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From gut dysbiosis to altered brain function and mental illness:
mechanisms and pathways
GB Rogers1, DJ Keating2, RL Young3, M-L Wong4, J Licinio4 and S Wesselingh1

The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial
functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has
grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially
altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the
development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut–brain axis, the
bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can
also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota
composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between
enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct
mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function,
and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and
exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.
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INTRODUCTION
The disruption of the microbes that are resident in our
gastrointestinal tract has long been implicated in the development
or exacerbation of mental disorders. There is, for example, a long
history of anecdotal reports of psychiatric side-effects of antibiotics,
even in those without a premorbid psychiatric history.1 There have
also been attempts to influence the composition of the gut
microbiota to achieve clinical benefit. For example, in the first
decades of the twentieth century, probiotic preparations containing
Lactobacillus strains were marketed widely as a means to improve
mental health or treat psychiatric disorders.2 These approaches fell
from favour in the 1920s because of a lack of mechanistic
understanding and their link to the increasingly unfashionable
‘autointoxication’ model. However, the interest in the role of gut
microbes in mental health, and our ability to improve psychiatric
wellbeing through their manipulation, is resurgent.2,3

In this review, we consider the potential of dysbiosis to contribute
to psychopathology and the evidence linking disruption of gut
microbiota with specific psychiatric disorders. We examine the
role of the microbiome in neurological development and regulation,
and consider its contribution to aging-related morbidity. Finally, we
discuss the potential for modification of the gut microbiome to
provide clinical benefit in the context of altered brain function.

REGULATION OF NEUROLOGICAL FUNCTION BY THE GUT
MICROBIOME
The potential contribution of bidirectional communication
between the gut and central nervous system (CNS) is suggested

by high rates of comorbidity between gastrointestinal and
psychiatric illnesses.4,5 For example, mood disorders affect more
than half of all patients with irritable bowel syndrome,6 with
antidepressants being one of the most common pharmaceutical
interventions for irritable bowel syndrome.4 The gut–brain axis
consists of a bidirectional communication network that monitors
and integrates gut functions and link them to cognitive and
emotional centres of the brain. It encompasses the central,
autonomic and enteric nervous systems, as well as the neuro-
endocrine, enteroendocrine and neuroimmune systems.7,8 It
mediates the effects of both genetic and environmental factors
on brain development and function, and has been implicated in
the aetiology of a number of psychiatric disorders.9–12

In recent years, we have increasingly understood the contribu-
tion made by the gut microbiome not only in the regulation of
host physiology, particularly metabolism and immunity,13–17 but
also the CNS and brain function.11,18,19 Given mounting evidence
that the microbiome has a key role in influencing the develop-
ment and function of the nervous system through its interaction
with the gut–brain axis, it has been suggested that a ‘micro-
biome–gut–brain axis’ may be a more appropriate model.19–22

The delicate balance between the human microbiome and the
development of psychopathologies is particularly interesting
given the ease with which the microbiome can be altered by
external factors, such as diet,23 exposure to antimicrobials24,25 or
disrupted sleep patterns.26 For example, a link between antibiotic
exposure and altered brain function is well evidenced by the
psychiatric side-effects of antibiotics, which range from anxiety
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and panic to major depression, psychosis and delirium.1 A recent
large population study reported that treatment with a single
antibiotic course was associated with an increased risk for
depression and anxiety, rising with multiple exposures.27 Bercik
et al.28 showed that oral administration of non-absorbable
antimicrobials transiently altered the composition of the gut
microbiota in adult mice and increased exploratory behaviour and
hippocampal expression of brain-derived neurotrophic factor
(BDNF), while intraperitoneal administration had no effect on
behaviour. Alteration of brain function may therefore add to the
many reasons that inappropriate antibiotic use should be avoided.
It should be noted though that unchecked bacterial infection also
represents an acute stressor, and has been shown to be associated
with memory dysfunction in mice.29

Diet is another important determinant of gut microbiota
composition and function that is strongly linked with psycho-
pathological outcomes. For example, consumption of high fat diet
(HFD) is associated with altered microbial diversity and reduced
synaptic plasticity,30–31 with increased vulnerability to anxiety-like
behaviour in mice,32 while altered microbial diversity upon
consumption of a diet high in sucrose results in significantly
impaired development of a spatial bias for long-term memory,
short-term memory and reversal training.33 In contrast, adolescent
rats fed a low-calorie diet show augmented neurogenesis and
BDNF levels, and improved cognition in adulthood,34 and a diet
that increases microbiota diversity is associated with improved
cognitive ability.35 Although human data have shown reduced
microbial diversity in individuals is linked with increased adiposity,
insulin resistance, dyslipidaemia and more pronounced inflam-
matory phenotype,36,37 strong evidence of a direct microbiome
effect comes from studies using conventionally housed mice
subjected to a microbiome depletion and/or transplantation
paradigm using microbiota isolated from donors on either an
HFD or control diet. Following re-colonization, mice given the HFD
exposed microbiota showed significant and selective disruptions
in exploratory, cognitive, and stereotypical behaviour.38 Although
it is not possible to exclude the direct effect of host metabolism
on brain function, such findings do suggest that diet-induced
changes in the intestinal microbiome substantially influence brain
function.
Diet and antibiotic exposure are only two factors that

potentially influence brain function through shaping the gut
microbiome (Figure 1). An array of common variables may be
equally important. For example, alcohol consumption,39,40 smok-
ing habits41 and disruption of diurnal rhythm,26 have all been
shown to substantially affect microbiota composition. As such,
how wider influences on the microbiome contribute to dysregula-
tion of brain function is an area of growing interest.

THE MICROBIOME IN SPECIFIC PSYCHIATRIC CONDITIONS
While the links between the microbiome and specific psychiatric
conditions have been reviewed elsewhere,18,42–45 a brief exami-
nation of the contribution of inter-kingdom interactions to two
particularly distressing neuropsychiatric disorders provides a
useful illustration.
Major depressive disorder (MDD) is typified by markers known

to be influenced by the microbiome. For example, depression-
associated changes seen in the hypothalamic-pituitary-adrenal
(HPA) stress response,46 and altered levels of depression-
associated monoamines (or their receptors) in corticolimbic
regions of the brain, have both been demonstrated in germ-free
(GF) mice.28,47–50 The increased concentrations of pro-
inflammatory cytokines seen in MDD46 may also result from
interactions with gut microbes. Levels of serum antibodies against
lipopolysaccharide from gram-negative enterobacteria are higher
in patients with MDD than in controls,51 and cause stress-
associated with increased gut permeability and bacterial

translocation in animal models.22,52 Evidence also exists that
depression alters the gut microbiota, as demonstrated in mice in
which chronic depression- and anxiety-like behaviours has been
induced by olfactory bulbectomy,53 suggesting a feedback loop
between depressive states and dysbiosis. A reflection of the
importance of this circular relationship may be the existence of
host mechanisms that regulate microbiota composition.54,55

Similar parallels between dysbiosis and psychopathogenesis
exist in schizophrenia (reviewed by Dinan et al.56 and Nemani
et al.44). Many of the strongest associations identified between
genetic risk and schizophrenia relate to genes involved
in immunity,57,58 paralleling clinical studies that report an
upregulated immune and inflammatory status in schizophrenia
patients.59–68 Serological markers of bacterial translocation are
also substantially elevated in schizophrenia subjects and sig-
nificantly correlated with systemic inflammatory markers.69 In
turn, cytokine levels are correlated with the severity of
clinical symptoms,59,70,71 and it has been suggested that the
resulting neuroinflammation is involved directly in schizophrenia
pathogenesis.72–74

As described later, the microbiota also modulate a range of
neurotrophins and proteins involved in brain development and
plasticity.48,49,75 There is evidence that such alterations are central
to the pathophysiology of schizophrenia. For example, BDNF
expression is believed to have a role in the molecular mechanism
underlying altered cognition,76 and through its influence on brain
plasticity, may contribute to the N-methyl-D-aspartate receptor
dysfunction seen in schizophrenia.77

TREATMENT INTERACTIONS WITH THE MICROBIOME IN
MENTAL ILLNESS
In addition to influencing psychopathogenesis directly, the gut
microbiome makes an important contribution to drug metabo-
lism, and potentially explains much of the inter-individual

Figure 1. Communication pathways linking the gut microbiome
with brain function.
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variability in treatment efficacy and side-effects.78,79 For example,
the gut microbiota has been implicated in the reductive
metabolism of psychotropic medications, including benzodiaze-
pine clonazepam,80 risperidone81 and levodopa.82 In addition, the
gut microbiome is also able to influence the gene expression of
hepatic enzymes that aid in the metabolism and detoxification of
drugs outside of the gut.83,84

A reciprocal interaction also exists, with drugs used to target
psychiatric or neurological disorders having the potential to affect
the composition and function of the gut microbiome.
For example, the atypical antipsychotic olazapine has been
shown to affect microbiota composition in rats, as well as
triggering inflammatory effects and weight gain,85,86 with the
co-administration of antibiotics shown to attenuate these
physiological effects.87 The impact of atypical antipsychotics on
the gut microbiota may therefore explain to some extent the
increased levels of cardiac and metabolic disease in patients
receiving these medications.88–90

The clinical implications of these pathways remain poorly
understood, but suggest the utility of a precision approach to
therapy, as has been advocated in psychiatry91,92 and other
disease contexts.93

THE ROLE OF THE MICROBIOME IN BRAIN DEVELOPMENT
Prenatal neurodevelopment
Brain development spans the prenatal period to post adolescence
and involves the interplay of genetic and environmental factors.94

Disruption of these interactions can alter normal developmental
trajectories and contribute substantially to neuropsychiatric out-
comes in later in life.95,96

Neural development begins early in embryonic life with a
number of important stages occurring before birth.94 Areas of the
brain undergoing these events exhibit greater fragility97 and the
significant impact of insults that occur during gestation is
increasingly recognized.98 During this period, maternal immunity
and metabolism represents a link between neurodevelopment in
the womb and the external environment. Challenges to maternal
homoeostasis, such as infection, poor nutrition or prenatal stress
(PNS), are associated with neurodevelopmental disorders, includ-
ing anxiety, autism, attention deficit hyperactivity disorder,
depression and schizophrenia.99–109 Disruption of the maternal
microbiome, or ‘dysbiosis’, appears to act as a link between
external stressors and fetal development, either by altering normal
developmental cues, or through the presentation of inappropriate
developmental stimuli.
The precise nature of relationships between maternal micro-

biome interactions, altered neurodevelopment and subsequent
psychopathologies, remain poorly defined. To a large extent, this
is due to the challenge of determining the relative contribution of
parallel and overlapping pathways that link multiple interacting
systems. Even in animal models, it is extremely difficult to identify
the relative contribution of pathways by which a single factor
can lead to an array of behavioural disorders. As an illustration, the
consumption of a HFD during pregnancy is associated with
subsequent behavioural disorders.110,111 However, HFD has been
shown to influence multiple regulatory pathways in the
immune,112,113 metabolic114 and neuroendocrine110 systems,
through both microbiome dependent and independent mechan-
isms, as well as resulting in the vertical transmission of the
associated dysbiosis.25 Further, the impact of an insult such as HFD
consumption depends on the developmental stage at which it
occurs, with similar adverse events during early or late periods
associated with different outcomes.105,115,116

One important contributor to aberrant neurodevelopment
appears to be the disruption of the immuno-regulatory role of
the gut microbiome, resulting in a pro-inflammatory maternal

state. Increased levels of circulating cytokines during pregnancy
have been shown to negatively affect neural development 110 and
could act by altering the fetal immune milieu (reviewed in detail
elsewhere94,117–119).
Immune-dysregulation could result from factors that ablate the

normal microbiota, such as antibiotics, thereby suppressing
microbial interactions with toll-like receptors and Treg cells in the
gut120–122 or the production of immuno-regulatory metabolites,
such as short-chain fatty acids (SCFAs).122–124 Alternatively,
factors that trigger dysbiosis, such as high fat consumption, could
act by promoting the production of pro-inflammatory bacterial
metabolites.125 In addition, the dysbiotic changes in the gut
microbiota could influence inflammation and CNS function
through changes in activation of vagal and/or spinal nerve
pathways.22,108,126,127 The contribution of such a microbiota-
immune interaction to stress-associated pathologies is supported
by the observation that exposure to repeated stress affects the gut
microbiota in a manner that correlates with changes in levels of
pro-inflammatory cytokines.128

The maternal HPA axis is likely to represent another important
link between prenatal insults and developmental abnormalities.
The HPA axis is affected by factors such as PNS129,130 and
infection,131 which are risk factors for a wide range of neuro-
developmental disorders.132–136 In animal models of early-life
postnatal stress, hyper-responsiveness of the HPA axis is coupled
with altered visceral pain sensitivity and impaired intestinal barrier
function,137,138 while aberrant dietary protein:carbohydrate ratios
during gestation have moderate long-term effects on the function
of the HPA and sympatho-adrenomedullary axes in offspring.139 It
is useful to note direct responses to in utero stressors such as
hypoxia also involve the adrenal system140,141 and are essential to
fetal survival and neurodevelopment.142 Whether the maternal
microbiome can influence these pathways remains unknown.
The manner in which a hyperactive maternal HPA stress

response influences fetal development is unclear; however, an
emerging hypothesis involves maternal cortisol crossing the
placenta in a quantity sufficient to affect gene expression in fetal
brain cells.143 This model is supported by in vitro analysis of
human fetal brain aggregates144 and the observation that the
effects of PNS on offspring can be partially mimicked by giving
pregnant animals a synthetic glucocorticoid or adrenocortico-
tropic hormone.130,145 However, the interaction of the HPA axis
with the maternal microbiome is likely to be complex. In addition
to affecting fetal neurodevelopment directly, stress-induced
alterations to the HPA axis trigger maternal gut dysbiosis.146

These changes in the gut microbiota could further influence HPA
axis dysfunction through altered tryptophan metabolism, as well
as contributing to other dysbiosis-associated dysregulatory
pathways.94 In addition, there is evidence that the gut microbiome
influences the function of the placenta via the HPA axis, thereby
altering fetal exposure to specific compounds in maternal
circulation.147–150

The maternal gut microbiota could also affect fetal neurodeve-
lopment by influencing levels of circulating 5-hydroxytryptamine
(5-HT). The gut microbiome regulates 5-HT biosynthesis by
enterochromaffin (EC) cells in the gut.13 In turn, 5-HT regulates
fetal neuronal cell division, differentiation and synaptogenesis151

and its depletion results in altered brain development.152

Furthermore, maternal plasma serotonin is required for proper
neuronal morphogenesis during developmental stages that
precede the appearance of serotonergic neurons, with embryos
depending more on maternal plasma serotonin than their own
during in utero development.153 Maternal gut dysbiosis is also
likely to influence blood–brain barrier (BBB) formation, a critical
component in CNS development, ensuring an optimal micro-
environment for neuronal growth and specification.154 This is
suggested by analysis of the embryos of GF mice, where the BBB
has been shown to be substantially compromised.155
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Postnatal neurodevelopment
Neurodevelopment continues outside the womb with the
neonatal period characterized by substantial neurological devel-
opment, including morphological changes, cell differentiation and
acquisition of function.156,157 Synaptogenesis begins shortly after
birth and reaches maximum levels by around 2 years of age,
before a process of synaptic refinement and elimination reduces
the number of synapses in the postnatal brain to adult levels by
mid-adolescence.158 Remodelling continues well into the third
decade of life,159 providing a lengthy window of vulnerability to
external perturbations. This critical period of neurodevelopment
parallels the establishment and maturation of the microbiome, a
process now known to be essential for the establishment of
normal immune function,160–164 the neuroendocrine system165

and metabolic regulation.166,167 Disruption of the microbiome in
early life therefore has the potential to influence neurodevelop-
ment and long-term mental health outcomes, particularly through
its interaction with the immune system and the gut–brain axis.
Gnotobiotic animal models have been important in demon-

strating the contribution of the developing microbiome to early-
life neurodevelopment and the establishment of appropriate
stress responses. For example, GF mice have an exaggerated
hypothalamic-pituitary response to mild restraint stress, with
elevated plasma adrenocorticotropic hormone and corticosterone
and reduced BDNF expression levels in the cortex and
hippocampus.49 Furthermore, mice that develop in the absence
of microbes exhibit increased motor activity and reduced anxiety,
associated with differential expression of synaptophysin and
PSD-95, proteins that are specifically involved in synaptogenesis
pathways.48 Microbial colonization is also required for program-
ming and presentation of normal social behaviours, and is
important for the regulation of repetitive behaviours,168 the
development of non-spatial memory,29 and the development of
pain signalling from the body.169 It is important to note that the
absence of appropriate microbial developmental cues in early-life
can result in aberrant mental development that is not corrected by
later microbial exposure (Neufeld et al.).170

It is clear from these and other GF animal studies that the
absence of a commensal microbiota during early-life substantially
affects both neurophysiology and the risk of abnormal behaviour
development. However, while a useful tool for highlighting
mechanistic pathways, the GF animal poorly reflects the types of
microbiome disruption that may occur in humans. As such, other
investigations have attempted to recreate real-world early-life
insults in the controlled context of animal models. For example,
while associations between caesarean-section delivery, altered
early life microbial colonization171,172 and the incidence of
behavioural disorders and abnormal cognitive development in
humans173–175 have been known for some time, the extent to
which a direct causal relationship exists is difficult to discern, given
the number of other potentially contributing variables. However,
when vaginally delivered mouse pups are compared with those
delivered via caesarean section they show an altered gut
microbiome and increased anxiety, social deficits and repetitive
behaviours reminiscent of autism spectrum disorder-like beha-
viours in humans.176

Even in animal models though, the line between pre- and post-
delivery periods is blurred by factors such as the vertical
transmission of microbiota, the influence of the maternal micro-
biome of milk composition,177 and the continuation of stressors in
the external environment. An example of this complexity is the
impact of PNS on neurodevelopment. PNS has been shown
to alter the composition of the gut178 and maternal vaginal
microbiota in mice,98,179 thereby altering the pool of microbes
that can be passed to the neonate (an analogous situation has
been described in humans, where PNS has been shown to affect
the composition of the human infant gut microbiota over the first

110 days after birth180). As above although PNS also alters prenatal
development, and therefore the nature of interactions between
the neonate and microbes in early life. Determining the relative
contribution and timing of contributory pathways to long-term
psychopathological outcomes is therefore challenging.
The lasting impact of antibiotic exposure on the micro-

biome, whether during pregnancy,181,182 intrapartum183 or in the
neonatal period24,184 is an example of a further complex factor.
There is clear potential for antibiotic dysbiosis to contribute to
maternally mediated antenatal neurodevelopment, while anti-
biotic dysbiosis is also heritable.25 Early-life exposure to antibiotics
has been shown to result in long-term immune dysregulation185

and visceral hypersensitivity.186 Further, the developmental
impact of antibiotic dysbiosis is not limited to the neonatal
period, with adolescent rats exhibiting an altered tryptophan
metabolic pathway, reduced anxiety and cognitive defects.187

Diet-induced maternal dysbiosis may also affect early-life
neurodevelopment through milk composition. For example, the
offspring of mice fed an HFD during lactation show develop-
mental and neurobehavioral changes that suggest possible
disruption of physical and sensory-motor maturation, and
increased susceptibility to depressive and aggressive-like
behaviour.188 These observations suggests further work in in
relation to dietary inputs will be important in understanding brain
function determinants in humans.

MECHANISMS OF INTERACTION
Activation of inflammatory pathways appears to be a particularly
important link between the microbiome and neonatal neuro-
development. The gut microbiota can affect the immune system
directly via activation of the vagus nerve,22,126,189–191 in turn
triggering bidirectional communication with the CNS.192 In
addition, indirect effects of the gut microbiota on the innate
immune system can result in alterations in the circulating levels of
pro- and anti-inflammatory cytokines that directly affect brain
function.
Bacterial metabolites from the gut have a substantial influ-

ence on the regulation of the gut–brain axis and local and
systemic immunity. SCFAs, produced by the bacterial fermenta-
tion of dietary carbohydrates, have immunomodulatory
properties121,123,124,193 and can interact with nerve cells by
stimulating the sympathetic and autonomic nervous system via
G-protein-coupled (GPR) receptor 41 (GPR41)194 and GPR43.195 In
addition, they can cross the BBB, modulate brain development
and behaviour196–198 and have been implicated in the develop-
ment of autism.199 Further, gut microbiota derived SCFAs have
been shown to regulate microglia homoeostasis,200 necessary for
proper brain development and brain tissue homoeostasis.201–203

GF mice display global defects in microglia with altered cell
proportions and an immature phenotype, leading to impaired
innate immune responses in the CNS.200 SCFAs also regulate the
release of gut peptides from enteroendocrine cells,204 which in
turn affect gut–brain hormonal communication.205,206 SCFAs have
recently been shown to regulate the synthesis of gut-derived 5-HT
from EC cells.13 The gut provides ~ 95% of total body 5-HT,207

most of which exists in plasma. Although this source of 5-HT has
intrinsic roles within the gut208,209 and peripherally in metabolic
control,210 EC cell 5-HT can activate afferent nerve endings to
signal to the CNS.211 Furthermore, this source of 5-HT has
significant links to psychiatric disorders with the most commonly
used antidepressant, fluoxetine, blocking the transport of gut 5-HT
into plasma, while elevated plasma serotonin is observed in
25–50% of children with autism212–215 and an inverse correlation
between high plasma serotonin and low serotonergic neuro-
transmission has been demonstrated in young male adults with
autism spectrum disorder.216 In addition to SCFAs, gut bacteria are
also capable of producing an array of other neuroactive and
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immunomodulatory compounds, including dopamine,217 γ-ami-
nobutyric acid,218 histamine219 and acetylcholine,220 while the gut
microbiome is an important regulator of bile acid pool size and
composition,221 and, in turn, BBB integrity and HPA function.222

The gut microbiota could also contribute to the regulation of
brain function by influencing tryptophan metabolism (reviewed
by O’Mahony and colleagues95). Tryptophan is an essential,
diet-derived, amino acid,223 required for serotonin synthesis in
the CNS.224 Once absorbed from the gut, tryptophan can cross
the BBB and participate in serotonin synthesis.224 However, there
are many other pathways through which tryptophan can be
metabolized,224 including the largely hepatic kynurenine
pathway225 and the major serotonin synthesis pathway in gut EC
cells.226–228

The availability of tryptophan is heavily influenced by the gut
microbiota. GF mice have been shown to have increased
plasma tryptophan concentrations,47,48 which can be normalized
following post-weaning colonization.47 Resident gut bacteria can
utilize tryptophan for growth229 and in some cases, production
of indole,230,231 or serotonin (reviewed by O’Mahony and
colleagues95), while the microbiota might also affect tryptophan
availability by influencing host enzymes responsible for its
degradation.47 By limiting the availability of tryptophan for
serotonin production in the CNS (EC-derived serotonin does not
cross the BBB), the gut microbiota could influence serotonergic
neurotransmission.95 In vulnerable populations, reducing the
circulating concentrations of tryptophan has been shown to
affect mood, and to reinstate depressive symptoms in patients
who have successfully responded to selective serotonin reuptake
inhibitors.232,233 The gut microbiota could also influence the
production of both neuroprotective and neurotoxic components
of the kynurenine pathway.224

Other pathways by which the gut microbiota could influence
the development and activity of brain tissue include regulation of
the release of gut peptides from enteroendocrine cells,204 which in
turn affect gut–brain hormonal communication,205,206 and, as
described above, the regulation of microglia homoeostasis.
Two recent, related papers by Wong et al. and Zheng et al.

indicate that the microbiota–gut–brain axis functions in a
bidirectional manner in the regulation of depressive-like beha-
viours. Data in the paper by Wong et al.234 demonstrate that
changes in behaviour caused by increased stress levels, knockout
of caspase 1 leading to decreased inflammasome function, or
pharmacological treatments result in changes in the gut micro-
biome. The paper by Zheng et al. shows three key findings: (i) the
absence of gut microbiota in GF mice resulted in decreased
immobility time in the forced swimming test relative to
conventionally-raised healthy control mice. (ii) From clinical
sampling, the gut microbiotic compositions of MDD patients
and healthy controls were significantly different from that of MDD
patients. (iii) Faecal microbiota transplantation of GF mice with
‘depression microbiota’ derived from MDD patients resulted in
depression-like behaviours compared with colonization with
‘healthy microbiota’ derived from healthy control individuals.
Moreover, the concerned authors showed that mice harbouring
‘depression microbiota’ primarily exhibited disturbances of
microbial genes and host metabolites involved in carbohydrate
and amino acid metabolism, indicating that the development
of depressive-like behaviours is mediated through the host’s
metabolism.235 The combined findings of these two papers
suggest that the microbiota–gut–brain axis is fully bidirectional,
functioning in a manner through which changes in microbiota
affect behaviour, while conversely, changes in behaviour brought
about by chronic stress, genetic manipulation, or pharmacological
intervention, result in alterations in microbiota composition. Novel
approaches to target this bidirectional interface of gut microbiota
and depressive-like behaviour may offer novel approaches for the
treatment of major depression.

THE ROLE OF THE MICROBIOME IN AGE-RELATED COGNITIVE
DECLINE
Despite fluctuating in response to external influences, the gut
microbiota is thought to remain relatively stable during
adulthood.236 However, just as the microbiome has a critical role
in the development of the nervous system in the neonate, it also
appears to have a substantial influence on CNS degeneration in
old age. Aging affects the brain on both cellular and functional
levels, and is associated with decline in sensory, motor and higher
cognitive functions.237–239 This period of life is also associated with
marked changes in the microbiome.240,241 In keeping with
dysbiosis arising from a range of insults, age-related changes in
gut microbiota composition appear to involve a reduction in
microbial diversity, with an increased relative abundance of
Proteobacteria and a reduction in bifidobacteria species, and
reduced SCFA production.239

It has been suggested that the processes of age-related
dysbiosis and neurological decline are linked through the former
mediating chronic low-grade inflammation as a common basis for
a broad spectrum of age-related pathologies, or so-called
‘inflamm-aging’.242 Inflammation has a substantial role in cogni-
tive decline, not only in the context of normal aging but also in
neurological disorders and sporadic Alzheimer’s disease.243 There
are a number of ways in which gut dysbiosis could contribute to
this process, including direct inflammatory stimulation, the
production of pro-inflammatory metabolites, and the loss of
immune-regulatory function. In addition, the gut microbiome is
essential to the bioavailability of polyphenols, unsaturated fats
and antioxidants, all of which may help protect against neuronal
and cell aging role under normal circumstances (reviewed by
Caraccciolo et al.239). Notably, dysbiosis-associated inflammation is
also strongly implicated in obesity and diabetes, both of which
have been shown to exacerbate normal cognitive decline.244–247

Age-related changes in the brain are most pronounced in the
amygdala, hippocampus and frontal cortex,248 whose function is
heavily dependent on serotonergic neurotransmission,249 poten-
tially implicating microbiome-influenced changes in tryptophan
metabolism. Further, altered serotonin systems could represent a
common link with changes in sleep, sexual behaviour and mood
in the elderly, as well as disorders such as diabetes, faecal
incontinence and cardiovascular diseases.94,250

An association between loss of microbiome function, specifi-
cally genes that encode SCFAs, and increased levels of circulating
pro-inflammatory cytokines, has been shown in healthy elderly
people.251 Further, markers of microbiome change are signifi-
cantly correlated with diet, and with indices of frailty and poor
health among long-term institutionalized people,251 while feeding
cognitively healthy elderly individuals a diet low in meat and meat
products is associated with subsequent increases in brain volume
and cognitive function.252 Interestingly, in mice, the same HFD
predisposes to physiological and anxiety-like effects in adults,
while aged mice display deficits in spatial cognition,253 suggesting
the effect of stressors changes during the aging process.
With a growing appreciation of the healthcare implications of

an aging global population254–256 obtaining a better under-
standing of how the bidirectional interaction between the
microbiome and gut–brain axis that influences age-related
changes in brain function, must be a priority.

MODIFICATION OF THE GUT MICROBIOTA TO AFFECT
THERAPEUTIC CHANGE
As described above, studies in mice have shown that alteration of
the microbial composition of the gut can induce changes in
behaviour, raising the possibility of therapeutic manipulation of
the microbiome. What approach might be appropriate depends
on the specific role of the microbiome in pathogenesis.
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In instances where the absence of particular bacterial species is
linked to altered brain function, the addition of discrete microbes
may be clinically effective. For example, in rats deprived of
maternal contact at an early age, treatment with Bifidobacterium
infantis results in normalization of the immune response, reversal
of behavioural deficits, and restoration of basal noradrenaline
concentrations in the brainstem,257 while in a mouse model of
gastrointestinal inflammation and infection, exposure to B. longum
normalizes anxiety-like behaviour.258,259 The effects of psychoso-
cial stress are also reversed in mice following probiotic treat-
ments.260,261 Such effects are not limited to rodent models; in
healthy women, a probiotic cocktail alters activity of brain regions
that control central processing of emotion and sensation.262

Broadly, such probiotic effects appear to mediate behavioural
changes through stimulation of the vagus nerve22,191,258 or
through modulation of cytokine production.263

Probiotic therapies have limitations, including a poor ability to
establish a stable population within the recipient. Further, in many
instances, pathogenesis may be contributed to by broad functions
conserved across many different species, such as the ability to
produce metabolites that are immunomodulatory, or that directly
influence brain activity.264,265 Here, it may be the absence of
suitable drivers of beneficial behaviour that is limiting, rather than
the absence of microbes capable of exhibiting them. In such
instances, the broad-scale alteration of the microbiome using
selective dietary microbial growth substrates, or prebiotics, may
be more appropriate and result in longer lasting change. For
example, consumption of fructooligosaccharides or a non-
digestible galactooligosaccharide formulation (BGOS) elevates
BDNF levels and NMDAR subunit expression in rats.266 BGOS
consumption also reduces anxiety in mice injected with lipopo-
lysaccharide to induce sickness behaviour, an effect that appears
to be related to the modulation of cortical interleukin-1β and
5-HT2A receptor expression.267 In humans, daily consumption of
BGOS for 3 weeks results in a significantly lower salivary cortisol
awakening response compared with placebo and a decreased
attentional vigilance to negative versus positive information.268

Pusceddu et al.269 showed that long-term supplementation with
n-3 polyunsaturated fatty acids corrected dysbiosis seen in
maternally separated female rats, and was associated with an
attenuation of the corticosterone response to acute stress.
Interestingly, while the supporting evidence for the efficacy or
such approaches is only now emerging, the consumption of
wholegrain and high fibre foods, essentially prebiotics, is already
recommended to patients.270

Demonstrations of the transmissibility of behavioural traits
between animals by faecal microbiota transfer are also intriguing.
Faecal microbiota transfer is employed increasingly widely in the
treatment of conditions such as recurrent Clostridium difficile
infection.271 Its ability to influence behaviour suggests that it
might also have a role in the treatment of psychopathology
(reviewed by Collins et al.272). It is important to note, however, that
these observations also raise important questions about current
approaches to donor screening for therapeutic faecal microbiota
transfer.

FUTURE DIRECTIONS
The advances in our understanding of the role of the microbiome
in neurodevelopment and mental health, particularly in the past
5 years, have been remarkable. The implications of this new
insight are only beginning to become apparent; however, the
potential value of microbiome analyses in revealing mechanisms
that underpin altered brain development and mental illness is
hugely exciting. There is now a need to close the gap between
practice, including the increasing use of pro- and prebiotics, and
the supporting science. The importance of achieving this is
reflected in the substantial investments made to ‘microbiome–

gut–brain axis’ research by both the US government and the
European Union.273

Achieving a better understanding of the contribution of the
microbiome to mental health will require further development of
analytical approaches. Studies based on reductive animal models,
particularly those involving GF animals, have been important in
identifying underlying mechanisms; however, they exclude the
complexity of real-world interactions. The rapidly falling costs of
‘omics’ approaches to microbiome analysis now allow them to be
applied to large human cohorts within life-course studies, with
data generated assessed in the context of detailed genetic,
epigenetic, demographic and clinical assessments. Exploiting
these opportunities will result in substantial improvement in our
understanding of altered brain function and mental illness in the
relative near-term.
In addition to changing analytical strategies, the conceptual

framework within which these data are assessed must also
continue to develop. A ‘three-hit’ model of vulnerability and
resilience to mental health issues, based on genetic predisposi-
tion, the prenatal environment, and later life experiences, has
been proposed.274 However, just as the gut–brain axis might be
extended to include the microbiome, such developmental path-
ways must also take into consideration points of interaction with
our resident microbiota. Refining these models based on empirical
data now represents a key challenge in understanding the
processes behind altered brain function and mental illness.
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