wu et al., 2018). So
in this article, Attentive FP is adopted as feature extractor networks
to get graph embeddings.

The schematic diagram of Attentive FP network is shown in
Figure 3b. The molecular graph of a given molecule can be modeled as
an annotated graph G ¼ fV;E;Xatom;Xbondg, where V ¼ fv1; v2;
. . . ; vNg represents the set of atoms in the molecule, and E ¼
fe1; e2; . . . ; eMg represents the set of bonds between atoms. Xatom ¼
fxatom

1 ; . . . ;xatom
N g;Xatom 2 R

N�Fn denotes the feature matrix of chemical

properties of atoms, and Xbond ¼ fxbond
1 ; . . . ; xbond

M g;Xbond 2 R
N�Fe

denotes the feature matrix of chemical properties of bonds, where Fn and
Fe represent the dimension of chemical property vector of atoms and
bonds, respectively. The properties of atoms and bonds used in this work
are presented in Table 1. All of these chemical properties can be calcu-
lated by RDKit toolkits.

As shown in Figure 3b, the Attentive FP network consists of two
major components. In the first component, the original annotated
graph G is fed into the network, which uses k attentive layers to
extract information and produce the node embeddings:
H ¼ fh1; . . . ; hNg;H 2 R

N�F, where F is the dimension of the
embedding vectors. In the second component, to calculate the graph
embedding of the molecule, the original molecular graph G is
shrunk to a super node s. A star graph is constructed, denoted as
G0 ¼ fV0;E0;X 0nodeg, where V 0 ¼ fs; v1; v2; . . . ; vNg and
E0 ¼ fesi; i 2 Vg. In this component, only the feature matrix of
nodes, X 0node ¼ fx0s; x01; . . . ;x0Ng;X 0node 2 R

ðNþ1Þ�F, is needed. The
features of nodes in the hypergraph are initialized as follows:

x0s ¼
1

N

X
i2V

hi (1)

and

x0i ¼ hi; i 2 V (2)

Then, T attentive layers are used to extract the node embedding
of super node s, denoted as hs, which is considered as the graph
embedding of this molecule.

The attentive layers constitute the backbone of the Attentive FP
network for evaluating the embeddings of nodes. Figure 4 shows the

Fig. 2. Data-augmentation in the evaluation phase. Each molecule is augmented to a batch of samples. The model makes prediction for each sample, and the mean of these pre-

dictions will be taken as the final prediction of the molecule
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structure of an attentive layer. It is a node-wise mechanism that se-
quentially processes one target node t and its 1-hop neighborhood
N(t). The embedding of node t after the lth attentive layer is denoted

as hl
t. Multiple attentive layers stack together to extract the final

node embeddings.
Each attentive layer consists of two steps: aggregation and up-

date. In the aggregation step, the target node t aggregates the infor-
mation propagated from its 1-hop neighbors. An attention
mechanism is used to assign weights to the messages such that the
model focuses on the important message. The aggregation step with
attention mechanism in the lth attentive layer can be formalized as
follows:

�lti ¼ leakyreluðW � ½h
l�1
t ; hl�1

i �Þ; i 2 NðtÞ (3)

(a)

(b)

Fig. 3. (a) The structure of the FraGAT network. Three branches are used to extract multi-scale structural features of a given molecule. (b) The structure of Attentive FP net-

work (Xiong et al., 2020), which consists of two major components: the network for node embeddings and the network for graph embedding. Here, a star graph is generated

to readout the node embeddings

Table 1. Properties of atoms and bonds

Indices of atomic features Description

0–15 Atomic symbol encoded as a one-hot vector of [B, C, N, O, F, Si, P S, Cl, As, Se, Br, Te, I, At, metal]

16–21 Number of bonds encoded as a one-hot vector of [0,1,2,3,4,5]

22 Electrical charge

23 Number of radical electrons

24–29 Hybridization encoded as a one-hot vector of [sp, sp2, sp3, sp3d, sp3d2, other]

30 Aromaticity

31–35 Number of connected hydrogens encoded as a one-hot vector of [0,1,2,3,4]

36 Whether the atom is chiral center

37–38 Chirality type, encoded as a one-hot vector of [R, S]

Indices of bond features Description

0–3 Bond type, encoded as a one-hot vector of [single, double, triple, aromatic]

4 Whether the bond is conjugated

5 Whether the bond is in a ring

6–9 Stereo, encoded as a one-hot vector of [StereoNone, StereoAny, StereoZ, StereoE]

Note: The choice of chemical properties is the same as Xiong et al. (2020).

Fig. 4. The attentive layer structure. Attention mechanism is used to aggregate infor-

mation from neighbors of target node t, and GRU is used to update the embedding

of t
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al
ti ¼ softmaxð�ltiÞ ¼

expð�ltiÞP
i2NðtÞ exp ð�ltiÞ

(4)

Cl
t ¼ elu

� X
i2NðtÞ

al
tiW � h

l�1
i

�
(5)

The node embeddings of target node t and its 1-hop neighbors i,
i.e. h0

t and h0
i ; i 2 NðtÞ, are initialized as follows:

h0
t ¼ xatom

t (6)

h0
i ¼ ½xatom

i ; xbond
eti
�; i 2 NðtÞ (7)

Then, in the update step, a Gated Recurrent Unit (GRU) is used
(Cho et al., 2014). It absorbs Cl

t (the information aggregated from
the neighbors) and hl�1

t (the embedding vector of target node t at the
previous layer) to generate an updated embedding hl

t. The GRU
learns to determine how much information aggregated from its
neighbors to be exploited and how much information of the current
embedding to be reserved. This mechanism can be formally
described as follows:

hl
t ¼ GRUlðhl�1

t ;Cl
tÞ (8)

It is worth noting that, as mentioned before, in the second com-
ponent of the Attentive FP network, T attentive layers are used to
extract hs. These attentive layers are responsible for calculating and
updating the embedding of the super node s. The information of
nodes propagates from N(s) to s, and the embeddings of nodes in
N(s) remain constant.

3 Experiments and results

To evaluate the performance of our proposed FraGAT model, 14
benchmark datasets are used in our experiments. We compare our
method with a number of existing methods, including the latest and
state-of-the-art methods. Ablation study is also conducted to evalu-
ate the effectiveness of the three branches in the FraGAT model.
Furthermore, interpretation study is carried out to show the ability
of our model to identify fragments that essentially impact molecular
properties. To this end, we collected molecules that can bind with
the SHP2 target to build a SHP2 dataset from published patents (see
Supplementary Table S3 for details).

3.1 Experimental results on benchmarks
Datasets used in our experiments are from Wu et al. (2018), includ-
ing classification and regression tasks. Statistical information of
these datasets is presented in Supplementary Tables S1 and S2 of
Supplementary File. For the regression tasks, root mean squared
error (RMSE) is used as the metric, which is the smaller the better.
And for the classification, area under ROC curve (AUC-ROC) is
used, which is the larger the better. Here, we compare our model
with existing methods, which are split into three groups: (i) recent
(or state-of-the-art) GNN based methods, including Attentive FP
(Xiong et al., 2020), N-Gram Graph (Liu et al., 2019) and CMPNN
(Song et al., 2020); (ii) Early GNN based methods, including GCN,
Weave, DAG (Directed Acyclic Graph), DTNN (Deep Tensor
Neural Network), ANI-1 and MPNN; and (iii) traditional machine
learning (ML) based methods, including Log-reg, SVM, KRR, RF,
XGBoost, Multitask, Bypass and IRV. As the second and third
groups contain a relatively large number of methods, we present
only the best result of each group on each dataset to reduce space.
Performance results of existing methods are from the published
papers (Liu et al., 2019; Song et al., 2020; Xiong et al., 2020). Our
experiments follow the configurations of Attentive FP in Xiong et al.
(2020), including the 8:1:1 splitting ratio of train:valid:test, and the
choices of splitting strategy for different datasets.

Experimental results on 13 benchmarks are presented in Table 2.
As the QM9 dataset involves different tasks, we present the experi-
mental results in Supplementary Table S4 of Supplementary File to

reduce space. As shown in Table 2, we can see that our model
achieves best performance on 8 of the 13 benchmark datasets, and
performs the 2nd best on the remaining 5 datasets. This demon-
strates the effectiveness of our fragment-based multi-scale network
structure. CMPNN wins the others on two datasets. And it is sur-
prised to see that random forest (RF) does best on the SIDER data-
set. Though our model uses the Attentive FP network as feature
extractors, it outperforms Attentive FP on 11 of the 13 datasets.
Especially, on the BACE dataset, our method gets up to 7.7% per-
formance improvement. From Supplementary Table S4, we also can
see that our model achieves the best performance in most tasks. In
summary, empirical evaluation on 14 benchmark datasets show that
our method achieves the state-of-the-art performance.

3.2 Ablation study
To evaluate the effectiveness of the three branches in our FraGAT
model, an ablation study is conducted. We consider three additional
models for comparison as follows:

• M1: using only the information of original molecular graphs, i.e.

using only the upper branch. It is actually the Attentive FP

network.
• M2: using only the information of fragment-pairs, i.e. using only

the middle branch.
• M12: using the information of both the original molecular graph

and the fragment-pairs, i.e. using both the upper and the middle

branches.

The results of ablation study are given in Table 3. Comparing
M1, M12 and the FraGAT model, we can see that with more infor-
mation being considered in the model, the predictive ability is
improved, which shows the effectiveness of the proposed multi-scale
feature extraction network. Furthermore, the results of M2 show
that even using only fragment-pairs to represent molecules, the
model can still achieve relatively good predictive performance on
most datasets, which demonstrates the existence of relevance be-
tween fragments and properties of molecules.

3.3 Case studies
In the evaluation phase, each molecule is augmentated into a batch
of samples by breaking different breakable bonds. The model may
get different predictions for different samples. Thus, it is worthy of
studying on which samples the model can get better predictions.
Here, we conduct case studies to answer this question. To this end,
when predicting the properties of a given molecule, we compare the
predictions of all augmented samples, and check the two fragments
of the sample with the best result.

The experiment is conducted on the SHP2 dataset to predict mol-
ecule binding affinity. Here, the binding affinity is represented by
IC50, and the smaller the IC50 value is, the stronger the binding af-
finity is. In building the SHP2 dataset, only the molecules with the
IC50 smaller than 10 lM against the SHP2 protein are included. We
randomly split the SHP2 dataset into train, valid and test sets by
8:1:1. After the FraGAT model is trained, three molecules (denoted
by a, b and c) are selected from the test set for case study. The struc-
tures and the breakable bonds of the three chosen molecules are
shown in Figure 5. For each selected molecule, it is augmented to a
set of samples by breaking different breakable bonds, and the
FraGAT model does prediction for each sample, which is denoted as
yi (i ¼ 1; . . . ;Nb), Nb is the number of breakable bonds. The abso-
lute error between yi and the ground truth g, i.e. Ei ¼ jg� yij, is
evaluated. The samples of each molecule are ranked by Ei. The
results of all samples are shown in Supplementary Table S8, and the
information of the sample with the best prediction (the minimum
absolute error) of each molecule is shown in Table 4. Here, yi ¼
1

Nb

P
yi is the final prediction obtained by the model. E ¼ jg� yij

denotes the absolute error of the final prediction, m is the label num-
ber of the breakable bond of the sample with the minimum Ei, ym is
the prediction for this sample, and Em ¼ jg� ymj.
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Now we check the results of molecules a, b and c in detail. For
molecule a, the binding affinity is 0.064 lM. The amino-group on
the spirocycle of molecule a, similar to that of the molecule SHP099
(Fortanet et al. 2016) (see Supplementary Section S9 for detail), can
form ionic bond with the SHP2 protein and contributes major bind-
ing affinity to the molecule. From Figure 5, we can see that when
bond #5 is broken, this amino-group is a fragment, and the resulting
sample gets the best prediction, as shown in Table 4.

For molecule b, its binding affinity is 0.024 lM, better than that
of molecule a. Obviously, it should not be the amino-group on the
spirocycle that contributes to the stronger binding affinity. As dis-
cussed in LaMarche et al. (2020), compared with molecule a, the

sulpur atom in molecule b or called thioether, makes the molecule
more flexible and can form a conformation that binds more tightly
with the target. As the thioether is located in the middle of the chain
structure of the molecule, it cannot be extracted as a fragment by
the proposed fragment extraction method. Considering samples #1
and #2, if bond #1 is broken (corresponding to sample #1), a gener-
ated fragment is the combination of the thioether and an aryl ring;
When bond #2 is broken (corresponding to sample #2), the thioether
combines with a more complex remaining part to form a fragment.
The fragment of sample #1 is more concise than the fragment of
sample #2, so it may contain less irrelevant information than the
other one, which may make the model predict better. And in
Supplementary Table S8, we do find that E2 of sample #2 is much
larger than E1 of sample #1.

And for molecule c, its binding affinity is 0.003 lM, which is
much stronger than that of the other two molecules. By molecular
docking analysis (as shown in Supplementary Fig. S5), we find that
the hydroxy obtained by breaking bond #1 can form an extra hydro-
gen bond with GLU-249 of the SHP2 target to enhance the binding
affinity significantly. Obviously, E1 is the lowest value.

In addition to the sample with the lowest Ei, the fragments of
other top-ranked samples are also of pharmaceutical significance.
For example, the ortho-chlorine atoms on bond #5 and #6 of mol-
ecule c may fill the hydrophobic pocket in the same way as that of
SHP099, which is beneficial to binding. Similar situation may also
happen to the trifluoromethyl on bond #3 of molecule b (LaMarche
et al., 2020). The fluorine atom on bond #9 of molecule b may com-
bine with the SHP2 protein by water bridge effect (Gillis et al.,
2015), which also benefits binding affinity. From Supplementary
Table S8, we can see that the samples with these functional groups
as fragments generally have smaller Ei than the other samples.

From the results of case studies above, we can see that (i) if at
least one of the fragments of a sample is a functional group relevant
to molecule properties, our model predicts more accurately, and (ii)
our method can extract functional groups from molecule graphs,
which partially explains the excellent performance of our model. In
summary, our finding shows that our model can learn the

Table 2. Performance comparison on 13 benchmarks

Dataset Performance

metric

Splitting

strategy

Best result of traditional

ML based methods

Best result of early

GNN based methods

Attentive

FP

N-Gram

XGB

CMPNN FraGAT

ESOL RMSE Random XGBoost:0.99 MPNN:0.58 0.503 0.731 0.233 0.478

FreeSolv RMSE Random XGBoost:1.74 MPNN:1.15 0.736 – 0.819 0.538

HIV AUC-ROC Scaffold KernelSVM:0.792 GC:0.763 0.832 0.830 – 0.851

BACE AUC-ROC Scaffold RF:0.867 Weave:0.806 0.850 – – 0.927

BBBP AUC-ROC Scaffold KernelSVM:0.729 GC:0.690 0.920 – 0.963 0.933

Tox21 AUC-ROC Random KernelSVM:0.822 GC:0.829 0.858 0.847 0.856 0.863

SIDER AUC-ROC Random RF:0.684 GC:0.638 0.637 – 0.666 0.673

ClinTox AUC-ROC Random Bypass:0.827 Weave:0.832 0.940 0.874 0.933 0.969

Lipop RMSE Random XGBoost:0.799 GC:0.655 0.578 – – 0.569

Malaria RMSE Random Linear layer:1.13 Weave:1.07 0.99 – – 0.987

Photovoltaic RMSE Random Neural Net:2.00 MPNN:1.03 0.82 – – 0.942

MUV AUC-ROC Random – GC:0.775 0.843 – – 0.851

Toxcast AUC-ROC Random Multitask:0.702 Weave:0.742 0.805 – – 0.803

Note: The best result on each dataset is bolded. ‘–’ means no data, i.e. the method has not been tested on the dataset.

Table 3. Results of ablation study on eight datasets

Benchmark Metric M1 (attentive FP) M2 M12 FraGAT

ESOL RMSE 0.503 0.528 0.496 0.478

FreeSolv RMSE 0.736 0.580 0.544 0.538

HIV AUC-ROC 0.832 0.767 0.850 0.851

BACE AUC-ROC 0.850 0.916 0.925 0.927

BBBP AUC-ROC 0.920 0.921 0.929 0.933

Tox21 AUC-ROC 0.858 0.829 0.862 0.863

SIDER AUC-ROC 0.637 0.658 0.660 0.673

ClinTox AUC-ROC 0.940 0.962 0.967 0.969

Note: The best results are bolded.

Fig. 5. Structures of the three molecules selected from the test set of SHP2 dataset.

Each red segment labeled with number indicates a breakable bond

Table 4. Results of case studies

Molecule a Molecule b Molecule c

yi 0.110 0.021 0.035

G 0.064 0.024 0.003

E 0.046 0.003 0.032

M 5 1 1

ym 0.058 0.039 0.006

Em 0.006 0.015 0.003
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relationship between functional groups and the binding affinity,
which verifies the rationale of our model.

4 Conclusion

In this article, we present FraGAT, a fragment-oriented multi-scale
graph attention model for molecular property prediction. In this
model, a chemical-interpretable definition of fragments is proposed,
and an intuitive yet effective method is proposed to split a molecule
into fragments, which are or contain functional groups relevant to
molecule properties. By extracting features at three hierarchical lev-
els of molecule structures, FraGAT exploits multi-scale structural in-
formation to predict molecular properties. Experiments on 14
benchmark datasets are conducted to evaluate FraGAT, which is
compared with major existing methods. Experimental results show
that FraGAT can achieve the state of the art predictive performance
in most cases. Ablation study is also done, which demonstrates the
effectiveness of using three-level hierarchical structural information
of molecules in our model. Furthermore, case studies show that
when a molecule graph is split into two fragments, and at least one
of them is functional group relevant to molecule properties, better
prediction can be achieved. This shows the interpretability of the
proposed model.

For future work, the inclusion of 3D geometric structural infor-
mation is a promising direction. It is believed that the 3D structures
of molecules contain important information for property prediction.
So we will try to combine our fragment-based model and 3D mol-
ecule information to build more powerful models and further boost
prediction performance.
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