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Aim: The aim of this study is to assess 6 micro-RNAs: miR-126, miR-223, miR-150, miR- 
29, miR-34, miR-142 as potential biomarkers for P2Y12- inhibitors resistance prediction.
Methods: Eighty patients with an acute coronary syndrome undergoing percutaneous 
coronary intervention treated in a multidisciplinary hospital in Moscow with DAPT (either 
with ticagrelor, n=45, or clopidogrel, n=35) were enrolled. The carriership of 6 clinically 
relevant polymorphisms for ticagrelor and 17 for clopidogrel was detected. Expression levels 
of six prospective miRNAs were measured. The activity of CYP3A4 isoenzyme was 
measured as the ratio of the concentrations of cortisol and 6β-hydroxycortisol.
Results: The polymorphisms of the P2Y12-inhibitors ADME genes that demonstrated statisti-
cally significant connection with miRNA expression levels are as follows: P2Y12R (A>G, 
rs3732759) and miR-29 (p=0.017), miR-34 (p=0.003); CYP2C19*17 (C-806T, rs1224856) and 
miR-142 (p=0.012); PON1 (Q192R, rs662) and miR-29 (p=0.004), ABCG2 (G>T, rs2231142) and 
miR-34 (p=0.007). MiRNAs expression levels showed connection with the results of the platelet 
reactivity assessment by utilizing VerifyNow assay (“Instrumentation laboratory”, MA, US). MiR- 
126 (β coefficient=−0.076, SE=0.032, p=0.021), miR-223 (β coefficient=−0.089, SE=0.041, 
p=0.032), miR-29 (β coefficient=−0.042, SE=0.018, p=0.026), miR-142 (β coefficient=−0.072, 
SE=0.026, p=0.008) have the potential to be used as biomarkers and may substitute platelet 
reactivity testing.
Conclusion: This study has revealed new biomarkers for P2Y12-inhibitors resistance 
testing: miR-29, miR-34, miR-126, miR-142, miR-223.
Keywords: biomarker, miRNA, polymorphism, acute coronary syndrome, pharmacogenomics

Plain Language Summary
● There is an unmet need for a novel biomarker for P2Y12 - Inhibitors Resistance 

Prediction
● The choice of an appropriate P2Y12-inhibitor as part of DAPT poses a challenge to 

cardiologists
● miR-29, miR-34, miR-126, miR-142 and miR-223 can be used as novel biomarkers
● These miRNAs may be included into future smart diagnostic tools

Introduction
Patients with an acute coronary syndrome [ACS] who undergo percutaneous cor-
onary intervention [PCI] receive dual antiplatelet therapy [DAPT] as a standard of 
care.1 DAPT usually includes aspirin and a P2Y12-inhibitor. The DAPT therapy 
works towards prevention of thrombotic complications: cardiovascular death, myo-
cardial infarction, stent thrombosis.2
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Nowadays, 3 P2Y12-inhibitors are available per os: tica-
grelor, clopidogrel, prasugrel. Clopidogrel is a prodrug, hence 
it needs to be metabolized in the liver, and there are some 
enzymes involved in its metabolism: CYP2C19, CYP2B6, 
CYP1A2, CYP3A4, CYP3A5, among them.3 Not only does 
metabolism of clopidogrel involve a two-stage transformation 
in the liver, but also transporter P-glycoproteins to facilitate 
prodrug absorption through the intestinal cells. ABCB1 gene is 
responsible for its regulation. All this contributes to a number 
of sites for a possible breakdown, which leads to altered 
response to clopidogrel. This high number of sites for 
a possible breakdown accounts for the number of patients 
who are resistant to clopidogrel, which can be as high as 
35% of the population.4 As observed in a number of observa-
tional and randomized trials, a personalized approach to anti-
platelet therapy may lead towards a decrease in the number of 
complications.5–8

Ticagrelor and prasugrel are considered more potent 
P2Y12–inhibitors in terms of the number of thrombotic 
complications among patients with an acute coronary syn-
drome undergoing percutaneous coronary intervention.9,10 

Higher potency comes at a price of a higher number of 
bleeding complications, lower compliance due to high 
costs of the drugs. In addition, ticagrelor and prasugrel 
are not considered the drugs of choice when used as 
a combined antithrombotic treatment.11

The choice of an appropriate P2Y12-inhibitor to be 
used as part of DAPT poses a challenge to cardiologists 
as they need to know the patient’s characteristics to favour 
a certain drug.12

There were some trials which assessed doubling and 
tripling the dose of clopidogrel for low responders. 
However, the current strategy for low responders is 
switching to another P2Y12 inhibitor like ticagrelor or 
prasugrel.2,13–15

Various approaches are used for selection of an adequate 
antiplatelet therapy: genetic testing is implemented, and plate-
let reactivity is measured using the VerifyNow P2Y12 
Assay.16–18 Currently, the Clinical Pharmacogenetics 
Implementation Consortium (CPIC) recommends genetic test-
ing and genotype-directed treatment for high-risk patients.2 

Therefore, CYP2C19 poor metabolizers should be prescribed 
an alternative antiplatelet regimen.19

Although, both genetic testing and platelet reactivity 
measurements are implemented, there is an unmet need for 
newer biomarkers developed for a simple, quick, reliable 
and comprehensive prediction of insufficient response to 

clopidogrel.20 And micro-RNAs are described in literature 
as such potential biomarkers.21–25

These micro-RNAs are small non-coding sequences of 
nucleotides which bind to mRNA sites and block transcrip-
tion. This causes a decrease in the production of protein. The 
miRNA-mRNA mechanism is a fine instrument of gene 
expression regulation.26 The miRNAs may regulate ADME 
genes and affect the effective drug concentration in blood.

Micro-RNAs can be biomarkers for clopidogrel resis-
tance through the ADME genes involved in the metabo-
lism of clopidogrel.27

In this article, we suggest six prospective microRNAs 
as potential biomarkers for guiding antiplatelet therapy 
among patients with ACS who have undergone PCI.

Materials and Methods
Patients
Eighty patients with an acute coronary syndrome under-
going percutaneous coronary intervention treated in 
a multidisciplinary hospital in Moscow were consecu-
tively enrolled.

The study was approved by the Ethics Committee of 
Russian Medical Academy of Continuous Professional 
Education, Moscow, Russian Federation and conducted 
in accordance with the Declaration of Helsinki; all the 
patients gave written informed consent for participation.

Inclusion criteria: presence of an informed written con-
sent, age above 18 years, ACS event less than 7 days. 
Exclusion criteria: pregnancy, lactation, active internal 
bleeding, liver cirrhosis with C Child-Pugh liver insuffi-
ciency; chronic renal disease, HIV-infection, alcohol/drug 
addiction; mitral valve stenosis moderate and severe, 
mechanical heart valves, severe psychiatric disorders, 
allergic reactions/drug intolerance. The study assessed 
the secondary outcomes (рlatelet reactivity units, 
miRNAs expression levels). As part of dual antiplatelet 
therapy (DAPT), the patients took aspirin 100 mg daily 
and either clopidogrel 75mg SID (n=35) or ticagrelor 
90 mg BID (n=45).

Assessment of Platelet Activity
The assessment of residual platelet reactivity was per-
formed by utilizing VerifyNow assay (“Instrumentation 
laboratory”, MA, US). For assessment of platelet activity 
venous blood was used, drained on the 3rd day after the 
beginning of DAPT therapy in vacuum vials 2 mL with 
3.2% sodium citrate. The level of aggregation of platelets 
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is measured in P2Y12 Reactivity Units or percentage of 
inhibition. The study was conducted within 1 hour after 
the whole venous blood sample was drained. The thera-
peutic range of P2Y12-inhibitors when measured with 
VerifyNow P2Y12 assay are as follows: PRU>208 – the 
risk of thrombotic events, PRU<95 – bleeding risk, 
95<PRU<208 – adequate response.

Genotyping
Blood (2 mL each) for DNA analysis was sampled from the 
peripheral vein using ethylene diamine tetra acetate (EDTA) 
tubes (VACUETTE®, Greiner Bio-One, Austria). A panel of 
18 SNPs was selected. The following 17 SNPs were selected 
for clopidogrel:ABCB1 (C3435T, rs1045642), CYP2C19*2 
(681G > A, rs4244285), CYP2C19*3 (636G > A, 
rs4986893), CYP2C19*17 (C-806T, rs1224856), 
CYP3A4*22 (C>T, rs35599367), CYP3A4 (20239G>A, 
rs2242480), CYP3A5*3 (A6986G, rs776746), CYP4F2 (C > 
T, Val433Met, rs2108622), CES1 (А-33С, rs2244613), PON1 
(Q192R, rs662), IGTB3 (rs5918), P2Y12 (rs2046934), 
P2Y12R (A>G, rs3732759), PEAR1 (C>Т, rs41273215), 
PEAR1 (C>T, rs57731889), B4GALT2 (C>Т, rs1061781), 
ABCG2 (G>T, rs2231142). The following 6 SNPs were 
selected for ticagrelor: ABCB1 (C3435T, rs1045642), 
CYP3A5*3 (A6986G, rs776746), CYP3A4*22 (C>T, 
rs35599367), CYP3A4 (20239G>A, rs2242480), P2Y12 
(rs2046934), SLCO1B1 (T521C, rs4149056). Real-time poly-
merase chain reaction with commercially available assays 
(«Sintol», Russia; Thermo Fisher Scientific, USA) was per-
formed utilizing Real-Time CFX96 Touch amplifier (Bio-Rad 
Laboratories, Inc., USA).

MicroRNA Testing
Blood was collected into sterile EDTA tubes and centrifuged 
for 10 min at 2000g. The obtained supernatant was transferred 
to sterile 2 mL tubes and stored before use at −80 °C. Total 
RNA, including miRNA, was extracted using QIAzol lysis 
reagent and the miRNeasy Serum/Plasma kit (Qiagen, Hilden, 
Germany) according to the recommended protocol. QIAzol 
was added to 300 µL of plasma in a volume ratio of 3:1. After 
chloroform was added to the tube and centrifuged to separate 
phases, the aqueous phase was transferred to a new tube, and 
1.5 times the volume of 100% ethanol was added. The solution 
containing RNA was loaded into the miRNeasy column and 
further washed according to the manufacturer’s instructions. 
The final volume of elution was 20 µL. Concentration and 
purity of the obtained RNA were measured on the NanoDrop 
2000 spectrophotometer (Thermo Fisher Scientific, 

New York, USA). The extraction process was repeated for 
each sample until a sufficient amount of RNA was obtained for 
the next steps. Reverse transcription was carried out with the 
MiScript II RT Kit (Qiagen) according to the manufacturer’s 
protocol. Expression levels of miR-142, miR-126, miR-223, 
miR-150, miR-29, miR-34 were estimated with quantitative 
reverse transcription polymerase-chain reaction (qRT-PCR) 
using the MiScript SYBR Green PCR Kit (Qiagen) and 
presynthesizedmiScript Primer Assay (Qiagen) primers. qRT- 
PCR was performed with three repetitions for the analyzed 
miRNA in the volume of the reaction mixture of 12 µL on the 
CFX96 Real-Time PCR Detection System (Bio-Rad, 
Hercules, USA) according to the manufacturer’s recom-
mended program (15 min at 95 °C to activate the 
HotStarTaq DNA Polymerase and 40 three-step cycles 
(94 °C – 15 s, 55 °C – 30 s, 70 °C – 30 s)). Relative 
quantifications were calculated using the comparative Ct 
method (2 ΔΔCt).

Activity of CYP3A4 Isoenzyme
To assess the activity of CYP3A4, patients gave samples of 
morning urine with a volume of 5 mL, collected in tubes 
without preservative at the time of the blood draw. Samples 
were stored frozen at −20 °C. The activity of CYP3A4 was 
expressed as the ratio of the concentrations of cortisol and 6β- 
hydroxycortisol, the formation of which occurs under the 
influence of these isoenzymes. Cortisol and its metabolite 
were assessed by chromatography–mass spectrometry on an 
Agilent G1978B Multimode Source high performance liquid 
chromatograph for 6410 Triple Quad LC/MS (Agilent 
Technologies, Inc., USA).

Statistics
Data analysis was carried out in the statistical package IBM 
SPSS Statistics 20.0. All quantitative variables were tested for 
normal distribution by the Shapiro–Wilk criterion, resulting in 
abnormal data distribution, except for miR-34, miR-223 
expression levels and Base PRU. For the subsequent analysis 
of quantitative variables between subgroups, nonparametric 
criteria (Mann-Whitney, Kruskal-Wallis) were applied. 
Independent Samples t-test and one-way ANOVA were uti-
lized for miR-34, miR-223 and Base PRU variables. A p-value 
< 0.05 was considered significant. In order to establish the 
connection between micro-RNA expression levels and platelet 
reactivity, linear regression was carried out. For the regression 
analysis, the following variables were selected as the depen-
dent variables: miR-142, miR-126, miR-223, miR-150, miR- 
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29, miR-34. There were no differences from Hardy-Weinberg 
equilibrium (Table 1).

Results
MicroRNAs and Genes
The polymorphisms of the P2Y12-inhibitors ADME genes 
that demonstrated statistically significant connection with 
miRNA expression levels are as follows (see Table 1): 
P2Y12R (A>G, rs3732759) and miR-29 (p=0.017), miR-34 
(p=0.003); CYP2C19*17 (C-806T, rs1224856) and miR-142 

(p=0.012); PON1 (Q192R, rs662) and miR-29 (p=0.004), 
ABCG2 (G>T, rs2231142) and miR-34 (p=0.007). 
Therefore, miR-29, miR-34, miR-142 can be used as biomar-
kers of altered function polymorphisms (see Figure 1).

MicroRNAs and Platelet Reactivity 
Assessment
MiRNAs expression levels showed connection with the 
results of the platelet reactivity assessment utilizing 
VerifyNow assay (“Instrumentation laboratory”, MA, US) 

Table 1 Genotyping Data and Connected miRNA Expression Levels

P2Y12 (rs2046934) GG GA AA p-value

N М SD N М SD N М SD

miR-34 expression 33 33.49 2.95 14 33.45 1.86 3 33.60 0.77 0.063

miR-126 expression 33 32.60 4.00 14 34.96 2.62 3 33.51 1.59 0.082

P2Y12R (A>G, rs3732759)

miR-29 expression 3 38.10 3.27 9 33.35 0.64 15 32.89 1.26 0.017

miR-34 expression 3 38.25 3.01 9 32.72 2.11 15 32.95 2.23 0.003

CYP2C19*2 (681G > A, rs4244285)

miR-126 expression 20 32.48 4.08 6 36.16 1.89 1 34.94 1.79 0.066

CYP2C19*17 (C-806T, rs1224856) CC CT TT

N М SD N М SD N М SD

miR-142 expression 14 35.96 2.66 9 33.13 2.64 4 37.66 1.57 0.012

ABCB1 (C3435T, rs1045642)

miR-223 expression 17 31.20 4.85 28 31.70 4.12 17 30.54 5.13 0.080

PON1 (Q192R, rs662) CT TT

N М SD N М SD

miR-29 expression 13 32.68 1.29 14 34.49 2.38 0.004

PEAR1 (C>T, rs57731889) CC CT

N М SD N М SD

miR-34 expression 25 33.21 2.56 2 36.63 4.76 0.078

miR-223 expression 25 32.23 4.60 2 34.62 1.74 0.094

B4GALT2 (C>Т, rs1061781)

miR-34 expression 24 33.54 2.27 3 32.86 6.37 0.096

ABCG2 (G>T, rs2231142) CC CA

N М SD N М SD

miR-34 expression 22 33.42 3.08 5 33.68 0.60 0.007
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(see Table 2). MiR-126 (β coefficient=−0.076, SE=0.032, 
p=0.021), miR-223 (β coefficient=−0.089, SE=0.041, 
p=0.032), miR-29 (β coefficient=−0.042, SE=0.018, 

p=0.026), miR-142 (β coefficient=−0.072, SE=0.026, 
p=0.008) have the potential to be used as biomarkers and 
to substitute platelet reactivity testing.

Discussion
In this article, six miRNAs and eighteen gene polymorph-
isms and their connection to platelet reactivity have been 
assessed. There have been few publications which 
described the possible connection between miRNA expres-
sion levels and resistance to P2Y12-inhibitors.24,28–33 On 
the basis of these publications six prospective miRNAs 

Table 2 P-values of the Linear Regression Analysis Between miRNA 
Expression Levels and Results of the Platelet Reactivity Testing

PRU % Inhibition Base

miR-126 0.021 0.009 0.011

miR-223 0.032 0.005 0.098

miR-29 0.026 0.026 0.002
miR-142 0.008 0.003 0.001

Figure 1 Connections between miRNAs and polymorphisms of the ADME genes for P2Y12-inhibitors.
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have been selected. These are miR-29, miR-34, miR-126, 
miR-142, miR-150 and miR-223. The aforementioned 
miRNAs are also noted in the following databases: 
miRanda,34 PITA,35 miRTarBase,36 Pharmaco-miR,37 

TargetscanHuman 7.2.26 These miRNAs are also prese-
lected in the commercially available assays.38 All these 
facts supported the decision to test the connection between 
these miRNAs and platelet reactivity as well as loss-of- 
function genetic polymorphisms.

Recently published trials which assessed the genotype- 
based approach to prescription of a more potent P2Y12- 
inhibitor yielded interesting results.16,17 The TAILOR-PCI 
study demonstrated a 34% reduction in the primary end-
point - a composite of cardiovascular death, MI, stroke, 
definite or probable stent thrombosis, and severe recurrent 
ischemia - for patients with genotype-guided approach 
(4.0% vs 5.9%; adjusted HR 0.66; 95% CI 0.43–1.02). In 
a post hoc analysis, the researchers found a significant 
absolute 2.1% benefit in using the genotype-guided strat-
egy at 3 months (HR 0.21; P = 0.001).16 While the 
TAILOR-PCI study was designed to show superiority of 
genotyping, another study POPular Genetics compared 
a genotyping strategy to no-genotyping strategy. It showed 
non-inferiority of genetic testing to standard care with 
respect to the primary composite endpoint of all-cause 
death, MI, definite stent thrombosis, stroke, and PLATO 
major bleeding (5.1% vs 5.9%; P for non-inferiority < 
0.001). Moreover, genetic testing was superior to standard 
care for the endpoint of PLATO major and minor bleeding 
(9.8% vs 12.5%; P = 0.04).17

The high number of patients in the study, the number 
of polymorphisms and the well-established method of 
P2Y12-inhibitors effectiveness assessment enable miR- 
29, miR-34, miR-126, miR-142, miR-223 to be used as 
either biomarkers of platelet reactivity or loss-of-function 
genetic polymorphisms. Therefore, they can be used as 
biomarkers of the resistance to P2Y12-inhibitors.

Currently, the genotype-based strategy in prescription 
of P2Y12-inhibitors lowers the risk of high on-platelet 
reactivity and MACE.39 Currently the genotype-based 
strategy in the prescription of P2Y12-inhibitors is only 
recommended in patients at high risk of thrombotic events 
and not suitable for all comers as the trials have shown the 
conflicting results.40 There is an unmet need for a novel 
complex biomarker that can combine genetic profile and 
platelet laboratory parameters. MiR-29, miR-34, miR-126, 
miR-142, miR-223 are such biomarkers.

Limitations
The current study features 6 miRNAs and 80 patients. 
Although the number of miRNAs is large, the cohort is 
rather small for pharmacogenomics studies which may, in 
turn affect statistics and the possibility of false negatives.

Conclusion
This study has revealed new biomarkers of P2Y12- 
inhibitors resistance: miR-29, miR-34, miR-126, miR- 
142, miR-223. Vividly demonstrating a connection to 
on-treatment platelet reactivity, which in the case of 
miR-29, miR-34, miR-142 is also supported by pharma-
cogenomics, these novel biomarkers have a potential to 
be used for P2Y12-inhibitors resistance testing as part 
of future smart diagnostic tools.
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