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In bioinformatics, as well as other computationally intensive research fields, there is a need for workflows that can reliably
produce consistent output, from known sources, independent of the software environment or configuration settings of the
machine on which they are executed. Indeed, this is essential for controlled comparison between different observations
and for the wider dissemination of workflows. However, providing this type of reproducibility and traceability is often
complicated by the need to accommodate the myriad dependencies included in a larger body of software, each of which
generally comes in various versions. Moreover, in many fields (bioinformatics being a prime example), these versions are
subject to continual change due to rapidly evolving technologies, further complicating problems related to reproducibility.
Here, we propose a principled approach for building analysis pipelines and managing their dependencies with GNU Guix. As
a case study to demonstrate the utility of our approach, we present a set of highly reproducible pipelines called PiGx for the
analysis of RNA sequencing, chromatin immunoprecipitation sequencing, bisulfite-treated DNA sequencing, and single-cell
resolution RNA sequencing. All pipelines process raw experimental data and generate reports containing publication-ready
plots and figures, with interactive report elements and standard observables. Users may install these highly reproducible
packages and apply them to their own datasets without any special computational expertise beyond the use of the
command line. We hope such a toolkit will provide immediate benefit to laboratory workers wishing to process their own
datasets or bioinformaticians seeking to automate all, or parts of, their analyses. In the long term, we hope our approach to
reproducibility will serve as a blueprint for reproducible workflows in other areas. Our pipelines, along with their
corresponding documentation and sample reports, are available at http://bioinformatics.mdc-berlin.de/pigx
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work, it is essential the installed software is identical to versions
used in publication and be directly traceable to a well-defined set
of source packages in order to facilitate the reproduction of pub-
lished data and the controlled manipulation of these software
systems. Unfortunately, this goal is often unattainable for a va-

Reproducibility of scientific workflows is a ubiquitous problem
in science and is particularly problematic in areas that depend
heavily on computation and data analysis (see [1]). For such
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riety of related reasons. Research-oriented software may be hard
to build and install due to unsatisfiable dependency constraints
and nontrivial software may yield different results when built
or used with different versions or variants of declared depen-
dencies. On workstations and shared high-performance com-
puting (HPC) systems alike, it may be undesirable or even im-
possible to comply with version and variant requirements due
to software deployment limitations. Moreover, it is unrealistic
to expect users to manually recreate environments that match
the system and binary dependencies on which the software was
developed. In the field of bicinformatics, the above problem is
exacerbated by the fact that data production technology moves
extremely fast; existing software and data analysis workflows
require frequent updates. Thus, it is paramount that multiple
versions and variants of the same software be automatically
built in order to ensure reproducibility of projects that are ei-
ther in-progress or are already published. Moreover, bioinfor-
matics workflows are increasingly being applied to potentially
sensitive medical data from research participants. For the sake
of data security, it is important that researchers know exactly
what sources are being used in an application in order to min-
imize the risk of code that might (either maliciously or inad-
vertently) compromise confidentiality [2]. Thus, bioinformatics
represents a field where there is a need for both reproducibil-
ity and referential transparency (i.e., traceability to original soft-
ware sources).

Animportant related issue is the reproducibility of workflows
and pipelines across different machines. In addition to bioinfor-
matics, many scientific fields require researchers to prototype
their code on local workstations with a custom software stack
and then later run it on shared HPC clusters for large datasets.
The researcher must then be able to recreate their local envi-
ronment on the cluster to ensure identical behavior. All of these
concerns add to the burden on scientists, and valuable time
that could be spent on research is wasted accommodating the
limitations of system administration practices to ensure repro-
ducibility. Even worse, reproducibility failures can be overlooked
amid this complication, and publications could be accompanied
with irreproducible analysis workflows or software. For these
reasons, the scientific community, in general, and fast evolving
fields like bioinformatics, in particular, need reliable and repro-
ducible software package management systems.

In recent years, several tools have gained popularity among
software developers and system administrators for wrapping
Linux kernel features to accomplish process isolation, bind
mounts, and user namespaces or to deploy services in isolated
environments (also called “containers”). Examples of such tools
include Docker, Singularity, and 1xc. These tools are sometimes
also proposed as solutions to the reproducibility problem [1, 3],
because they provide a way to ship an application alongside all
of its runtime dependencies. This approach necessitates the use
of file system images that are modified using imperative state-
ments, e.g., to run a package manager inside a namespace, with
the goal of embedding all dependencies in an opaque binary im-
age.

Such images, however, offer no indication as to the sources
from which their contents originate. Although contributors fol-
lowing best practices will generally declare their dependencies,
with many contributors, and inevitable human error, it can of-
ten become difficult to confidently ascertain the full contents
of an opaque binary bundle. Software deployment inside of the
container is still subject to the well-known limitations of tradi-
tional package managers, such as intractable stateful behavior,
time-dependent installation results, and the inability to install

and control more than a handful of application, or library, vari-
ants of packages on the same system, to name a few. Some of
these limitations can partially be worked around by following
strict policies such as operating version-controlled mirrors of all
upstream package repositories. However, these policies are not
enforced by container systems such as Docker. Rather, they only
shift the problem of reproducibility from the package level to the
level of binary disk images, a rather less useful level of abstrac-
tion.

Functional package management [4], on the other hand, em-
beds the complete dependency graph and configuration space
into the construction of the package itself. This approach allows
for referential transparency in addition to bit-for-bit build repro-
ducibility. Other package and environment managers (such as
Conda, EasyBuild, or Spack) leave out this information to vary-
ing degrees and rely on tacit assumptions about the deployment
and build environments.

For the above reasons, we propose functional package man-
agement as implemented in GNU Guix [5]) as a way to imple-
ment workflow systems. To demonstrate the feasibility of this
approach, we created a set of analysis tools (or “pipelines”) for
common genomics analysis datasets: RNA sequencing (RNA-
seq), chromatin immunoprecipitation sequencing (ChIP-seq),
bisulfite-treated DNA sequencing (BS-seq), and single-cell res-
olution RNA sequencing (scRNA-seq). Each pipeline has a com-
plex and large graph of dependencies, and each graph is compre-
hensively declared as a GNU Guix package definition. The graph
is then built reproducibly by relying on Guix package manager
features. Note that these pipelines also represent production-
level pipeline tools, rather than simply model examples; they
come with a full set of features including alignment, quality
checking control, quantification, assay specific analysis, and
HTML reports. This set of pipelines is referred to, collectively,
with the acronym PiGx (for Pipelines in Genomics?), pronounced

“pigs.”

PiGx was designed with special focus on several key features,
namely, that they be easy to use, easy to install, easy to dis-
tribute, reproducible, and referentially transparent, many of
which are interrelated constraints. Care was taken to ensure
that all of the pipelines have a similar interface, so that famil-
iarity with one pipeline would make for a gentler learning curve
in using the others. For the end user, each pipeline has the same
input types: a sample sheet and a settings file. The sample sheet
contains information about samples (such as names, labels, and
covariates). The settings file contains extra arguments related
to the execution of the pipelines. The users can generally run
pipelines as follows:

pigx [pipeline_name]| [sample_sheet] -s [settings_file]

where [pipeline_name] can refer to any of the four pipelines:
“rnaseq,” “chipseq,” “bsseq,” or “scrnaseq.” The resulting output
provided to the users includes high-quality reports and figures
containing a standard set of results from basic analyses and data
quality checks. Where appropriate, reports also contain certain
interactive elements.

1 The trailing x serves primarily as an aid to search specificity and denotes
implementation using Guix.



In implementing this toolset, one of our first design choices
was to use a conventional build system, the GNU Autotools suite,
to configure and build the pipelines as if they were first-class
software packages in their own right rather than a mere collec-
tion of tools and “glue code.” Instead of assuming that a user
will provide a suitable environment at runtime, the use of a build
system allows us to capture the software environment at config-
uration time. This is achieved by explicitly checking for the pres-
ence of required tools in the build environment and recording
their exact location in the pipeline’s configuration file. At run-
time, the pipeline refers only to tools through the configuration
file and does not assume the availability of dependent software
in the global environment. Moreover, using a well-established
build system makes it easy to package the pipelines for any
package manager. We chose GNU Autotools over other build sys-
tems for two reasons: it does not require users to have a copy of
the build system software as it compiles to shell code (which
is highly portable) and it has been established long enough to
implement a conventional and flexible build interface with well-
known behavior even in somewhat unusual circumstances, such
as the installation of files into unique prefixes as is done when
building with GNU Guix.

Capturing the build-time environment alone is not enough
to ensure reproducibility, nor is the use of a build system suffi-
cient to make installation easy. Thus, our second design choice
was to package the pipelines for the GNU Guix package manager.
Like other user-level package managers such as Conda or Easy-
Build, GNU Guix allows users to install, upgrade, and remove
software without having to know the details of dependencies or
the build procedure. Unlike traditional package managers, how-
ever, GNU Guix takes a declarative approach to software environ-
ments called "functional package management.” This approach
takes into account the complete graph of dependencies and
build-time configurations and maximizes build reproducibility
by building binaries in isolated environments. Packages are in-
stalled into directories with unique prefixes that are computed
from the dependency graph, allowing for the simultaneous in-
stallation of different versions or variants of applications and
libraries. With functional package management, a given soft-
ware build will generally yield bit-identical files when the build
is performed on different machines or on the same machine at
different points in time, independent of the current state of the
system (caveats to this generalization are discussed below).

We consider software reproducibility an important asset in
controlled experimentation. Reproducing a software environ-
ment bit for bit is not a goal in itself but it provides us with
a foundation upon which we can perform precise changes to
the environment and assess the impact of these changes. With-
out bit-for-bit reproducibility, we cannot be certain of the nature
and impact of differences in the software environment. While
virtual machines or binary application bundles such as Docker
images would be sufficient to freeze the state of our software
environment, relying on these tools would forgo the ability to
recreate that same environment from scratch, and it would not
be possible to analyze the environment at the level of software
packages. The approach of functional package management as
implemented in GNU Guix preserves the relationships between
software packages and ensures that differences to the environ-
ment can be accounted for.

A further design choice remained regarding the workflow
management system, which would execute a series of tasks
mostly in the form of scripts from different programming lan-
guages. For this purpose, we used SnakeMake [6], which provides
target-driven execution infrastructure similar to GNU Make but

with Python syntax, along with useful features such as par-
allel execution on HPC scheduling systems. We would like to
emphasize, however, that this choice of workflow management
system was made purely to facilitate ease of development and
acceptance within the bioinformatics community, where the
Python programming language is well established. The different
pipeline stages are implemented with a workflow management
system stitching together various bioinformatics tools; they are
made configurable with the GNU Autotools and packaged with
GNU Guix. This means they will be almost fully (see below) build-
reproducible and can be installed via the one-liner:

guix package --install pigx.

General description of PiGx-RNA-seq pipeline

PiGx RNA-seq provides an end-to-end preprocessing and anal-
ysis pipeline for RNA-seq experiments. The pipeline takes a set
of raw fastq read files and the experimental design as described
by the user and produces differential expression reports with
figures and tables of differentially expressed genes, as well as
Gene Ontology (GO) term analysis thereof. Furthermore, it pro-
vides quality control reports about the experiment. To use the
pipeline, the user must provide two files: the sample sheet de-
scribing the samples and corresponding fastq files and a settings
file with configuration parameters related to the pipeline’s exe-
cution. The settings file lists, among other things, the location
of a reference genome for alignment, a GTF file with genome
annotations, and a transcriptome reference, as well as a list of
desired differential expression analyses to be performed, spec-
ifying which samples to use as cases and controls (see package
documentation here [7] for more details).

The pipeline can then be run with the command pigx
rnaseq [sample_sheet] -s [settings_file] to generate the
output through several intermediate steps (see Fig. 1).

PiGx RNA-seq uses the reference genome and transcriptome
provided by the user to produce indices using STAR [8] and
Salmon [9], respectively. It then uses Trim Galore! [10] to trim low-
quality reads and remove adapter sequences before aligning the
reads to the reference using STAR. At this point, PiGx RNA-seq
uses fastqc [11] and MultiQC [12] to generate comprehensive qual-
ity control reports of the sequencing, trimming, and alignment
steps. PiGx RNA-seq also uses BEDTools [13] to compute the depth
of coverage in the experiment and outputs convenient bedgraph
files. Gene expression quantification is obtained from STAR and
transcript-level quantification using Salmon. The gene expres-
sion count matrix is then used to run differential expression
analyses, as specified by the user, using DESeq?2 [14] for statistical
analysis and g: ProfileR [15] for GO term analysis. Each differential
expression analysis produces a self-contained HTML report.

The differential expression reports produced are comprehen-
sive, including sortable tables for differentially expressed genes
for a detailed view, principal component analysis plots for a
bird’s-eye view of the experiment, as well as MA and volcano
plots. In addition, the reports include a section with GO term
enrichment analysis.

RNA-seq use case

The study by Hon et al. [16] is motivated by several observations:
DNA methyl-transferases (DNMTs) are the major mediators of
cytosine methylation (producing 5-methyl-cytosine [5mC]); 5-
hydroxy-methyl-cytosine (ShmC) is a product of oxidation of
5mCs; and the TET family of proteins mediate 5SmC oxidation.
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Figure 1: Workflow diagram of the PiGx RNA-seq pipeline.

It has been established that DNA demethylation consists of the
sequence of chemical reactions that convert 5mC into 5hmC,
which is subsequently converted into 5-formyl-cytosine (5fC)
and 5-carboxyl-cytosine (5caC). Active enhancers are depleted
for 5mC but are enriched for 5hmC marks [17], suggesting that
an interplay between DNMTs and TET proteins could determine
the activity level of enhancers. Mutating DNMTs or TET proteins
in mouse embryonic stem cells (mESCs) perturbs global DNA
methylation status; however, cells do not lose the ability to re-
generate. Moreover, mutating TET proteins and perturbing the
oxidation levels have previously been shown to skew the differ-
entiation of mESCs. Based on these facts, the authors address
the following question: can the skewed differentiation in mESCs
be explained by deregulated balance of 5SmC/5hmC levels at ac-
tive enhancers following the loss of activity of TET proteins?

The authors of the above study use TAB-Seq, BS-Seq, ChIP-
seq, and RNA-seq methods to profile genome-wide methylation,
demethylation, histone modifications, and gene expression lev-
els to address these questions. They find that Tet2 has the biggest
role in enhancer demethylation in mESCs. Deletion of Tet2 leads
to enhancer hypermethylation, which in turn reduces enhancer
activity. The reduced enhancer activity leads to a disruption in
the activation of more than 300 genes in the early stages of dif-
ferentiation; however, the activity levels of these genes are re-
stored to wild-type levels at the later stages of differentiation.
Reduced enhancer activity followed by delayed gene activation
explains the skew observed in mESC differentiation.

The authors of the above study profile the transcriptomes of
mESCs as they differentiate into neural progenitor cells within
a 6-day period. They quantified gene expression levels of wild-
type, Tetl -/-, and Tet2 -/- cells on day zero, day 3, and day 6 and
sequenced two biological replicates per sample. Thus, they ob-
tained 18 samples in total (3 genotypes x 2 replicates x 3 days).
In Fig. 5 of the original manuscript, the authors summarize the
results of the RNA-seq analysis. Here, we use the PiGx-RNA-seq
pipeline to preprocess the raw fastq files downloaded from the
GEO archive (GEO accession: GSE48519), map the reads to the
Mus musculus genome (GRCM38 [mm10] build), and finally quan-
tify the expression levels of genes using both Salmon [9] and
STAR [8]. We then use DESeq2 [14] to perform multiple differen-
tial expression analyses as described in the original publication.

HTML report for
exploration and
differential expression

\ PiGx RNA-seq /

Based on the processed and normalized count tables and differ-
ential expression analysis results produced by the PiGx pipeline,
we have written a small custom script to reproduce the panels
in Fig. 5 of Hon et al. In order to reproduce this figure, we needed
to perform seven differential expression analyses as described
in Table 1. HTML reports for each differential expression analy-
sis (based on read counts computing using STAR) can be found
in [18].

Having performed the above analysis, we first took a global
look at how all sequenced samples cluster. Using a table of tran-
scripts per million reads (TPM) counts generated by Salmon at
the gene level, we selected the top 100 most variable genes and
plotted a heat map of all the samples using the pheatmap pack-
age [19]. We observed that the samples mainly cluster by the dif-
ferentiation stage rather than genotype, which confirms the au-
thors’ findings (Fig. 2A). Next, again using the same TPM counts
table, we plotted the expression levels of a select list of genes
(Nes6, Pax6, Sox1, Tetl, Tet2, Tet3, Slit3, Lmo4, Irx3) on day 0, day 3,
and day 6 (Fig. 2B). The changes in the expression levels of these
genes perfectly match the patterns described by Hon et al. At
this point, the authors recognize that some neural marker genes,
such as slit3 and Imo4, show discordant expression patterns be-
tween WT and Tet2 -/- samples, particularly on day 3, which are
restored back to WT levels on day 6. The authors then determine
whether such a delayed induction mechanism can be observed
globally. It was shown that the percentage of genes that are dif-
ferentially expressed in both Tet2 -/- and WT cells (compared to
the undifferentiated samples of the corresponding genotypes on
day 0) is significantly higher on day 6 than on day 3. We also ob-
serve a similar pattern; however, the difference we observe is
somewhat reduced. Our findings are reproduced based on gene
counts quantified by both STAR and Salmon (Fig. 2C).

In Fig. 5F of the original publication, the authors take a closer
look at the list of discordantly induced genes on day 3 in Tet2 -/-
samples. There it is shown that the majority of the genes that
get induced in WT samples by day 3 do not get induced in the
Tet2 -/- samples as highly as they do in the WT samples. On the
other hand, these numbers are comparable on day 6. We also ob-
serve the same difference and reproduce the findings using both
Salmon and STAR-based gene counts (Fig. 2D). This suggests that
there must be a list of genes that get activated in WT but lag



Table 1: Differential expression analyses performed by PiGx-RNA-seq

Analysis Case sample Control sample
tet2_diff_day3

tet2_diff_day6

day3_tet2.KO
day6_tet2_.KO

day0_tet2.KO
day0_tet2 KO

WT_diff_day3 day3_WT dayO_WT
WT_diff_day6 day6 - WT day0_-WT
tet2_vs_-WT_day0 day0-tet2_.KO dayO_-WT
tet2_vs_-WT_day3 day3_tet2_.KO day3-WT
tet2_vs_-WT_day6 day6_tet2_.KO day6_-WT

behind in Tet2 -/- samples at the early stage of differentiation;
however, they catch up later with the WT levels. The authors
call these genes “delayed induction genes” and find 333 genes
that fit such a description. In Fig. 5G, the authors show the rel-
ative expression of these genes in Tet2 -/- samples compared to
WT samples throughout differentiation and compare it to the re-
maininglist of genes in the genome. We have successfully repro-
duced the same patterns based on 357 delayed induction genes
detected by Salmon-based gene counts (282 genes detected by
STAR-based gene counts) (Fig. 2E). In Fig. 5H, the authors show
the most significant GO terms enriched for the delayed induc-
tion genes. Although we do not observe the same set of terms
as reported by the authors, we found seven development-related
GO terms, including “tissue development” and “nervous system
development,” as enriched terms (Fig. 2F).

General description of PiGx-ChIP-seq pipeline

PiGx ChIP-seq is an end-to-end processing and analysis pipeline
for ChIP-seq experiments (See Fig. 3). From the input fastq files,
the pipeline produces sequencing quality control, ChIP quality
control, peak calling, and IDR (Irreproducoble discovery rate) [20]
estimation. PiGx ChIP-seq also prepares the data for visualiza-
tion in a genome browser. The pipeline execution is highly cus-
tomizable; the user can specify which parts of the pipeline to
execute and which parameter settings to use. As in the other
pipelines, to use PiGx ChIP-seq, the user must provide two files:
a sample sheet containing the names of the fastq files with a de-
scriptive label and a settings file. The settings file contains the
locations of the reference genome and the GTF file with genome
annotations, as well as a list of configurations for each exe-
cutable step. Upon completion, the user is provided with quality
reports and all of the preprocessed data, which substantially fa-
cilitate downstream analysis and visualization.

The pipeline can then be run with the command:

pigx chipseq [sample_sheet] -s [settings_file]

PiGx ChIP-seq pipeline aligns the reads to the genome us-
ing Bowtie2 [21], does peak calling using MACS2 [22], calculates
the irreproducibility rate, and outputs a series of quality statis-
tics, such as GC content, strand cross-correlation, distribution
of reads and peaks over annotated genomic features, and clus-
tering of samples based on their similarity [23]. The pipeline
also produces UCSC Track hubs to facilitate exploration of the
dataset. The purpose of the pipeline is to improve the routine
processing steps for ChIP-seq experiments and enable the user
to focus on data quality control and biologically relevant data
exploration. The pipeline heavily depends on Bioconductor [24]
packages such as GenomicRanges [25] and Genomation [26] for

Description

Tet2 -/- cells on day 3 are compared to Tet2 -/- cells on day 0.

Tet2 -/- cells on day 6 are compared to Tet2 -/- cells on day 0.
Wild-type cells on day 3 are compared to wild-type cells on day 0.
Wild-type cells on day 6 are compared to wild-type cells on day 0.
Tet2 -/- cells on day 0 are compared to wild-type cells on day 0.
Tet2 -/- cells on day 3 are compared to wild-type cells on day 3.
Tet2 -/- cells on day 6 are compared to wild-type cells on day 6.

annotating peaks and summarizing ChIP-seq scores over re-
gions of interest.

ChlIP-seq use case

For consistency, we applied the ChIP-seq pipeline to data from
the same study as in the section “RNA-seq Use Case” above [16];
for the biological underpinnings of this experiment, please see
the description provided there. Figure 4 shows part of the ChIP-
seq quality control output performed on untreated, wild-type
ChIP samples of various activating and repressing histone marks
and the corresponding input samples. One standard procedure
is to validate the consistency of results with known biological
priors in order to quickly find samples with outlying proper-
ties and to discover batch effects. For example, Fig. 4A shows
the expected clustering of repressive (H3k27me3, H3k9me3) and
activating (H3k4me3, H3k4me1, H3k27ac, and H4k36ac) histone
marks. Upon closer inspection, however, it becomes clear that
the activating histone marks cluster by their corresponding
batches, and not by their biological functionality.

Figure 4B shows the cross-correlation between the signal on
the plus and minus genomic strands, shifted by a defined range
(usually within a range of 1 to 400 nucleotides). The maximum
intensity in each row indicates the average DNA fragment size
in each corresponding ChIP experiment. Large discrepancies in
the cross-correlation profile, between experiments, can indicate
problems with fragmentation, fixation, or chromatin immuno-
precipitation. The figure shows that most of the samples have
an average fragment size of between 100 and 150 bp. One of the
H3k27me3 replicates, however, shows an aberrant fragment size
profile (second sample in the plot). Upon visual inspection, the
sample had an extremely low signal-to-noise ratio and the peak
calling resulted in zero enriched regions. Such samples should
either be repeated or omitted from the downstream analysis.

Figure 4C represents the relationship between the GC con-
tent of 1 kb genomic bins and the ChIP signal. This plot is used
as a diagnostics tool for enrichment of fragments with extreme
nucleotide content (enrichment of fragments with GC content
strongly deviating from the genomic mean), which can indicate
problems with polymerase chain reaction-based fragment am-
plification and chromatin immunoprecipitation.

Figure 4D represents the distribution of reads over functional
genomic features. It is used to determine whether the experi-
mental results conform to known expectations, based on previ-
ous experiments, i.e., H3k4me3 should show strong enrichment
over transcription start sites, while the H3k36me3 should show
an enrichment over exonic and intronic regions. Deviating re-
sults can indicate a weak precipitation of the targeted protein
or antibody cross-reactivity with unexpected epitopes. Figure 4
represents just a subset of quality control metrics implemented
as a standard output from the PiGx ChIP-seq pipeline. The full
set can be found in [18].
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Figure 2: Reproduction of . 5 from [16] using datasets processed by the PiGx-RNA-seq pipeline. (A) Hierarchically clustered heat map of the top 100 most variable genes
across all samples (transcripts per million [TPM] aggregated on the gene level, produced with Salmon). Each row represents a gene and each column represents a
sequenced sample (see Table 1 for descriptions of the samples). The expression values are scaled by "row.”. (B) Changes in the expression levels of a selected list of
genes throughout the differentiation period on day 0, day 3, and day 6. The y-axis shows the normalized expression levels (TPM at the gene level). The expression
patterns of samples with Tet2 -/- background are depicted in black and wild-type background in orange. (C) Abundance of differentially expressed genes (adjusted P
value < 0.1) (on y-axis) when comparing samples on day 3 or day 6 with the samples on day 0 with corresponding genotypes (Tet2 -/- or wild type). The bar labeled
“overlap” represents the number of differentially expressed genes in both genotypes. The percentage is calculated by dividing the value of “overlap” with the value
of Tet2. The results are reproduced by both Salmon-based gene-level read counts (top row) and STAR-based gene-level read counts (bottom row). (D) Genes that are
upregulated (induced) in wild-type samples on day 3 (or day 6), compared to wild-type samples on day 0, are intersected with genes that are differentially expressed
between wild-type samples and Tet2 -/- samples at the same stage of differentiation and classified as “Tet2 > wt” (the gene is upregulated in the Tet2 -/- sample
more so than in the wild-type sample) or “Tet2 < wt” (the gene is upregulated in Tet2 -/- sample less than in the wild-type sample). The plot is reproduced using
both Salmon-based gene counts and STAR-based gene counts. (E) Heat maps for delayed induction genes (on the left) and 500 genes randomly selected from the
remainder (on the right). The colors of the heat map represent the log, scale ratio of normalized expression value (gene-level TPM counts obtained using Salmon) of
each delayed induction gene between Tet2 -/- sample and the wild-type sample of the corresponding replicates (rl: replicate-1, r2: replicate-2) on the corresponding
stages of differentiation (day 0, day 3, and day 6). The rows of the heat map are ordered in increasing order based on the average values of the two replicates on day
3. The color scales range between -1 and 1 before reaching saturation. (F) Top GO terms for biological processes (on the y-axis) enriched among the delayed induction
genes. The GO terms are detected using g: ProfileR tool[15]. The resulting terms are filtered for P value <0.05 and further filtered for the keyword “development.” On
the x-axis, the P values are depicted at logyo scale.
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Figure 4: Example ChIP-seq quality control output. (A) Clustering of samples based on correlation of normalized ChIP reads in 1 kb bins. (B) Cross-correlation between
coverage profiles on Watson and Crick strands, shifted by the amount specified on the x-axis. (C) Relationship between read count and GC content in 1 kb bins. (D)

Distribution of reads in functional genomic features.

BS-seq pipeline

General description of the PiGx BS-seq pipeline

PiGx BS-seq is a bisulfite sequencing processing pipeline used to
detect genome-wide methylation patterns and to perform differ-
ential methylation calling for case-control settings (See Fig. 5).
It produces individual reports for each sample provided by the
user, in addition to differential-methylation reports for arbitrar-
ily many pairs of treatment conditions provided by the user. PiGx

BS-seq uses Trim Galore! [10] to trim reads for adapter sequences
and quality and fastqc [11] for quality control (both before and
after trimming). If necessary, PiGx BS-seq produces GA- and CT-
converted versions of the reference genome for alignment, us-
ing bismark_genome_preparation [27]. Reads are then mapped to
the reference using Bowtie2 [21] before being sorted by location
in the genome and filtered for uniqueness using samtools [27,
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Figure 5: Workflow diagram for PiGx BS-seq pipeline.

28]. The corresponding reports and .bam files for each of these
steps are saved to their respective directories.

As in the other pipelines, to use PiGx BS-seq, the user must
provide two input files: a sample sheet containing the paths
to the fastq files with a descriptive label and a settings file.
The pipeline is robust to paired-end or single-end input data,
and processing of each case is initiated automatically based on
whether the user supplies only a single input file or a pair of
files for a given sample. The settings file contains the locations
of the reference genome, among other directories, as well as a
list of configuration steps for each executable step. The pipeline
can then be run with the command:

pigx bsseq [sample_sheet] -s [settings_file]

Post-mapping analysis steps performed automatically by
PiGx BS-seq include tabulation of the fractional methylation of
CpG sites, the segmentation of genomic methylation patterns
across the genome, and the selection of differentially methy-
lated sites between pairs of treatments provided in the settings
file above. Furthermore, the final reports include genomic anno-
tation of differentially methylated regions and methylome seg-
ments. A single execution of the pipeline can perform differen-
tial methylation analysis between a sample and arbitrarily many
references; each comparison will have its own dedicated report,
in addition to the final report for the sample itself. For trace-
ability, direct links to input files and various execution tools are
saved directly within the output folder. Finally, a copy of the full
methylome for each sample is also saved in BigWig (.bw) format,
compatible with visualization in an online genome browser.

BS-seq use case

We applied the BS-seq pipeline to data from embryonic stem
cells in mice, comparing wild-type and Tet2 deletion exper-
iments (accessions SRX317877 and SRX317883, respectively).
These datasets derive from the same study as was used for con-
trolled comparison in the section “RNA-seq Use Case” above [16].
For a biological description of this experiment, please refer to
that section. HTML reports for each of the performed analyses
can be found in [18].

Figure 6 shows a standard set of data analysis metrics gen-
erated automatically by the pipeline. For example, methylation
levels near the promoter region of a list of annotated genes for
each sample are shown in Fig. 6A and 6B. For generality, Fig. 6
averages over all known genes; however, the user may freely

SEGMENTATION
—_— HTML report for

exploration and
differential expression

methylKit

PiGx BS-seq

b 2

probe for more specific results by supplying any arbitrary set
of genes under investigation (in the absence of such an anno-
tation file, this figure is simply omitted from the final report).
A coarse map of the genome is provided in (Fig. 6C, which, for
some datasets, may serve to highlight differential methylation
localized to particular regions or chromosomes. In this particu-
lar use case, it is more useful as a null control showing that these
regions are uniformly distributed throughout the genome. In ad-
dition, a histogram for differential methylation status of CpGs
throughout the genome is provided in Fig. 6D using the same
color code as in Fig. 6C. The methylation differences of hyper-
methylated, hypomethylated, and nondifferentially methylated
CpGs are shown as histograms with the color code as in Fig. 6C.
The latter is shown as a distribution of methylation differences
deemed to be not statistically significant (in black). Since these
are generally far more numerous than the former, the two curves
are normalized independently. Note also that since these curves
represent relative distributions, the vertical axis is of arbitrary
units and tick marks are omitted. Finally, a screenshot of data
visualization from the genome browser [29, 30] is provided in
Fig. 6E. Here, regions of interest can be inspected manually at
arbitrary precision.

General description of the PiGx scRNA-seq pipeline

scRNA-seq is an extremely powerful technology that is becom-
ing increasingly prevalent in biological studies. The rapid de-
velopment of unique molecular identifier (UMI)-based methods,
along with droplet-based cell separation [31, 32], has enabled
even simple experiments to quantify expression in several tens
of thousand of cells. PiGx scRNA-seq is a pipeline for preprocess-
ing of UMI-based single-cell experiments (See Fig. 7). The pur-
pose of the pipeline is to enable seamless integration and quality
control of multiple single-cell datasets. The pipeline works with
minimal user input. As in the other pipelines, the user must pro-
vide a sample sheet with a basic experimental description and a
settings file that defines, among other parameters, the location
of the input data and reference sequence and annotation. The
pipeline can then be run with the command:

pigx scrnaseq [sample_sheet] -s [settings_file]

The pipeline does preliminary read processing, maps the
reads with the STAR [8] aligner, and assigns reads to gene mod-
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Figure 6: Output from the PiGx BS-seq pipeline. (A, B) Average CpG methylation throughout the promoter regions of the mm10 genome for Tet2 -/- and WT, respectively,
as a function of distance from TSS (in direction of transcription). (C) Whole-genome map of differentially methylated CpGs, with color code to indicate hyper- and
hypomethylation of the treatment (Tet2 -/-) relative to the control (wild-type). (D) Histogram of the difference in average CpG methylation between Tet2 -/- and wild-
type. For differentially methylated cytosines, colors are consistent with (C), while CpGs with statistically insignificant difference in methylation is provided in black.
Normalization of these two curves is performed independently (since the latter are generally far more numerous than the former), and the graph conveys only relative
proportions (thus, as the absolute y-axis is of arbitrary scale, units are omitted). (E) Screenshot of the genome browser using bigwig data from PiGx. Here, the data can

be examined in much finer detail than in (C).

els. It also separates cells from background bar codes [33] and
constructs digital expression matrices for each sample (each
saved in loom format); loom files from all samples are then
merged into one large loom file using the loompy package [34].
The expression data are subsequently processed into a Single-
CellExperiment (Aaron [35]) object. SingleCellExperiment is a
Bioconductor class for storing expression values, along with the
cell and gene data, and experimental meta data in a single con-
tainer. It is constructed on top of hdf5 file-based arrays [36],
which enables exploration even on systems with limited ran-
dom access memory.

During the object construction, the pipeline performs ex-
pression normalization, dimensionality reduction, and identifi-
cation of significantly variable genes. The pipeline then classi-
fies cells by cell cycle phase and calculates the quality statistics.
The SingleCellExperiment object contains all of the data needed
for further exploration. The object connects the PiGx pipeline
with the Bioconductor single-cell computing environment and
enables integration with state-of-the-art statistical and machine
learning methods (scran [37], zinbwave [38], netSmooth [39],iSEE
[40], etc.).

The pipeline produces an HTML report containing quality
controls, labeled by input covariates, that can be used for de-
tecting batch effects.

ScRNA-seq use case

To showcase the capabilities of PiGx scRNA-seq, we ran the
pipeline on isolated single nuclei from the mouse brain [41]. In
this study, the authors developed a gradient-based method for
nucleus separation and used it in combination with Drop-seq
to profile the transcriptomes of more than 18,000 single nuclei.
Figure 8shows a part of the quality control output from the PiGx
scRNA-seq pipeline. Figure 8A shows the per sample number of
total and uniquely mapped reads. Figure 8B visualizes the cells
on the first two principal components. The color gradient cor-
responds to the number of detected genes per cell. The figure
shows that the total number of detected genes strongly corre-
lates with the first two principal components. Figure 8C is analo-
gous to Fig. 7B of the original publication, with the color scheme
representing labeling each cell with its respective stage of the
cell cycle. Thus, Fig. 8C shows that the first two principal com-
ponents correlate with the stage of the cell cycle. The heat map
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Figure 8: Sample output from the PiGx scRNA-seq pipeline. (A) Abundance of total uniquely mapping UMIs per sample. (B) Visualization of cells on the first and second
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experimental variables.

in Fig. 8D shows scaled normalized expression values for genes ation around the first principle component. The column-wise
that contribute the most to the first principle component. High annotations show that the variation is driven mainly by cells in
read-count variability in a small number of genes drives the vari-



the G1 phase of the cell cycle from the second biological repli-
cate. The HTML report for this analysis can be accessed at [18].

We define the complete software environment needed for each
of the pipelines using Guix package definitions. These package
specifications not only outline the immediate dependencies of
the pipelines, they also extend to the full software stack recur-
sively. The dependency graph is rooted in a handful of bootstrap
binaries. Apart from these binary roots, every application or li-
brary in the graph is built from source. Guix ensures that pack-
ages are built in an isolated environment in which nothing but
the specified dependencies are available. This is a precondition
for bit-reproducible builds, i.e., repeatable package builds that
yield the very same binary output for the same set of inputs.
Under ideal circumstances (see below), a Guix specification for
the complete dependency graph and the set of all source code
would be sufficient to exactly reproduce the very same binaries
of the pipelines presented here.

Unfortunately, there are additional obstacles to bit repro-
ducibility that cannot be avoided purely by the functional pack-
age management model. Examples for sources of irreproducibil-
ity in build artifacts include embedded time stamps, nondeter-
ministic sorting of strings, and nondeterministic compiler out-
put. While some of these obstacles can be removed by deliberate
patching of compilers or applications, others are harder to diag-
nose and can thus lead to failure to reproduce the same arrange-
ment of bits in independent builds, be that on the same machine
at different points in time or on different systems. In the reports
produced by our pipelines, we can eliminate differences due to
time stamps by controlling them with the SOURCE_DATE_EPOCH
environment variable. This option can be invoked in order to
produce identical HTML reports, provided there are no tools that
introduce nondeterminism (as is the case for the PiGx BS-seq
pipeline).

To estimate the level of bit reproducibility in our pipelines,
we checked out version v0.14.0-3597-g17967d1 of GNU Guix, re-
peatedly built the pipeline packages pigx-rnaseq, pigx-bsseq,
pigx-chipseq, pigx-scrnaseq and their direct dependencies on
three different systems (an office workstation, a virtual ma-
chine, and a build farm consisting of 20 heterogeneous build
nodes), and recorded the hashes of the package trees that were
produced. Whenever the hashes of any two builds differed, we
looked at the exact differences with diffoscope [42]. Upon closer
inspection, we identified a number of common issues in nonde-
terministic builds, such as time stamps embedded in compiled
binaries and text files and randomized file names in files gener-
ated by test suites.

Python dependencies are of particular note here because
they are generally not reproducible due to the fact that the byte
compiler records the time stamp of the source file in the com-
piled binary. This means that all compiled Python files will dif-
fer when they are compiled at different points in time. (This
problem will be addressed in the upcoming Python 3.7, which
will implement PEP 552 for deterministic compilation.) To avoid
this problem and increase the number of packages that could be
made reproducible, we patched our variant of Python 3.6 such
that it resets the embedded time stamp in compiled files to the
Unix epoch. This allowed us to greatly increase the number of
fully bit-reproducible packages. As can be seen in Table 2, only
8 of 355 packages (or about 2.2%) were not bit reproducible for
as-yet unknown reasons.

Table 2: Number of dependent packages and their reproducibility
status

Not Minor
Package reproducible problems Reproducible
pigx-bsseq 2 2 167
pigx-chipseq 7 9 236
pigx-rnaseq 7 9 211
pigx-scrnaseq 6 8 218
All pipelines 8 9 338

See Table 3 for more details about packages with minor problems.

Figure 9 shows the degree of bit reproducibility for the di-
rect dependencies of each of the individual pipeline packages.
Dependent packages whose files differed compared to builds on
other systems fell either in the category of “minor problems” or
“not reproducible,” dependent on the source and magnitude of
nondeterminism. The exact dependency counts for each cate-
gory and pipeline package are listed in Table 2. A comprehen-
sive list of all dependent packages that were categorized as hav-
ing “minor problems” is contained in Table 3. This table shows
that the reproducibility problems of these packages are of neg-
ligible magnitude and could be corrected with minor patches to
the package definitions in Guix.

We generated application bundles containing all pipelines
for use with Docker or Singularity. These container images
were generated by exporting the “closure” (i.e., the package
and all packages it references, recursively) of the pigx pack-
age (a package containing the individual pipeline packages
pigx-bsseq, pigx-chipseq, pigx-rnaseq, and pigx-scrnaseq)
from the declarative Guix package definition instead of itera-
tively modifying a base image containing a GNU+Linux oper-
ating system in a series of imperative steps. The container im-
ages are merely a translation of a functional description of the
desired environment; as such, it is independent of global state,
such as the contents of third-party package repositories or build
time. The Docker image can be obtained at [43]; the Singularity
image can be downloaded from [18]. We used Guix at commit
5149aeb7e62cf62398b55be38469cd28c25d8d7d (version v0.14.0-
7054-g5149aeb7e) to generate these container images. This is the
same version that we used to install the variant of PiGx with
which the plots and reports in this publication were generated.
Since the pipelines use the well-known GNU build system as
implemented by the Autotools suite, the pipelines can be con-
figured and built in any environment providing the required de-
pendencies. The portable configure script detects and records
references to necessary software in the environment and reuses
them at runtime using their absolute file names. Any package
manager (such as Conda) can be used to fashion such a build-
time environment. With regards to reproducibility, however, we
recommend that a package manager be used that can provide
separate, immutable, and uniquely prefixed environments to en-
sure that references to tools that are recorded at configuration
time are identical to the variants that are used at runtime.

Computational workflows are becoming an indispensable part of
the biological sciences as the field becomes more data intensive.
The diversity and amount of data requires many tools for analy-
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Figure 9: Percentage of directly dependent packages building in a bit-reproducible fashion across different systems for each of the pipelines.

sis. Consequently, published software or workflows often come
with a complex set of dependencies. Even if sensible guidelines
(e.g., [44]) such as sharing code online and providing documen-
tation are employed, sometimes it is impossible to recreate the
software used for analysis. Providing the code and documenta-
tion alone does not guarantee reproducibility or usability, nor
do the Docker containers completely remedy this problem. In
addition to reproducibility, there is also an increasing need for
traceability and transparency, for the purposes of comprehen-
sive data security in applications that manage the sensitive data
collected in biomedical studies.

We propose GNU Guix and principled pipeline-as-software
implementation as a solution to reproducibility problems in
complex bioinformatics workflows. Here, we demonstrated the
utility and reproducibility of the PiGx pipelines for genomics
data analysis using GNU Guix.

Our decision to treat pipelines as first-class software pack-
ages and to adopt a conventional build system with Autotools
made it possible to reduce the installation of complex software
environments to a simple one-line command. By recording the
exact locations of runtime dependencies of the pipeline pack-
ages during the configuration stage, we were able to eliminate
ambiguity at runtime. When configuring the pipeline packages
in an environment that ensures that different versions or vari-
ants of applications and libraries are stored in unique locations
(such as an environment provided by GNU Guix), recording the
exact location of dependencies at configuration time allows us
to reproduce the detected environment at runtime.

We have shown that with a recursive definition of soft-
ware dependencies using the framework provided by the func-
tional package management paradigm as implemented in GNU
Guix, it is possible to fully and exhaustively describe com-
plex production-level bioinformatics software environments on
GNU+Linux systems. The software environments were fully

Table 3: Packages with minor reproducibility problems and the mag-
nitude of irreproducible files

Package Magnitude Notes

r-minimal 2 bytes nondeterministic line
break

python ~6% time stamp byte in
header of byte code files

python-matplotlib ~1.7% single file difference

python-pycparser ~3% single file with time
stamp

python-cffi ~1.8% recorded random test file
names

python-numpy <0.5% six byte code files differ

python- 2 bytes two files have single byte

simplejson differences

gtk+ <1% single file (icon cache)

glib <0.1% single file difference

specified at the level of declarative, stateless package ab-
stractions instead of using an imperative, stateful approach.
We have also shown that the principled declarative approach
to the management of software environments facilitates bit-
reproducibility. The higher-level definitions of software envi-
ronments can be translated in an automated fashion to lower-
level application bundles such as Docker images. In contrast
with container systems such as Docker or Singularity, Guix en-
closes the complete software environment and enables users to
transparently rebuild it reproducibly from source without hav-
ing to trust a binary application bundle. Due to referential trans-
parency, binaries in Guix can only be the result of their corre-
sponding sources.



Functional package management as implemented by GNU
Guix significantly reduces the complexity of, and lowers the bar-
rier to, managing bit-reproducible software environments. Users
are freed from menial bookkeeping tasks such as keeping track
of the origin of package binaries, the time of installation, the or-
der of installation instructions, the state of the operating system
at the time of installation, and any other runtime state. As far as
users are concerned, it is enough to know the names of the pack-
ages that should be installed (in our case, simply “pigx”) and
the current version of Guix; everything else such as source code
provenance tracking, dependency management, package config-
uration, and compilation in isolated environments is handled by
Guix. The guarantees provided by Guix enable users to analyze
obstacles to experimental reproducibility beyond the software
environment, such as sources of nondeterminism at runtime.

In our attempts to analyze the degree of repeatability of the
HTML reports produced by PiGx, we identified a number of such
sources of nondeterminism. The Salmon aligner, e.g., has a ran-
dom component and does not provide a way for users to specify
a seed for the pseudo-random number generators. This makes it
impossible to exactly repeat an analysis and may require patch-
ing of the Salmon source code or virtualization of the random
number generator facilities of the host system. Other tools are
sensitive to the user’s locale settings and may generate output in
nondeterministic order. We were also surprised to find that an
increasingly large number of tools rely on a connection to the
Internet, either directly or indirectly, through dependent pack-
ages. This can be a great source of nondeterminism if the ex-
perimental setup does not take the volatile nature of networked
resources into account.

Another important obstacle to reproducibility is the large
kernel binary at runtime. Although the GNU C library provides a
unified interface for all applications to use, the features that are
actually implemented by the kernel at runtime may differ vastly.
For example, the variant of Linux provided by Red Hat for their
series 6 of operating systems reports its version as the obsolete
and unsupported 2.6.32, but it contains many backported fea-
tures from much newer kernel versions. Although this is usually
not a problem, the kernel version and the implemented features
should be taken into account. In order to make it possible to use
the pipelines on Red Hat Enterprise Linux 6, we coordinated with
other Guix developers to patch the GNU C library.

The use of a declarative mechanism to manage software en-
vironments is fundamental to comprehensive reproducibility.
This encompasses repeatable builds, bit-reproducible binaries,
software and data provenance, control over the configuration
space, and deterministic runtime behavior. We have shown the
feasibility of this approach in the domain of bioinformatics and
propose that it serve as a template for reproducible computa-
tional workflows in other areas.

Project name: PiGx (pipelines in genomics)

Project home page: https://github.com/BIMSBbioinfo/pigx
Operating systems: any GNU/Linux system (kernel version >
3.10)

Programming languages: primarily GNU R and Python 3.

Other requirements: GNU Guix 0.15.0 or later for ready-made
packages (if it is not possible to satisfy this requirement, Docker
and Singularity images are provided)

License: GNU General Public License version 3, or (at your option)
any later version.

RRID:SCR_016476

Snapshots of the code are available from the GigaScience GigaDB
repository [45].

ShmC: 5-hydroxy-methyl-cytosine; 5mC: 5-methyl-cytosine;
BS-seq: bisulfite-treated DNA sequencing; ChIP seq: chro-
matin immunoprecipitation sequencing; DNMT: DNA methyl-
transferase; GO: Gene Ontology; GTF:Gene Transfer Format;
HPC; high-performance computing; mESC: mouse embryonic
stem cell; RNA-seq: RNA sequencing; scRNA-seq: single-cell RNA
sequencing; TPM: transcripts per million reads; UMI: Unique
Molecular Identifier
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