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Introduction
Vibriosis is one of the major diseases of concern to the aqua-
culture.1 Several Vibrio spp. of harveyi clade such as Vibrio 
parahaemolyticus, Vibrio alginolyticus, Vibrio harveyi, Vibrio 
owensii, and Vibrio campbellii infect farmed aquatic animals.2 
They affect both fish and shrimp in marine environment and 
brackishwater aquaculture. Vibrio harveyi infections result in 
80% to 100% mortality during the early larval stages and inflict 
huge economic losses to shrimp hatcheries.3 Vibrio parahaemo-
lyticus is another opportunistic pathogen, which devastated the 
shrimp aquaculture sector in Southeast Asia in recent years by 
causing acute hepatopancreatic necrosis disease (AHPND), 
also called as early mortality syndrome (EMS).4 Due to the 
outbreak of AHPND, Thailand lost about 7% of production in 
2012, Vietnam experienced USD7.2 million losses and Mexico 
lost USD118 million.5 Diagnosis of vibrios is done by pheno-
typic or polymerase chain reaction (PCR) tests for identifica-
tion of these bacteria at species level. Accurate identification 
of species is difficult with the conventional phenotypic meth-
ods. Often, the 16s rRNA sequencing also fail to correctly 
identify Vibrio species. In such a scenario, application of bioin-
formatics tools can aid in differenti-ating these pathogenic 
strains.6 Vibrios are Gram-negative bacteria in the family 
Vibrionaceae under the phylum Gammaproteobacteria and are 

found abundantly in marine environments.7 Genome of vibrios 
contains 2 chromosomes, of which chromosome 1 is longer 
than chromosome 2 and is about two-thirds of total genome 
regarding its length. The longer chromosome carries house-
keeping genes, while the smaller one has accessory genes.8,9 
The GenBank (https://www.ncbi.nlm.nih.gov/) consists of 88 
complete genomes of vibrio species as on April 2019.

Recent advances in next-generation sequencing made it pos-
sible to study the phylogenetic relations of targeted organisms 
more accurately at genome level using in silico approaches. 
Several whole genomes of Vibrio spp. sequenced from different 
laboratories located around the globe were deposited at 
GenBank and made readily available for reanalysis studies. 
Present study aims at finding appropriate methods for differen-
tiating and finding evolutionary distances of Vibrio spp. that are 
more commonly found in brackishwater ecosystem with the 
available complete genomes and modern bioinformatics tools.

Materials and Methods
Genomic data

In all, 35 genome sequences were downloaded from GenBank 
including LB102 strain of V campbellii, a brackishwater isolate 
sequenced in-house.10 Complete genomes representing 7 Vibrio 
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spp., V parahaemolyticus, Vibrio vulnificus, Vibrio furnissii, V 
campbellii, V harveyi, V alginolyticus, and Vibrio anguillarum were 
downloaded from GenBank (https://www.ncbi.nlm.nih.gov/). 
One genome of Vibrio cholerae was also included to serve as an 
out group for phylogenetic comparisons.

Phylogenetic analysis

Data sets with different genomic features representing single 
16s rRNA genes and different gene clusters were prepared for 
phylogenetic analysis. RNAmer v1.2 was used to extract 16s 
rRNA sequences from genome datasets.11 Fetched sequences 
were trimmed using Bioedit v7.0.5.3, aligned with MEGA 
version 7, and subjected to phylogenetic analysis using maxi-
mum likelihood (ML) method of RaxML v8.2.12.12-14 
Similarly, housekeeping genes listed at http://pubmlst.org for 
Vibrio spp. were used for phylogenetic analysis using RaxML 
(Randomized Axelerated ML).15

For phylogeny of orthologous genes, at first coding sequences 
from the genomes were predicted using Prodigal v2.60.16 
Prodigal output was subjected for gene clustering using 
OrthoMCL v2.0, which has resulted 2085 single-copy ortholo-
gous genes.17 Each gene present across 36 genomes was aligned 
using Molecular Evolutionary Genetic Analysis (MEGA) and 
trimmed using trimAl v1.4 with strictplus option.18 All the 
2085 genes from each genome were concatenated and subjected 
to phylogenetic analysis using RAxML. Figtree v1.4.2 (http://
evomics.org/resources/software/molecular-evolution-software/
figtree/) was used for visualizing all the consensus trees gener-
ated by RAxML. To construct whole genome–based phyloge-
netic trees, variant detection and phylogenetic analysis pipeline 
kSNP3.0 were used. kSNP3.0 accepts genomes as input and 
does not require genome alignments and reference genomes. It 
estimates phylogenetic trees by parsimony, neighbor-joining 
and ML methods.19 The number of replicates for bootstrapping 
was set at 500 for all phylogenetic trees built in this study.

Genome similarity indices

Two confirmatory metrices of closeness between the genomes, 
namely average nucleotide identity (ANI) and Genome-to-
Genome Distance, were computed using pyANI v0.20 and 
GGDC server (http://ggdc.dsmz.de/), respectively.20 Heatmaps 
for visualizing the genome similarity based on ANI and isDDH 
were generated using R stats library ggplot2.

Results
Genome statistics of all the 35 strains along with the out-group 
entry, that is, V cholerae are given in Table 1. The average num-
ber of genes present in each genome is around 4700 genes. 
Smallest genome among the genomes studied is V anguillarum 
which contains 3686 genes and the largest being 5818 genes 
containing V campbellii. Vibrio campbellii BB120 has the lowest 
gene translated to protein with 93% and V parahaemolyticus 
O3:K6 substr. RIMD 2210633 has highest gene translated 

percentage of 97%. The guanine-cytosine (GC) content of 
genomes ranges from 44.37% to 47.49% with an average of 
45.68% except for NCTC 11218 isolate of V furnissii whose 
GC content is 50.63%. Draft assembly of V campbellii LB102 
which was isolated from tiger shrimp hatchery located at south 
east coast of India contains 90 scaffolds and 5145 genes.

The phylogenetic tree with ML method was generated 
based on 16s rRNA genes from 36 Vibrio genomes (Figure 1) 
along with branch lengths and bootstrap values. There was no 
clear distinction observed between the Vibrio sp. in this phy-
logeny. Misclassifications were observed regarding V alginolyti-
cus strain ATCC33787 and V vulnificus YJ016. Even though 
the members of the harveyi clade, namely V harveyi and V 
campbellii were found to be clustered together, they were also 
found in close proximity to other members, such as V algino-
lyticus and V parahaemolyticus. Lower bootstrap support for 
many of the nodes is a notable observation in this tree. It is has 
been observed that bootstrap value as low as 13% for one of the 
branches signifies poor clustering pattern.

The phylogenetic tree built using housekeeping genes has 
been depicted in Figure 2. Relatively a better clustering pattern 
observed in this tree compared to the one built using 16s rRNA 
genes. Distinct clades between the species were observed except 
for harveyi and campbellii. Bootstrap support for branching 
between species is ranged from 64% to 100%.

The ML tree constructed for 36 Vibrio spp. based on orthol-
ogous genes has been depicted in Figure 3. The tree indicated 
distinct monophyletic clades for each of the species considered 
in this study. Bootstrap support is 100% for between species 
indicate significance of this feature set. Wrong clustering pat-
terns noticed regarding entries of harveyi clade have been cor-
rected with this method of phylogenetic analysis. Tree generated 
using kSNP3 (Figure 4) pipeline is observed to be comparable 
with the tree generated using single-copy orthologous genes.

The ANI values between all the genomes of the study 
ranged from 0.8323 to 0.9998. The lowest ANI value 
observed is between V anguillarum 90-11-286 and V furnissii 
NCTC11218 strains, while the highest is between V para-
haemolyticus strains FORC 008 and FORC 018. The heat map 
generated with ANI values is depicted in Figure 5. Pair-wise 
computed DDH values for the 36 genomes including out-
group have been plotted in Figure 6 to display similarities 
between the Vibrio species. The values are in ranges from 
14.8% to 100%. DDH values of more than 70% are considered 
to be an important factor in classifying species.21

Discussion
The most commonly used bacterial signature sequences are 16s 
rRNA genes due to their presence in all the bacteria, limited 
evolutionary changes over time, and sufficiency of their length 
for analytical purposes.22 These gene sequences are widely 
applied in the studies related to species identification and to 
calculate evolutionary distances between or within the species. 
Misclassifications or ambiguities in identification of the species 
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can arise due to poor quality of the sequences available at public 
domain databases. But in recent times, due to advent of accurate 
and high throughput sequencing technologies, more accurate 
and complete prokaryotic genomes are available at public 
domain databases for mining and identifying true signatures of 
a species required for identification and clustering of it with 
related ones. Here in, we used 35 genomes of Vibrios having 
relevance with brackishwater aquaculture for finding the phylo-
genetic relations between the species and precise methods for 
clustering of the genomes. Correct species-level assignment, 
formation of monophyletic clades for each species, and high 
degree of bootstrap support are the metrics chosen for deciding 

the accuracy of species classification based on phylogenetic 
analysis. Misclassifications observed in the phylogenetic tree 
with 16s rRNA genes regarding alginolyticus ATCC33787 and 
vulnificus YJ016 strains imply that the variation present in these 
genes is not sufficient for proper delineation. With no species-
level monophyletic clades and lesser bootstrap support necessi-
tated other criteria which can take more variation present 
between the genomes for accurate classification.

Multilocus sequence typing is a sequence-based approach 
to unambiguous characterization of bacterial strains with 
sequences of internal fragments of housekeeping genes.23 The 
multilocus sequence typing (MLST) databases like the one at 

Figure 1.  Phylogenetic tree based on 16s rRNA genes.

Figure 2.  Phylogenetic tree based on MLST sequences. MLST indicates 

multilocus sequence typing.

Figure 3.  Phylogenetic tree constructed with single-copy orthologous 

genes.

Figure 4.  Phylogenetic tree generated with kSNP3.0.
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Figure 5.  Heatmap generated based on average nucleotide identities for selected Vibrio species.

Figure 6.  Similarity matrix based on DDH values for selected Vibrio species.
DDH indicates DNA-DNA hybridization.
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www.pubmlst.org houses MLST allelic profiles and sequences 
for different bacterial species. Figure 2, plotted based on MLST 
sequences, has overcome misclassification errors unlike the one 
made with 16s rRNA genes. But issues of distinct monophyl-
etic clades and bootstrap support were not found to be 
addressed with MLST also.

Orthologs are genes that diverged through a speciation 
event unlike paralogous genes, which diverged after a duplica-
tion event.24 Size of these genes over a set of genomes depends 
on their evolutionary relationship and the quality of genome 
assemblies. With 4700 average number of genes among the 
selected Vibrio spp., 2085 single-copy orthologs were found to 
be present, which accounts nearly 44% of genes. Phylogenetic 
analysis based on these single-copy orthologs met all the crite-
ria set for best classification (Figure 3). Monophyletic clades 
with 100% bootstrap support for between species indicate 
superiority of this feature set compared to previous ones. The 
utility of orthologous genes to address species ambiguities was 
demonstrated by Ke et al6 in an attempt to correct the misclas-
sification of V campbellii with the strains present in harveyi 
clade. But the clustering, extraction, and curation of the 
sequences and tree building with single-copy orthologous 
genes were observed to be computationally intensive and time 
consuming.

kSNP 3.0 pipeline identifies single-nucleotide polymor-
phisms (SNPs) from the input genomes and does phylogeny 
based on the core SNP data matrices, which include only SNPs 
detected at loci that were present in all genomes. The program 
runs faster and requires less memory compared to previous 
approach. Phylogenetic tree generated from kSNP 3.0 is com-
parable to the one built with single-copy orthologous genes 
(Figure 4) in terms of accuracy in classification.

The complete genome is used as reference standard to 
determine phylogeny which in turn determines taxonomy of 
the species in genome-based similarity indices.25 Average 
nucleotide identity is one such method which depends on 
large number of genes unlike the ones depends on 16s rRNA, 
and it was considered to be better measure of relatedness. 
When the large number of genes considered for estimating 
relatedness of genomes, the indices are unaffected by varied 
evolutionary rates of the genes as fast-evolving genes are 
compensated by slow-evolving genes.26 Dendrogram based 
on ANI values in Figure 5 accurately classified each species 
and made monophyletic clades. Genome-genome distance 
measure isDDH is another metric of relatedness computed 
using whole genomes. Average nucleotide identity values of 
95% is equal to DDH values of 70%, which signifies highly 
related species.27 In Figure 6, clusters having more than 70% 
similarity belonged to the same species. Both the measures 
have confirmed the clustering patterns established through 
single-copy orthologous genes. These similarity metrics have 
become gold standard for in silico species identification in 
recent times.

Conclusions
Information on bacterial species present in an ecosystem along 
with their phylogenetic distances and right methods for iden-
tification or classification has got significance in evolutionary 
biology. Here, we used different subsets of whole genome data, 
namely, 16s rRNA gene, MLST genes, and single-copy orthol-
ogous genes pertaining to 35 Vibrio species which are native to 
brackishwater ecosystem. Phylogenetic trees based on 16s 
rRNA and MLST sequences resulted the wrong classification 
patterns. To clear the ambiguities in classification, it was fur-
ther tested with single-copy orthologous genes dataset as well 
as kSNP 3.0 pipeline. Clearly distinguished clades were 
observed in both of these methods among which kSNP3.0 
requires less computational resources. Genome similarity indi-
ces like ANI and in silico DDH methods supported the valid-
ity of trees built with single-copy orthologous genes and 
kSNP3.0. The work needs to be continued from time to time 
by including newly sequenced genomes with proposed meth-
ods to clear ambiguities in classification of a new species.
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