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Abstract

Motivation: The analysis of cancer genomes provides fundamental information about its etiology, the processes
driving cell transformation or potential treatments. While researchers and clinicians are often only interested in the
identification of oncogenic mutations, actionable variants or mutational signatures, the first crucial step in the ana-
lysis of any tumor genome is the identification of somatic variants in cancer cells (i.e. those that have been acquired
during their evolution). For that purpose, a wide range of computational tools have been developed in recent years
to detect somatic mutations in sequencing data from tumor samples. While there have been some efforts to bench-
mark somatic variant calling tools and strategies, the extent to which variant calling decisions impact the results of
downstream analyses of tumor genomes remains unknown.

Results: Here, we quantify the impact of variant calling decisions by comparing the results obtained in three import-
ant analyses of cancer genomics data (identification of cancer driver genes, quantification of mutational signatures
and detection of clinically actionable variants) when changing the somatic variant caller (MuSE, MuTect2,
SomaticSniper and VarScan2) or the strategy to combine them (Consensus of two, Consensus of three and Union)
across all 33 cancer types from The Cancer Genome Atlas. Our results show that variant calling decisions have a sig-
nificant impact on these analyses, creating important differences that could even impact treatment decisions for
some patients. Moreover, the Consensus of three calling strategy to combine the output of multiple variant calling
tools, a very widely used strategy by the research community, can lead to the loss of some cancer driver genes and
actionable mutations. Overall, our results highlight the limitations of widespread practices within the cancer genom-
ics community and point to important differences in critical analyses of tumor sequencing data depending on variant
calling, affecting even the identification of clinically actionable variants.

Availability and implementation: Code is available at https://github.com/carlosgarciaprieto/VariantCalling
ClinicalBenchmark.

Contact: eporta@carrerasresearch.org or alfonso.valencia@bsc.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The exponential growth in both, the generation and access to gen-
omic data from tumor samples and cancer patients, is transforming
all aspects of this disease, from basic research to its clinical care
(Hyman et al., 2017). For example, thanks to sequencing data, we

are beginning to understand the etiology of the mutational processes
that affect cancer cells (Alexandrov et al., 2013). Furthermore, we
are now able to track and reconstruct the phylogenetic tree of tumor
evolution (Nik-Zainal et al., 2012). Similarly, the large cohorts of
cancer patients that have been sequenced so far, have helped us
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identify germline and somatic mutations that predispose or drive
carcinogenesis, respectively (Bailey et al., 2018; Huang et al., 2018),
laying the foundations of personalized cancer care.

The first crucial step in analyzing cancer sequencing data is the
identification of genetic variants, particularly those of somatic ori-
gin. In that sense, the research community has made great efforts to
assess the performance of the many different somatic variant callers
available (Alioto et al., 2015; Cai et al., 2016; Sandmann et al.,
2017; Wang et al., 2013; Xiao et al., 2021; Xu, 2018). However, so
far, there has been no agreement on which variant caller, nor strat-
egy to combine them, is the most suitable. For instance, The Cancer
Genome Atlas (TCGA) implemented different variant callers on
multiple papers throughout its history (Abeshouse et al., 2017;
Ciriello et al., 2015; Robertson et al., 2017). This eventually led to
the Multi-Center Mutation Calling in Multiple Cancers (MC3) pro-
ject (Ellrott et al., 2018) to address standardization and reproduci-
bility issues at the end of TCGA. During MC3, many groups
worked together to define a clear and unique strategy to combine
the output of multiple variant calling tools. Other groups have
explored the use of machine-learning approaches to combine the
output of different variant calling tools (Anzar et al., 2019; Wood
et al., 2018). However, despite all these efforts, it is still unclear
which variant calling tool, or combination of tools, is optimal to
analyze cancer genomics data.

The biggest challenge in determining the optimal variant call-
ing tool or strategy is the lack of gold standard sets of somatic
variants. Another likely important reason is that it is difficult to
define a metric in cancer genomics. At the end of the day somatic
variant calling is a means to an end, as researchers and oncolo-
gists are interested not in the variant calling itself, but rather on
the results of downstream analyses. Sequencing data from tumors
can be used for many different secondary analyses, from finding
cancer driver genes and mutations to determining the presence of
clinically actionable mutations or quantifying the effects of muta-
tional signatures. Since none of the somatic variant callers or
strategies is perfect, it is possible that the answer to all these sec-
ondary analyses differs depending on which somatic variant call-
ing tool or strategy is used.

While there have been benchmarking studies comparing how
mutation callers find somatic mutations, to the best of our know-
ledge there has been no systematic study of the impact on variant
calling tools in secondary analyses. In this article, we studied how
decisions at the somatic variant calling stage of cancer genomics
data affect the results of three different secondary analyses: detec-
tion of cancer driver genes and mutations, quantification of muta-
tional signatures and identification of clinically actionable variants.

2 Materials and methods

2.1 Variant calling datasets
To compare the effects of different mutation calling approaches in sec-
ondary analyses, we analyzed the entire set of TCGA somatic mutation
files comprising 10 189 patients from 33 different cancer types and
spanning more than 3 500 000 unique somatic variants. We aimed to
explore the impact of different somatic variant calling strategies in
downstream analyses of cohorts with different sizes, mutational signa-
tures and mutational burdens. The Genomic Data Commons (GDC)
portal (https://portal.gdc.cancer.gov) gives access to all the processed
whole-exome sequencing (WXS) data for all the TCGA projects. In
particular, the GDC created the DNA-Seq pipeline (https://docs.gdc.
cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_
Pipeline/) to process all TCGA samples in a uniform way (Grossman
et al., 2016). Briefly, this pipeline includes sample preprocessing, align-
ment to the human reference genome GRCh38.d1.vd1 followed by
BAM cleaning and somatic variant calling with variant annotation and
aggregation. Somatic variants were identified in WXS data by compar-
ing allele frequencies in matched tumor-normal samples. The GDC
used four different variant calling tools to identify somatic mutations:
MuSE (Fan et al., 2016), MuTect2 (Cibulskis et al., 2013),
SomaticSniper (Larson et al., 2012) and VarScan2 (Koboldt et al.,

2012). After analyzing the WXS data for each individual sample, the
GDC pipeline includes an aggregation step that combines variants
from all cases of a cancer cohort into a single TCGA project mutation
annotation format (MAF) file. For a detailed explanation of the GDC
DNA-Seq pipeline see Supplementary Methods.

Therefore, for each of the 33 TCGA cancer types, we down-
loaded the four different Somatic aggregated MAF files with all the
somatic mutations for each variant caller (MuSE, MuTect2,
SomaticSniper and VarScan2). Additionally, we computed three
extra mutation call sets per TCGA project: a Consensus of two vari-
ant callers (Consensus2) file with those variants that were called by
at least two out of the four aforementioned variant callers, a
Consensus of three variant callers (Consensus3) file with those var-
iants that were called by at least three out of the four variant callers
and a Union file with every somatic variant called by any variant
caller.

2.2 Detecting cancer driver genes
To identify cancer driver genes, we used the IntOGen pipeline
(https://bitbucket.org/intogen/intogen-plus/src/master/, March 20,
2020) (Gonzalez-Perez et al., 2013). Specifically, we analyzed
every somatic variant file (MuSE, MuTect2, SomaticSniper,
VarScan2, Consensus2, Consensus3 and Union) of each of the 33
TCGA projects separately. We did not run IntOGen using
PanCancer approaches on all samples combined. IntOGen integra-
tes the result of seven driver discovery methods: OncodriveFML
(Mularoni et al., 2016), OncodriveCLUSTL (Arnedo-Pac et al.,
2019), dNdScv (Martincorena et al., 2017), CBaSE (Weghorn and
Sunyaev, 2017), HotMAPS (Tokheim et al., 2016), smRegions
(Mart�ınez-Jim�enez et al., 2020a) and MutPanning (Dietlein et al.,
2020). The driver discovery methods integrated in IntOGen ex-
plore different signals of positive selection, such as clustering of
mutations in protein structures or mutational functional bias, to
pinpoint which driver genes deviate from the estimated neutral mu-
tation rate using the set of input somatic mutations. The results of
these tools are then combined by accounting each method credibil-
ity—the relative credibility for each method is based on the ability
of the method to give precedence to well-known genes already col-
lected in the Cancer Gene Census (Sondka et al., 2018) catalogue
of driver genes—to produce a consensus ranking of genes using a
TIER based classification. Finally, IntOGen also provides a
weighted combined P-value for each ranked gene. For the purpose
of our analysis, we only considered true driver genes those within
TIER 1 and TIER 2 (q-value <0.05). We, therefore, discarded
genes classified in TIER 3 and TIER 4.

2.3 Benchmarking variant calling strategies

with driver genes
We considered the curated set of known driver genes from IntOGen
(https://www.intogen.org/download, release date February 1, 2020)
as our reference set to benchmark how the different mutation call
sets can be used to detect cancer driver genes. This set encompasses
both, newly detected and previously annotated cancer driver genes
in the Cancer Gene Census (https://cancer.sanger.ac.uk/census) of
Catalogue Of Somatic Mutations In Cancer (COSMIC) (Forbes
et al., 2017). To further assess and compare our results, we also
benchmarked against a second reference set of cancer driver genes
published by the PanCancerAtlas-MC3-project (Bailey et al., 2018).
We restricted our benchmarking analysis to only those genes anno-
tated as known cancer driver genes in the 33 cancer types we ana-
lyzed (MC3 cancer driver genes uniquely identified using PanCancer
approaches on all samples combined were not considered).
Furthermore, in the case of IntOGen reference set, we only consid-
ered those driver genes identified within TCGA cohorts (i.e. driver
genes uniquely identified by IntOGen in non-TCGA cohorts, such as
ICGC or PCAWG cohorts were filtered out).

We used multiple metrics (Table 1) to assess the performance of
the different variant calling strategies when detecting driver genes
with IntOGen in downstream analyses. We defined our true posi-
tives (TP), false positives (FP) and false negatives (FN) as follows:
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• TP: those driver genes detected by IntOGen with a given variant

call set that are within the reference set.
• FP: those driver genes detected by IntOGen with a given variant

call set that are outside the reference set.
• FN: those driver genes within the reference set not identified by

IntOGen with a given variant call set.

2.4 Mutational signature analysis
We used deconstructSigs (Rosenthal et al., 2016) 1.8.0 R package to
quantify the presence of different mutational signatures in the differ-
ent mutation call sets. In brief, deconstructSigs accounts for the tri-
nucleotide context of each mutation to classify the six different base
substitutions (C>A, C>G, C>T, T>A, T>C and T>G) into 96
possible mutation types (Alexandrov et al., 2013). The signature
matrix with the number of times a mutation was found within each
trinucleotide context was compared against COSMIC Single Base
Substitution (SBS) signatures (available at https://cancer.sanger.ac.
uk/signatures/sbs) (Alexandrov et al., 2020).

Finally, deconstructSigs uses an iterative approach to assign dif-
ferent weights to each signature and estimate their contribution to
the mutational profile of the tumor sample. We filtered out those
samples with <50 mutations. Since we analyzed WXS samples, the
signature matrix was normalized to reflect the absolute frequency of
each trinucleotide context as it would have taken place in the whole
genome. This way we adjusted for differences in trinucleotide abun-
dances between exome and whole genome in order to compare our
signatures to the ones extracted from whole genomes (available in
synapse.org, ID syn12009743).

2.5 Clinically actionable variants analysis
We used the Molecular Oncology Almanac (Reardon et al., 2021)
(https://github.com/vanallenlab/moalmanac, November 4, 2021)
(MOAlmanac) to detect alterations that might be therapeutically ac-
tionable. Briefly, MOAlmanac is a clinical interpretation algorithm
paired with an underlying knowledge base for precision oncology to
enable integrative interpretation of multimodal genomic data for
point-of-care decision making and translational-hypothesis gener-
ation. The primary objective of MOAlmanac is to identify and asso-
ciate molecular alterations with therapeutic sensitivity and
resistance as well as disease prognosis. This is done for ‘first-order’
genomic alterations (individual events, such as somatic variants) as
well as ‘second-order’ events [those that may be descriptive of global
processes in the tumor, such as tumor mutational burden or micro-
satellite instability (MSI)]. In addition to clinical insights,
MOAlmanac annotates and evaluates first-order events based on
their presence in numerous other well established datasources as
well as highlights connections between them. Overall, MOAlmanac
is an open-source computational method for integrative clinical in-
terpretation of individualized molecular profiles.

Since this method is currently geared toward hg19/b37 reference
files, we needed to liftover genome coordinates between assemblies
for all the Somatic MAFs using CrossMap (Zhao et al., 2014) ver-
sion 0.3.4 (99.99% of variants were successfully remapped).

2.6 Purity and ploidy dataset
We used purity and ploidy ABSOLUTE annotations (Hoadley et al.,
2018) for all TCGA samples available at https://gdc.cancer.gov/

about-data/publications/pancanatlas. These annotations were used
to adjust the variant allele frequencies (VAFs) by cancer DNA frac-
tion and ploidy to use them in all the analyses.

Almost 97% of TCGA mutation call set cases (9871/10 189 sam-
ples) present purity and ploidy information. However, 85% of cases
(8673/10189 samples) match both mutation and purity/ploidy infor-
mation at the TCGA analyte level (meaning both sources of
information come from the same TCGA analyte). Thus, to ensure that
the adjusted VAF information presented in our study was sufficiently
accurate, we decided to report the adjusted VAF information for this
85% cases. However, when adjusting VAF information at the TCGA
analyte level, 1% of variants ended up with adjusted VAFs >1.
Therefore, we only used the unadjusted VAFs in our analyses for this
1% of variants and for the variants of the 15% aforementioned cases.

2.7 Clinical metadata
We retrieved tumor stage information from the TCGA-Clinical Data
Resource (Liu et al., 2018) file available at https://gdc.cancer.gov/
about-data/publications/pancanatlas.

3 Results

3.1 Effects of variant calling in the detection of cancer

driver genes
One of the most widespread uses of somatic mutation data from
cohorts of cancer patients is the identification of cancer driver genes
(Bailey et al., 2018; Mart�ınez-Jim�enez et al., 2020b). The tools to
detect these genes are sensitive to which somatic mutations are
included in the final analysis, as they can bias some aspects of the
randomization in which most cancer driver detection tools rely
(Arnedo-Pac et al., 2019; Dietlein et al., 2020; Martincorena et al.,
2017; Mart�ınez-Jim�enez et al., 2020a; Mularoni et al., 2016;
Tokheim et al., 2016; Weghorn and Sunyaev, 2017).

To assess to what extent variant calling affects the detection of
cancer driver genes, we used IntOGen (Gonzalez-Perez et al., 2013)
to find driver genes in 231 different mutation call sets for the 33 dif-
ferent cancer types from TCGA. The seven mutation call sets of
each cancer type are distributed as follows: one mutation set with all
the calls from one of the four variant calling tools [MuSe (Fan et al.,
2016), MuTect2 (Cibulskis et al., 2013), SomaticSniper (Larson
et al., 2012) and VarScan2 (Koboldt et al., 2012)], another mutation
set—Consensus2—with all those mutations found by, at least, two
of the four variant callers, another consensus mutation set—
Consensus3—with all those mutations found by, at least, three of
the four variant callers and a final mutation set with all the muta-
tions found by any mutation caller—Union (Fig. 1).

One of the main concerns while determining the optimal variant
calling tool or strategy is the difficulty to classify mutation calls as
TP due to the lack of gold standard sets of somatic variants. The
best way to tackle this issue is by experimentally validating the mu-
tation calls with an orthogonal technology. However, in the case of
the TCGA somatic call set only 3% of unique somatic variants
(110263/3592923) have been validated according to the informa-
tion in ‘GDC_Validation_Status’ from the TCGA Somatic MAFs.
Therefore, we considered including ‘MC3_Overlap’ information
indicating whether a particular somatic variant overlaps with an
MC3 variant for the same sample pair as proxy for bona fide calls.
The 87% of unique somatic variants (3127800/3592923) in the

Table 1. Benchmarking metrics

Metric Definition

Precision¼TP/(TPþFP) Also known as positive predictive value. It is the ratio of correctly detected driver genes

among all driver genes detected by IntOGen with a given somatic variant call set.

Recall¼TP/(TPþFN) Also known as sensitivity. It is the ratio of correctly detected driver genes by IntOGen among

all driver genes within the reference set.

F1-score¼(2�Precision�Recall)/(PrecisionþRecall) Harmonic average of precision and recall. The best value is 1 and the worst is 0.
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TCGA call set are included in the MC3 project (Ellrott et al., 2018).
Furthermore, we included VAF information adjusted by cancer
DNA fraction and ploidy to better assess variant calling results.
Variant callers tend to perform better when detecting clonal muta-
tions (VAF¼0.5) whereas they struggle to call subclonal ones
(VAF <0.5).

The variant calling results (Fig. 1) show that the somatic muta-
tion call sets from SomaticSniper and MuTect2 were, respectively,
the smallest and largest from the individual variant callers. More im-
portantly, 53% of somatic variants were shared among all variant
calling strategies spanning a median VAF range around 0.5.
Interestingly, MuTect2 uniquely identified 11.7% of all somatic var-
iants, most of them with a very low VAF range. Thus, many of these
variants are not included in the MC3 project call set. However, the
very high coverage (read depth) across these loci prevents us from
discarding these calls as TP and suggests that MuTect2 has high sen-
sitivity to identify subclonal somatic variants.

We wondered whether the different capabilities of the variant
calling strategy tools to detect mutations according to their VAF
ranges may be clinically related to tumor stage as more advanced
tumors tend to be more heterogeneous. However, we were not able
to find any correlation in this regard in part due to the high rate of
samples with missing American Joint Committee on Cancer (AJCC)
stage information.

Having assessed the influence of various tumor properties in the
number of mutations called by each tool and combination strategy,
we next quantified the effect that they have when detecting cancer
driver genes. To that end, we used IntOGen to detect cancer driver
genes in the 231 somatic mutation call sets (Fig. 2A and B and
Supplementary File 1).

Overall, we found that there are wide differences in the number
of detected cancer driver genes in each cohort depending on which
somatic variant calling tool or strategy we used. For example, in the
case of prostate cancer [prostate adenocarcinoma (PRAD)], the set
of mutations from MuTect2 leads to the detection of 33 cancer
driver genes, whereas the set from VarScan2 leads to 62 driver
genes. Similarly, in the case of bladder cancer [bladder urothelial
carcinoma (BLCA)], the Union leads to the detection of 54 cancer
driver genes, whereas the set of mutations from MuSE leads to 86
driver genes. Interestingly, the number of cancer driver genes

detected in each mutation call set has a positive correlation with the
median number of mutations per megabase (spearman rho¼0.56,
P-value <2.2e-16), as already described in the final driver analysis
of TCGA (Bailey et al., 2018). Additionally, the number of cancer
driver genes detected in each mutation call set positively correlates
with the number of samples in each cohort (spearman rho¼0.36, P-
value <2.1e-08).

To further assess the possible effects that different sample sizes
may have on the performance of specific variant call sets upon detec-
tion of cancer driver genes, we conducted a downsampling experi-
ment using the largest TCGA cohort available, the breast invasive
carcinoma (BRCA) cohort with 986 samples (Supplementary Fig.
S1). To this end, we created three new BRCA cohorts with different
sample sizes by subsetting the 25%, 50% and 75% of all BRCA
samples, respectively. Furthermore, to select the samples comprising
each one of these three newly created BRCA cohorts, we conducted
three iterations by selecting different samples for each cohort,
obtaining a total of nine different cohorts (three with 25% samples,
three with 50% samples and three with 75% samples) to better as-
sess the robustness of the results. While conducting the three differ-
ent iterations to select the samples, we adjusted for AJCC tumor
stage to avoid any confounding effect this variable may have on the
results. This analysis confirmed that the number of cancer driver
genes detected positively correlates with the number of samples in
each cohort (spearman rho¼0.38, P-value¼0.0012). Surprisingly,
the Consensus3 proved to be the less robust of all strategies with
very important differences in the number of cancer driver genes
detected within each cohort. For example, in the 50% BRCA cohort
(n¼496), 62 cancer driver genes were detected with the Consensus3
second iteration call set, whereas only 29 cancer driver genes were
detected with the Consensus3 first iteration call set.

Next, we benchmarked our results against a reference set of
known cancer driver genes from IntOGen. We also considered the
set of cancer driver genes published by the PanCancerAtlas-MC3-
project (Bailey et al., 2018) as a second reference set to further as-
sess our results. In both cases, we restricted our reference sets to
only those genes annotated as cancer driver genes in the 33 tumor
types we analyzed. For the IntOGen reference set, we only consid-
ered those cancer driver genes identified within TCGA cohorts.
For the MC3 reference set we removed those cancer driver genes

Fig. 1. Intersection of mutation calls across all variant calling strategies for the 33 TCGA cancer types. This UpSetR plot shows the number of variants uniquely identified by

one variant calling tool (single point) and variants called by different tools (linked points). Bar-plot indicates intersection size and colors indicate the number of variants present

in the PanCancerAtlas MC3 project. Violin plots represent VAF distribution adjusted by cancer DNA fraction and ploidy; colors indicate total coverage (read depth) across

loci. Bottom left plot indicates variant call set size
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uniquely identified by PanCancer approaches on all samples
combined.

The benchmarking results of the 33 cancer types showed, to our
surprise, that the Union variant calling strategy is the best one when
detecting cancer driver genes with IntOGen and benchmarking
against IntOGen reference set (Fig. 2C left panel and Supplementary
File 2). Also, when benchmarked against MC3 reference set (Fig. 2C
right panel and Supplementary File 2), the Union call set remains the
top performer according to recall score, being outperformed by
MuSE, VarScan2 and SomaticSniper when looking at F1-score and
precision results. Interestingly, Consensus3 proved to be amongst the
lower performance strategies across all metrics when compared to
both reference sets. Consensus2 showed to be pretty robust, being the
second-best method when comparing against IntOGen reference set.

However, it was outperformed by the Union in all cases. Regarding
the four single variant caller performances, it is quite difficult to de-
cide which one is the best one, as their performance depends on the
metric and reference set used.

To further assess our results, and considering that Consensus2
performance seemed to be pretty robust, we benchmarked all possible
two-caller intersections in a subset of five cancer types: adrenocortical
carcinoma (ACC), BLCA, BRCA, PRAD and uterine corpus endomet-
rial carcinoma (UCEC) (Supplementary Fig. S2 and Supplementary
Files 3 and 4). According to F1-score metric, Consensus2 outper-
formed all other possible two-caller intersections when compared
against both reference sets. Likewise, SomaticSniper and VarScan2
intersection proved to be the second-best two-caller intersection
method.

Fig. 2. Performance of different variant calling strategies when detecting cancer driver genes with IntOGen. (A) Correlation between cancer driver genes and median number of muta-

tions per megabase. (B) Correlation between cancer driver genes and cohort sample size. The number of cancer driver genes detected by IntOGen with different call sets in each can-

cer type positively correlates with median number of mutations per megabase (A) and sample size (B). Shaded area indicates 95% bootstrapped confidence interval. (C) Boxplots

represent the different performance metrics scores of the variant calling strategies when detecting cancer driver genes with IntOGen for the 33 TCGA cancer types. Boxplots are

sorted by mean metric score. Metric scores when benchmarking against IntOGen (left panel) and PanCancerAtlas MC3 project (right panel) reference sets of known cancer driver

genes are shown. (D) Alluvial plot indicating best performing variant calling strategy according to F1-score for each cancer type when benchmarking against IntOGen (left panel)

and PanCancerAtlas MC3 project (right panel) reference sets of known cancer driver genes. Y-axis indicates number of cancers in each group

Detection of oncogenic and clinically actionable mutations in cancer genomes critically depends on variant calling tools 3185

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac306#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac306#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac306#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac306#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac306#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac306#supplementary-data


We next wondered whether certain variant calling strategies
are more suitable for specific cancer types. From a clinical point
of view, knowing beforehand which variant caller is the best one
for a particular cancer or group of cancers would be very helpful
and could help inform patient treatment improving the clinical
outcome. To this end, we classified all the 33 TCGA cancer types
into different groups (Hoadley et al., 2018): hematologic and
lymphatic cancers include acute myeloid leukemia (LAML),
lymphoid neoplasm diffuse large B cell lymphoma (DLBC) and
thymoma (THYM); urologic cancers contain BLCA, PRAD, tes-
ticular germ cell tumors, kidney renal cell carcinoma, kidney
chromophobe and kidney renal papillary cell carcinoma; gyneco-
logic tumors comprise ovarian (OV), UCEC, cervical squamous
cell carcinoma and endocervical adenocarcinoma and BRCA;
endocrine cancers include thyroid carcinoma and ACC; central
nervous system malignancies contain glioblastoma multiforme
and brain lower-grade glioma; gastrointestinal tumors include
esophageal carcinoma (ESCA), stomach adenocarcinoma
(STAD), colon adenocarcinoma (COAD), rectum adenocarcin-
oma (READ), liver hepatocellular carcinoma, cholangiocarci-
noma and pancreatic adenocarcinoma; thoracic tumors contain
lung adenocarcinoma, lung squamous cell carcinoma (LUSC) and
mesothelioma; soft tissue cancers include sarcoma and uterine
carcinosarcoma; finally the remaining cancer types were classified
as ‘other’ including head and neck squamous cell carcinoma,
pheochromocytoma and paraganglioma, skin cutaneous melan-
oma (SKCM) and uveal melanoma.

When analyzing the best variant calling strategy for each cancer
type (Fig. 2D and Supplementary Fig. S3 and Supplementary File 2)
we observed that the Union is still the best variant calling strategy
for the majority of cancer types, especially for gastrointestinal
tumors according to F1-score. Interestingly, MuTect2 showed very
good results being the best variant caller in a variety of cancer types
and being the best strategy alongside the Union when considering
precision as the metric of interest. Surprisingly, SomaticSniper
proved to be the best variant caller for hematologic and lymphatic
malignancies, specifically for DLBC and THYM cancer types, but
not for LAML malignancies where it was outperformed by other
strategies. Consensus2 was the best strategy in the majority of can-
cer types when considering recall as the metric of interest.

Focusing on the total number of cancer driver genes detected by
IntOGen with the different variant calling strategies across the differ-
ent groups of cancer types (Supplementary Fig. S4 and Supplementary
Files 1 and 2), we observed that in most of the cancers (gastrointes-
tinal, gynecologic, urologic and ‘other’ cancer types) the majority of
cancer driver genes detected were shared among all the variant calling
strategies. Nevertheless, we found some exceptions in specific cancer
types, such in the case of thoracic and hematologic and lymphatic
malignancies where SomaticSniper uniquely identified 36 and 28 can-
cer driver genes respectively, in the latter case most of them from
LAML malignancies. Furthermore, Consensus3 was the call set with
the largest number of cancer driver genes identified by IntOGen in
central nervous system and gastrointestinal cancers, including 41 and
43 uniquely identified cancer driver genes respectively. Overall, our
results show important differences in the number and identity of the
cancer driver genes detected in a cohort of patients depending on
which tool is used to identify somatic variants.

3.2 Somatic mutations in cancer driver genes
Even if one can identify a gene as a driver in a cohort using a variant
call set, it is possible that the variant caller misses some individual
mutations of that gene in some samples. This could have important
implications for patients, as the presence or absence of mutations in
cancer driver genes can determine whether patients will receive cer-
tain treatments or not (Hyman et al., 2017). To evaluate the impact
of variant calling when finding mutations in cancer driver genes, we
calculated the number of patients harboring missense and/or non-
sense mutations in cancer driver genes depending on the mutation
set used (Fig. 3 and Supplementary Fig. S5).

As expected, there is great variability in the detection of somatic
mutations in cancer driver genes depending on the variant calling

strategy used. Overall, there is a correlation between the total number
of mutations called by each method and the number of mutations iden-
tified in cancer driver genes (Fig. 3). MuTect2, VarScan2 and, specially,
Consensus2 detected more mutations in cancer driver genes than
Consensus3 and SomaticSniper. Interestingly, we found that 61% of
all missense and nonsense mutations in cancer driver genes were called
by all variant callers. Furthermore, 56.5% of all missense and nonsense
mutations were found in tumor suppressor genes with 30% of them
being nonsense mutations. On the other hand, 37.5% of all missense
and nonsense mutations in cancer driver genes were found in onco-
genes with 96.5% of them being missense mutations. The remaining
6% of all the mutations affected genes with unknown roles.
Importantly, none of the somatic variant call sets (except the Union)
had all the mutations in all cancer driver genes, suggesting that we
need to use multiple variant callers to ensure that we are detecting all
missense and nonsense mutations in cancer driver genes.

We also found important differences when looking at the num-
ber of patients bearing at least one missense and/or nonsense muta-
tion in specific cancer driver genes. Specifically, we quantified the
number of missed mutations by each variant caller tool or strategy
in the four most mutated cancer driver genes (TP53, KRAS, PTEN
and PIK3CA) across the 33 cancer types (Supplementary Fig. S5).
For example, depending on the variant caller used, up to 22% of
UCEC patients (196 patients) differ their PTEN mutational status
depending on the variant call set. Similarly, 6% of UCEC patients
(32 patients) vary their PIK3CA mutational status when comparing
Consensus3 and Union call sets. Importantly, up to 27% of PADD
patients (49 patients) carrying a mutation in KRAS could be missing
depending on the variant calling strategy used. Finally, regarding
samples harboring TP53 mutations, up to 19% of ESCA patients
(35 patients), 26% of LUSC patients (128 patients), 35% of OV
patients (153 patients) and 20% of READ patients (27 patients)
could be missing depending on the variant call set used.

3.3 Mutational signatures
The analysis of mutational signatures is important to understand the
biological mechanisms underlying somatic mutations, such as de-
fective DNA repair, mutagenic exposures, DNA replication infidel-
ity or enzymatic DNA modifications. These mutational processes
have implications in the understanding of cancer etiology and may
inform patient treatment.

We analyzed the mutational signatures of five cancer types—
ACC, BLCA, BRCA, PRAD and UCEC—so that they spanned a var-
iety of mutational processes, ranges of purity, mutation rates and co-
hort sizes within TCGA. For example, ACC is one of the smallest
cohorts within TCGA (n¼92), as well amongst those with the high-
est tumor purity (average purity 80%) (Aran et al., 2015). On the
other hand, BRCA is the largest cohort in TCGA (n¼986). Another
factor that can alter the efficiency of tools to detect cancer driver
genes is the mutation rate of the cohort, hence why we included
UCEC, which is amongst the cancer types with highest mutation
rates (Bailey et al., 2018). Finally, BLCA and PRAD are amongst the
cohorts that are closest to the TCGA average in all these aspects,
making them good representatives of the average tumor sample.

We focused the mutational signatures analysis on those signa-
tures that have been proved to contribute mutations to the corre-
sponding cancer types (Alexandrov et al., 2020) (Fig. 4 and
Supplementary File 5). We detected all the expected mutational sig-
natures in all cancer types regardless of the variant calling tool or
strategy used. As expected, the mutational signatures contributing
the most mutations to individual tumor genomes were SBS1, SBS2,
SBS5, SBS13 and SBS40.

We observed SBS5 and SBS40 as flat signatures contributing to
multiple types of cancer, although their proposed etiology remains
unknown. Furthermore, SBS5, SBS40 and SBS1 mutations have
been proved to correlate with age. Specifically, SBS1 may reflect the
number of cell divisions a cell has undergone. On the other hand,
cancers with high APOBEC activity, specially BLCA and to a lesser
extent BRCA, show an increase in the mutational burden of SBS2
and SBS13, both of them related to the APOBEC family of cytidine
deaminases activity.
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We found no differences in the quantification of mutational sig-
natures regardless of the variant call set used in any of the five can-
cer cohorts analyzed. We would like to emphasize that one of the
main sources of FP callings are germline mutations in CpG sites that
are miscalled as somatic. Hence, the lack of significant differences in
SBS1 (characterized by C>T mutations at NCG trinucleotides; N
being any base) results is relevant. Overall, it seems that mutational
signatures are pretty robust to variant calling decisions.

3.4 Differences in clinically actionable mutations

depending on the variant calling strategy
Another important goal of the analysis of somatic cancer genomes is
the identification of clinically actionable variants (CAVs). These are
somatic variants that help oncologists and physicians decide
whether they should give a treatment to a cancer patient, as they are
associated with sensitivity, resistance or disease prognosis.
Therefore, properly assessing the presence of such variants in the
genome of cancer cells is of ultimate clinical importance. To that
end, we used the Molecular Oncology Almanac (Reardon et al.,
2021) (https://github.com/vanallenlab/moalmanac, November 4,
2021) (MOAlmanac) to identify and associate somatic variants with
therapeutic sensitivity and resistance as well as disease prognosis.

We found 36 874 CAVs (Supplementary Fig. S6 and
Supplementary File 6) described as biomarkers for a selected tumor
type, meaning that the disease for which the association has been
reported coincides with the cancer type of the tumor under analysis.
These somatic variants are classified according to different levels of
clinical actionability or biological relevance depending on how
closely they match an alteration–action relationship, as given by cat-
alogued assertions. In total, 6% (2182/36 874) are putatively

actionable variants (i.e. exact match between gene, variant classifi-
cation and protein change with a catalogued variant), 71% (26 214/
36 874) are classified as investigate actionability variants (i.e. gene
and feature type—somatic variant—match but not either the variant
classification or specific protein alteration) and 23% (8478/36 874)
are classified as biologically relevant (i.e. gene match only).

Only a little over half of all CAVs were detected by all variant
calling strategies (21 198 out of 36 874, 58%). Amongst variant call-
ers, MuTect2 and VarScan2 identified 11% (4084/36 874) of CAVs
that were missed by SomaticSniper and MuSE. Moreover, Mutect2
identified an additional 3536 CAVs (10% of all of CAVs).
Importantly, all variant callers had some unique CAVs, highlighting
the importance of using more than one variant caller when analyzing
WXS data to ensure that no CAVs are missed.

MOAlmanac further classifies putatively actionable and investi-
gate actionability somatic variants according to a predictive implica-
tion that describes the strength of clinical evidence for a given
relationship between a somatic variant and a clinical action. Thus,
these variants were matched independently on catalogued events
associated with therapeutic sensitivity, therapeutic resistance and
disease prognosis with different evidence levels: Food and Drug
Association (FDA)-approved (the FDA recognizes an association be-
tween the alteration and recommend clinical action); Guideline (this
relationship is catalogued as a guideline for standard of care treat-
ment); Clinical trial (the alteration is or has been used as an eligibil-
ity criterion for a clinical trial); Clinical evidence (the relationship is
reported in a clinical study that did not directly involve a clinical
trial); Preclinical evidence (this relationship is reported in a study
involving mice, cell line or patient derived models); Inferential evi-
dence (the relationship is inferred as a result of mathematical model-
ing or an association between molecular features).

Fig. 3. Detection of somatic mutations in cancer driver genes. This UpSetR plot shows the number of somatic missense and nonsense variants in cancer driver genes uniquely

identified by one tool (single point) and by different tools (linked points). Bar-plot indicates intersection size and colors indicate the cancer driver gene role. Violin plots repre-

sent VAF distribution adjusted by cancer DNA fraction and ploidy; colors indicate total coverage (read depth) across loci. Top bar-plot indicates the ratio of missense and non-

sense mutations. Bottom left plot indicates variant call set size
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In total, 5354 variants were associated with therapeutic sensitiv-
ity and 514 were associated with therapeutic resistance (Fig. 5 and
Supplementary Files 7 and 8). Importantly, 55% (2935/5354) of
variants associated with therapeutic sensitivity and 59% (304/514)
of variants associated with therapeutic resistance were detected by
all variant calling strategies, respectively.

Interestingly, 11.3% (607/5354) of the variants associated with
therapeutic sensitivity were found to have FDA-Approved evidence
level associations and 27.7% (1483/5354) have a Clinical evidence
level. Most of the variants, 44.8% (2396/5354), have a Preclinical
evidence level and finally 12.6% (675/5354) have an Inferential evi-
dence level. More importantly, 15.1% (809/5354) were uniquely
detected by MuTect2 and VarScan2 (and Consensus2), comprising
12.7% (77/607) of all the variants with FDA-Approved evidence
level association. Likewise, MuTect2 uniquely identified 6.3% (38/
607) of all FDA-Approved evidence level variants. Finally, very im-
portant differences in the detection of clinically actionable variants

associated with therapeutic sensitivity were found across variant call
sets, with MuTect2, VarScan2 and Consensus2 detecting 21.7%
(1163/5354) more variants on average than MuSE, Consensus3 and
SomaticSniper.

Furthermore, 869 variants were found to have an association
with disease prognosis (Supplementary Fig. S7 and Supplementary
File 9) and 71% (617/869) were detected by all variant callers.
About 52.2% (454/869) were associated with a favorable prognosis
and 47.8% (415/869) with an unfavorable one.

Finally, we looked for clinically actionable variants associated
with MSI. This phenotype, MSI, is a hypermutation pattern that
occurs at genomic microsatellites caused by impaired DNA mismatch
repair. Mismatch repair deficiency that leads to MSI has been
described more frequently in colorectal (COAD and READ), endo-
metrial (UCEC) and gastric (STAD) adenocarcinomas (Bonneville
et al., 2017; Cortes-Ciriano et al., 2017). Furthermore, it is known
that colorectal patients with DNA mismatch repair deficiency have

Fig. 4. The percentage of mutations contributed by each mutational signature to individual tumor genomes. The size of each dot represents the proportion of samples of each

tumor type that shows the mutational signature. The color of each dot represents the median signature contribution per individual tumor genome in samples that show the sig-

nature. Tumors that had few mutations (<50) or that were poorly reconstructed by the signature assignment were excluded. ACC, adrenocortical carcinoma; BLCA, bladder

urothelial carcinoma; BRCA, breast invasive carcinoma; PRAD, prostate adenocarcinoma; UCEC, uterine corpus endometrial carcinoma
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been shown to be more susceptible to immunotherapies, such as pro-
grammed cell death (PD-1) immune blockade. Thus, accurate identifi-
cation of variants associated with MSI is of therapeutic importance.

We found a total of 1276 variants associated with MSI
(Supplementary Fig. S8A and Supplementary File 10). In this case, the
effect of variant calling strategy is even more significant than for the
rest of CAVs, as only 19.5% of all variants (249/1276) where detected
by all variant calling strategies. To further assess these important find-
ings, we compared the performance of the different variant calling
strategies to identify patients harboring at least one variant associated
to MSI. To this end, we selected the four cancer types where MSI has
been described more frequently (UCEC, COAD, STAD and READ)
and created a reference set of MSI-High (MSI-H) samples described in
the literature (Bonneville et al., 2017; Cortes-Ciriano et al., 2017). As
expected from previous results, MuTect2, VarScan2 and Consensus2
uniquely identified 69.7% (191/274) of patients with MSI associated
variants that were indeed classified as MSI-H samples in the literature
(Bonneville et al., 2017; Cortes-Ciriano et al., 2017) (Supplementary
Fig. S8B). Only 20% (55/274) of MSI-H patients were detected to
bear at least one MSI associated variant with all variant calling
approaches. Finally, it is worth mentioning the 49 patients detected
by all variant callers that were not classified as MSI-H samples. This
is likely due to the fact that we only consider those samples bearing at
least one MSI associated variant, which is different from the MSI-H
status. For the purpose of the analysis, we considered that MSI-H
samples were expected to bear at least one MSI associated variant but
not the other way around.

4 Discussion

The analysis of sequencing data from cancer genomes is critical,
among others, to understand cancer etiology, identify the events
driving the transformation of healthy cells into cancerous ones or

guide the treatment of cancer patients (Alexandrov et al., 2013;
Bailey et al., 2018; Huang et al., 2018; Hyman et al., 2017; Nik-
Zainal et al., 2012). Each of these analyses relies on the proper iden-
tification of true somatic variants in the cancer genome, which can
be done with many different computational tools. However, we cur-
rently do not understand how variant calling approaches impact the
final results of cancer sequencing data.

Here, we have quantified the impact of changing variant calling
tools or strategies in three different secondary analyses across 33 dif-
ferent cancer types. We have shown that variant calling decisions
have no impact on mutational signatures results but, importantly,
may lead to significant differences in the identification of cancer
driver genes and clinically actionable variants.

While we found no magic recipe, the single recommendation
that we believe can be applied in all circumstances is to use, at least,
more than one variant calling tool and test the results of any second-
ary analysis in the different variant call sets. This would give
researchers a sense of how much their results might vary depending
on the variant calling and whether additional efforts into running
other variant calling tools are necessary or not. A useful rule of
thumb is to run as many variant callers as possible using the muta-
tions from the Union of all variant calling tools. Taking the muta-
tions from the Consensus of two or more variant callers is the
second-best alternative when running multiple variant callers. In the
case of running only one variant caller, MuTect2 would be the pre-
ferred option in general, albeit we also hope that the detailed results
that we provide for the different cancer types in Figure 2D help
researchers in deciding which variant caller to use.

Regarding cancer driver genes, while the performance of each
variant calling tool or strategy can vary depending on the cancer
type, the overall results suggest that one will get the best results
using the mutations from the Union of all variant calling tools. The
result of the Union variant call set was a surprise, because we initial-
ly expected that the likely high number of FP somatic mutations in

Fig. 5. Clinically actionable somatic mutations associated to therapeutic sensitivity and resistance. This UpSetR plot shows the number of clinically actionable somatic muta-

tions associated to therapeutic sensitivity (A) and therapeutic resistance (B) detected by the Molecular Oncology Almanac with the different variant calling strategies in the

complete set of TCGA projects. Single points indicate those variants uniquely identified by one variant call set. Linked points indicate those variants identified by multiple vari-

ant call sets. These clinically actionable somatic variants are classified according to different evidence levels. Bar-plot indicates intersection size and colors indicate the associ-

ation evidence level. Violin plots represent VAF distribution adjusted by cancer DNA fraction and ploidy; colors indicate total coverage (read depth) across loci. Top bar-plot

indicates the ratio of variants presents in the PanCancerAtlas MC3 project. Bottom left plot indicates variant call set size. Only those clinically actionable somatic variants in

which the disease for which the association has been reported coincides with the cancer type of the tumor under analysis are shown
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the Union call set would lower the predictive power of the cancer
driver detection tools in IntOGen, but this was not the case. We be-
lieve that this likely reflects the robustness of IntOGen to the pres-
ence of FP in the somatic mutation set. Another unexpected finding
was that one of the most common approaches to combine somatic
variant call sets, Consensus3 (Bailey et al., 2018), had some of the
worse overall results when detecting cancer driver genes. On the
other hand, Consensus2 showed very robust results overall, being
the second-best strategy when considering recall as the metric of
interest. Thus, very restrictive methods, such as Consensus3, seemed
to badly penalized IntOGen cancer driver genes detection tools.
Nevertheless, considering the specific cancer type is important, such
is the case of hematologic and lymphatic malignancies like DLBC
and THYM, where SomaticSniper proved to be the best caller.

Importantly, we have also found differences in the detection of
somatic missense and nonsense mutations in cancer driver genes. In
some cases, a specific cancer driver gene mutation status (i.e. PTEN
in UCEC) could differ in more than 20% of patients depending on
the variant call set used. This result suggests that it is important to
use, at least, more than one variant calling tool to analyze cancer
genomes. Otherwise, a significant number of mutations in cancer
driver genes can be missed. Specially considering that Consensus2
was the strategy that detected more missense and nonsense muta-
tions in cancer driver genes.

Mutational signatures analysis is pretty robust to variant calling
decisions. We found no differences in the quantification of muta-
tional signatures across the five cancer types analyzed.

However, if the goal of the analysis of the somatic genome is to
find clinically actionable mutations, we need to be aware that there
are considerable differences depending on the somatic mutation call-
ing used. Only half (57.5%) of all clinically actionable variants were
detected by all variant calling strategies. On average, MuTect2,
VarScan2 and Consensus2 detect 20% more clinically actionable
variants than MuSE, Consensus3 and SomaticSniper. This trend
remains when looking at variants associated to therapeutic sensitiv-
ity. Importantly, we found greater differences when detecting of
MSI associated variants, with MuTect2, VarScan2 and Consensus2
uniquely identifying 70% of MSI-H samples. Accurately identifying
these variants is of therapeutic importance considering their rele-
vance for immunotherapy treatments.

Finally, one of the main sources of variation between variant
calling strategies is the identification of subclonal mutations. Here,
we included VAF information adjusted by cancer DNA fraction and
ploidy, observing that MuTect2 has high sensitivity to identify sub-
clonal somatic variants. However, intra-tumor heterogeneity would
be another important factor to consider (Dentro et al., 2021) since
the analysis of heterogeneous cancers (i.e. PRAD) would yield more
variable results compared to those of homogeneous cancers (i.e.
SKCM) (Supplementary Fig. S4).

We acknowledge several limitations in our study. For example,
we are not considering results for copy number and structural var-
iants in the mutation call sets. We also have not explored the impact
of other important variables, such as sequencing coverage. It is pos-
sible that with deeper coverages, such as those provided by targeted
sequencing of gene panels, the differences we observed here for the
variant callers are smaller.

Overall, we hope this study will help researchers understand
how variant calling decisions might impact their results. It is import-
ant to account for the clinical implications that variant calling deci-
sions have on different downstream analyses, especially in such
important aspects of cancer genomics like driver genes and the iden-
tification of actionable variants. Moreover, we hope that this study
will help guide variant calling design while considering the needs
and goals of the different research projects.
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