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BACKGROUND Obesity is associated with electrophysiological re-
modeling, which manifests as detectable changes on the surface
electrocardiogram (ECG).

OBJECTIVE To develop neural networks (NN) to predict body mass
index (BMI) from ECGs and test the hypothesis that discrepancies
between NN-predicted BMI and measured BMI are indicative of un-
derlying adiposity and/or concurrent cardiometabolic ill-health.

METHODS NN models were developed using 36,856 12-lead resting
ECGs from the UK Biobank. Two architectures were developed for
continuous and categorical BMI estimation (normal weight [BMI
<25 kg/m?] vs overweight/obese [BMI >25 kg/m?]). Models for
male and female participants were trained and tested separately.
For each sex, data were randomly divided into 4 folds, and models
were evaluated in a leave-1-fold-out manner.

RESULTS ECGs were available for 17,807 male and 19,049 female
participants (mean ages: 61 * 7 and 63 = 8 years; mean BMI 26
+ 5 kg/m? and 27 *+ 4 kg/m?, respectively). NN models detected
overweight/obese individuals with average accuracies of 75% and

73% for male and female subjects, respectively. The magnitudes
of difference between NN-predicted BMI and actual BMI were signif-
jcantly correlated with visceral adipose tissue volumes. Concurrent
hypertension, diabetes, dyslipidemia, and/or coronary heart dis-
ease explained false-positive classifications (ie, calculated BMI
<25 kg/m? misclassified as >25 kg/m? by NN model, P < .001).

CONCLUSION NN models applied to 12-lead ECGs predict BMI with
a reasonable degree of accuracy. Discrepancies between NN-
predicted and calculated BMI may be indicative of underlying
visceral adiposity and concomitant cardiometabolic perturbation,
which could be used to identify individuals at risk of cardiometa-
bolic disease.
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Introduction

Obesity represents an increasingly common global health
problem, with the prevalence of obesity tripling globally in
the last 40 years." Obesity is a recognized cardiovascular
risk factor that often coexists with dyslipidemia, insulin resis-
tance, and/or hypertension, the combination of which is
referred to as metabolic syndrome.”

Body mass index (BMI) is the most common metric to
categorize obesity. However, it is an insensitive index of
visceral adiposity and does not accurately reflect the presence
of underlying metabolic ill-health,” and thus provides an
inaccurate measure of cardiometabolic risk. On the other
hand, body composition profiling using cross-sectional imag-
ing provides more accurate phenotypic characterization of
adipose distribution than standard anthropometric measure-
ments such as BMI, and better discrimination of
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cardiometabolic risk,” though its utility is limited by practi-
cality and availability.

Obesity has been shown to be associated with a number of
electrophysiological changes, owing in part to the direct ef-
fect of epicardial adipose tissue on the ionic currents that
regulate the cardiac action potential,” and these combined ef-
fects manifest as discernible changes on the 12-lead electro-
cardiogram (ECG), such as QT prolongation.®

In this study, we hypothesized that neural networks (NN)
can be trained to estimate BMI from the ECG, and impor-
tantly, any discrepancies between NN-estimated BMI and
measured BMI may provide important information about un-
derlying visceral adiposity and concurrent metabolic ill-
health. We trained NNs to predict BMI using ECGs from
the UK Biobank and investigated the reasons for differences
between NN-estimated BMI and measured BMI.

Methods
Main methods are outlined below. Further details are pro-
vided in Supplemental Materials.

https://doi.org/10.1016/j.cvdhj.2021.10.003
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Data sources and study population

Ten-second resting 12-lead ECGs from 36,856 adult partici-
pants recorded in the first imaging visit of the UK Biobank
study were used in our analysis.” Magnetic resonance imag-
ing (MRI) scans that were performed in the same instance
were also included in our analysis. Details are provided in
the Supplemental Methods.

ECG classification using neural networks

Two forms of ECG input were adopted: the full 10-second
trace and averaged single beat. Single beats were obtained us-
ing QRS detection from full ECG traces, truncated into the
same lengths of 1 second, aligned with R peak at the center
of the beat segment. Averaged single beat was calculated
thereafter. For both forms of the input, short-time Fourier
transforms (STFT) were applied to extract temporal and fre-
quency features. For the full trace, the window length and
shift of STFT were 0.5 second and 0.1 second, respectively.
For the averaged single beat, since the beat length is shorter,
shorter window lengths and shifts were used: window length
and shift were 0.2 and 0.01 second, respectively.

The frequency spectrum of QRS complexes is usually
within a range of ~8-50 Hz, and that of T and P waves
within ranges of ~0-10 Hz and 5~30 Hz, respectively.
Thus, STFT components corresponding to 5-55 Hz were
used as input for the networks to encapsulate these ECG com-
ponents. The STFT preprocessing with full traces is illus-
trated in Figure 1A. After STFT, inputs were transformed
into a tensor (X) with shape Nt-by-N-by-N., where Nt =
100 (number of windows), Ny = 50 (number of frequency
components), and N. = 12 (number of leads) for the full
trace, and Nt = 100, Ny = 10, and N, = 12 for the average
beat.

Figure 1B shows the architectures of the 2 proposed
models: both models adopt convolution layers (conv.), gated
recurrent units (GRU), and attention layers.*’ Compared to
model 1, model 2 is more complex, with more convolution
layers. The GRU output was concatenated with band-
power features, and then fed forward into the final fully con-
nected (FC) layer. Band power features are equivalent to the
sum of STFT elements/features of the corresponding fre-
quency components over all the windows. The advantage
of using band power features before the FC layer is that it
serves as a shortcut similar to a deep residual network.'’
The learning of the more complicated parts of the network,
ie, GRU, would be skipped if the “shortcut” proved to be
more useful. In this work, band power features from 3 over-
lapping bands—10~25, 20~35, and 30~50 Hz—were
used. These yielded 36 (12 leads X 3) band power features.

Both architectures were tested with both categorical clas-
sification and regression tasks. In the categorical classifica-
tion task, the final FC layer fed into a softmax layer to
obtain the probability estimate class label y; of the subject i,
with input data X; being the overweight/obese class—ie,
p(y; = 11X;). Class weights were used to balance the training

dataset. In the regression model, the continuous BMI esti-
mates from the FC layer was the final output.

Cross-validation

For each sex, the data were randomly split into 4 folds for
leave-1-fold-out cross-validation. For every model trained,
2 out of 4 folds were used as the training set, 1 as the valida-
tion set, and 1 as the test set. Before a test set is applied to a
trained model, all 3 other folds would have rotated to be the
validation set in 1 of the 3 models trained by the remaining 2
training sets. The model yielding the highest validation accu-
racy was then selected to be tested by the test fold. Each fold
when used as a test set is referred to as a unique split setting.
The cross-validation process can further be divided into
network hyperparameter optimization and subsequent model
evaluation. The split setting for hyperparameter optimization
used the fourth fold as the test set, as shown in Figure 1C and
Supplemental Methods. Further details of the network hyper-
parameter optimization can be found in the Supplemental
Methods. With the best-performing hyperparameters, further
models were trained with folds 1-3 as test sets. Again within
each of these split settings, different combinations of training
and validation folds were tested in a rotational manner, with
the test fold fixed, as shown in Figure 1D. Therefore for each
model, 50% of the total data were used for training, 25% for
validation and 25% for testing. In this way, the estimation re-
sults for subjects of 1 fold were obtained by models trained
and validated by subjects from different folds. Finally for
out-of-bag validation, we randomly selected 1 model gener-
ated from the model evaluation stage and tested the accuracy
of the model on a set of 2278 ECG samples that were not pre-
viously seen by the model at any stage (Supplemental
Methods).

Network hyperparameter optimization
Network hyperparameter optimization is described in the
Supplemental Methods.

Statistical analysis

As BMI is a surrogate measure of adiposity, we further inves-
tigated the association between visceral adipose tissue (VAT)
volumes and BMI estimation using NNs. We conducted
linear regression analysis to predict VAT volumes using
A BMI, ie, the difference between NN-predicted and true
BMI (calculated from weight and height), with the latter as
the control variable.

To determine if BMI estimation was affected by the pres-
ence of cardiometabolic comorbidities, the associations of
NN BMI estimates with 4 comorbidities—hypertension, cor-
onary heart disease (CHD), diabetes, and dyslipidemia—
were examined using logistic regression adjusted for age
and measured BMI. Details of the International Classification
of Diseases (ICD) codes can be found in Supplemental
Table 1.
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Data preprocessing and model architectures. A: Data preprocessing with short-time Fourier transforms (STFT). B: The architectures of the 2 proposed

models: both models adopt convolution layers (conv.), gated recurrent units (GRU), and attention layers. Compared to model 1, model 2 has more convolution
layers. The 2 architectures are used for categorical classification of obesity by body mass index (BMI) and for BMI as a continuous variable. C: The 2 stages of
model selection after data were divided into 4 folds. Firstly, there was hyperparameter optimization using the fourth fold as the test set. Secondly, with the selected
model architecture and hyperparameters, the remaining 3 split settings were used to generate final results. D: Within each split setting, different combinations of
training and validation folds were tested in a rotational manner with the test fold fixed. In the illustrated example, fold 2 was used as the test data. Therefore, for
each test fold, 3 models were trained and the model with the highest validation accuracy was chosen to be tested by the test set.

x* tests with multicomparison correction (Benjamini-

Hochberg) were also conducted to determine whether the fre-
quencies of these comorbidities were significantly different
between 4 different estimation groups in the binary classifica-
tion, ie, true-positive (TP) vs false-negative (FN) and true-
negative (TN) vs false-positive (FP) groups. P < .05 was
considered as significant in all analyses.

Results

Study population

A total of 36,856 ECG samples were available with BMI in-
formation as labels (19,049 female, 52%). The mean ages for
male and female subjects were 63 * 8 years and 61 * 7
years, respectively. The mean BMI for male and female sub-
jects were 26 * 5 kg/m? and 27 + 4 kg/m?, respectively. A
total of 68% of male subjects and 53% of female subjects in
our study cohort were labeled as overweight or obese (BMI
>25 kg/m?).

Hyperparameter optimization

Table 1 summarizes the binary classification (normal weight
vs overweight/obese) accuracies for hyperparameter optimi-
zation and model selection, using data from the fourth fold
for each sex as the test fold. There were minimal differences
in the classification accuracies among different settings. The

results are robust against different batch sizes, number of
training epochs, and learning rates. Model 2 contained
more convolutional layers but did not outperform model 1.
For comparison, logistic regression was also implemented
using maximum absolute values of raw ECGs as the input.
NN models outperformed logistic regression at differenti-
ating normal weight vs overweight/obese. Given the results
in Table 1, parameters and the architecture in setting 4
were adopted for the further analyses, and data from the
fourth folds of both sexes were excluded from the test sets
in the following sections.

BMI classification using NNs applied to ECGs

After excluding data from the fourth fold, the numbers of
samples for model evaluation were 14,299 and 13,372 for fe-
male and male subjects, respectively. The baseline character-
istics are detailed in Supplemental Table 2. After excluding
data from the fourth fold, VAT volumes were available for
2,724 male and 2,966 female subjects.

The confusion matrices corresponding to binary classifi-
cation, ie, normal weight vs overweight/obese, and 3-class
classification, ie, normal weight (BMI <25) vs overweight
(BMI 25-30) vs obese (BMI >30), are presented in
Figure 2. For the binary classification, the proposed NN
model achieved accuracies of 75% and 73% in male and
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Table 1  Binary classification (body mass index >25 vs <25) results with different models
Accuracy (%)

Setting no. Model Input data Batch size N epoch Learning rate Female Male
1 Model 1 Averaged single beat 32 50 0.001 72.06 75.01
2 Model 1 Full trace 32 50 0.001 72.21 75.37
3 Model 1 Averaged single beat 50 100 0.005 71.30 74.76
4 Model 1 Full trace 50 100 0.005 72.84 75.19
5 Model 2 Averaged single beat 50 200 0.005 71.17 75.28
6 Simple logistic regression using max absolute values of raw ECGs 60.42 62.10

The fourth fold was used as the test set to test sensitivity against data input format, model architecture, and training settings (ie, Setting no. 1-6). The results
are generally robust against the variations of settings. The more complex model 2 did not outperform model 1, and simple logistic regression was inferior to neural

network models.
ECGs = electrocardiograms.

female subjects during the model evaluation phase, respec-
tively, and for the 3-class classification, the accuracies are
51% and 56% for male and female subjects, respectively.
In the three-class classification, there are relatively fewer
misclassifications between normal-weight and obese groups,
with 13% obese and 6% normal-weight male subjects and
11% obese and 8% normal-weight female subjects being mis-
classified. Similar accuracies were achieved during out-of-
bag testing (Supplemental Figure 1).

Continuous BMI and VAT estimation using NNs
applied to ECGs

The regression NN model was applied for both continuous BMI
and VAT estimation. For continuous BMI estimation, the

Female

root-mean-square error of male and female participants was
3.2 kg/m? and 4.0 kg/m?, respectively. We also tested binarizing
the continuous BMI estimates to classify normal weight vs
overweight/obese. The receiver operating characteristic curve
is presented in Figure 3. The areas under curve (AUC) for
male and female participants were 0.80 and 0.78, respectively.

For continuous VAT estimation, the root-mean-square er-
rors of male and female subjects were 1.9 L and 1.2 L. To
further analyze the performance of the regression model in
estimating VAT from ECGs, we binarized our sample into
2 groups based on the median measured VAT value. We
determined the ability of the NN to predict whether VAT vol-
ume is larger or smaller than the median VAT volume. The
median VAT is used in this binarization because there is no

Figure 2
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kg/m?): For the binary classification, the accuracies are 75% and 73% for male and female subjects, respectively. For the 3-class classification, the accuracies are
51% and 56% for male and female subjects, respectively. BMI = body mass index.
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Figure 3  The receiver operating characteristic curves for binarized body
mass index (BMI) and visceral adipose tissue (VAT) estimation. Continuous
neural network estimation regression models were fitted for both BMI and
VAT. The estimated BMI and VAT were used to predict actual BMI < or
> 25 kg/m? (ie, normal weight vs overweight/obese) and actual VAT > or
< median actual VAT, respectively, to show the performance of the regres-
sion models. For BMI, the areas under curve (AUC) were 0.80 and 0.78 for
males and females, respectively. As there is no established definition of
obesity based on VAT, median VAT for each sex was used; the AUC
were 0.80 and 0.79 for males and females, respectively.

conventional definition of obesity based on VAT. The AUC
were 0.80 and 0.79 for male and female subjects, respec-
tively.

Visceral adipose tissue volume accounts for
discrepancies between measured and NN-derived
BMI

After excluding data from the fourth fold, samples with VAT
volumes were available for 2,966 female and 2,724 male sub-
jects. Table 2 summarizes the results of the linear regression
analysis between VAT volumes (L) and /\ BMI (the differ-
ence between NN-predicted and true BMI), adjusted for true
BMI. The correlations between VAT volume and A BMI
were significant in both sexes, suggesting VAT volume in-
creases with increasing discrepancy between the NN-
predicted BMI and true BMI. For every unit increment in
A BMI, VAT increases by 0.23 L/(kg/m?) (CI 0.19-0.26
L/[kg/m?]) and 0.11 L/(kg/m?) (CI 0.10-0.13 L/[kg/m?]) in
male and female subjects, respectively.

and A BMI in female subjects. We also observed statis-
tically significant increment in risk of all 4 comorbidities
with increasing y_VAT, y_BMI, and A BMI in male
subjects. The odds ratio (OR) of having hypertension
with every standard deviation increment in A BMI is
similar to that of measured VAT—I1.4- and 1.5-fold-
greater in males and females, respectively. In male sub-
jects, the ORs of all 4 comorbidities are consistently
greater for /A BMI than true BMI while also being closer
to the OR found in measured VAT. Therefore, the differ-
ence between NN-predicted BMI and true BMI ( /A BMI)
is likely a better predictor of cardiometabolic diagnoses
than true measured BMI.

Concurrent cardiometabolic diagnoses explain NN-
derived overestimation/underestimation of BMI
Comparison of comorbidities between different NN categor-
ical estimation groups, ie, TP (BMI >25 correctly classified)
vs FN (BMI >25 but misclassified as <25), and TN (BMI
<25 correctly classified) vs FP (BMI <25 but misclassified
as >25) groups, is shown in Figure 5. In female subjects, the
prevalence of hypertension and dyslipidemia was greater in
the FP group, where the BMI was overestimated by the
NN, compared to TN. In male subjects, the prevalence of
all 4 comorbidities was greater in the FP group compared
to TN, suggesting that normal-weight participants (BMI
<25 kg/m?) are more likely to be identified as overweight/
obese by the NN if they have these comorbidities. In other
words, the ECGs recorded from normal-weight participants
with concurrent cardiometabolic ill-health may share charac-
teristics of ECGs recorded from overweight/obese partici-
pants. A reverse pattern of misclassification was also
observed when comparing the FN and TP groups, whereby
overweight individuals were more likely to be misclassified
as normal-weight by the NN if they did not have concomitant
cardiometabolic comorbidities: in females, prevalence of hy-
pertension, diabetes, and dyslipidemia was lower in the FN
group compared to the TP group; in males, the prevalence
of all 4 comorbidities was lower in the FN group compared
to the TP group.

Discussion

Using data from the UK Biobank, we adopted NN models to
classify individuals as normal weight (BMI <25 kg/m?) or
overweight/obese (BMI >25 kg/m?) using the 12-lead ECG,



S6 Cardiovascular Digital Health Journal, Vol 2, No 6S, December 2021

Table 2 The association between ABMI and visceral adipose tissue volume

N B (per unit ABMI) B (per SD ABMI) P R?
Female 2966 0.11 [0.10-0.13] 0.45 (SD = 3.93) [0.38-0.51] <.001 0.61
Male 2724 0.23 [0.19-0.26] 0.73 (SD = 3.81) [0.62-0.83] <.001 0.62

Linear regression modeling of VAT volumes (L) with ABMI (kg/m?) adjusted for true BMI show that VAT increases with every unit increment in ABMI: 0.11 L/
(kg/m?) and 0.23 L/(kg/m?) in females and males, respectively. Beta values per standard deviation (SD) are also shown.
BMI = body mass index; ABMI = difference between neural network-predicted and true BMI; VAT = visceral adipose tissue.

achieving accuracies of 73% and 75% in male and female Extracting adiposity-associated changes in ECG by
subjects, respectively. The difference between NN- NN
pr.edicted and actual BMI was also found to be correlated It was recently estimated that more than 1.9 billion adults are
with measured VAT volumes. NN-predicted BMI was overweight (BMI >25 kg/m?) and more than 650 million of
indicative of cardiometabolic morbidity. Additionally, we those are obese (BMI >30 kg/m2).” Obesity is associated
demoznstrated that parti.cipants with c':alcul.ated BMI <25 with proarrhythmic electrophysiological remodeling that
kg/m” who had concomitant hypertension, diabetes, dyslipi- manifests on the 12-lead ECG, which is reversible with
derpla, or CHD were more likely to be identified as over- weight reduction strategies.'” This includes P wave and PR
weight/obese by our I;IN-.OH the other hand,.those with interval> and QRS prolongation'* with implications for
a.ctual BMI 225. kg/m WlthOUt .cardlometabollc pérturb.a— atrial and ventricular arrthythmogenesis. The proarrhythmic
tion were morezhkely to be identified as normz.il weight, ie, substrate in obesity is likely the result of ionic channel mod-
BMI <25 kg/m”. Our data suggest that NN-derived BMI es- ulation,'” myocardial fibrosis,'® and connexin downregula-
timates based on ECGs may provide a better indication of tion.'” Given that obesity influences a range of ECG
visceral adiposity and underlying cardiometabolic risk parameters, we developed a NN that can utilize all possible
than conventional BML underlying features of a resting 12-lead ECG to predict BMI.
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Figure 4  Neural network (NN)-predicted visceral adipose tissue (VAT) and body mass index (BMI) are associated with increasing odds of cardiometabolic
comorbidities. Odds ratio (OR) values corrected by standard deviation (std) and associated confidence intervals corresponding to different measures, true VAT,
y_VAT (NN-predicted VAT), y_BMI (NN-predicted BMI), and delta_BMI (ABMI, difference between NN-predicted and measured BMI), are presented. The
OR for true BMI is presented in dashed lines. For example, with every standard deviation increment in A BMLI, the risks of having hypertension are 1.4- and 1.5-
fold greater in males and females, respectively. CHD = coronary heart disease. *P < .05, **P < .01, ***P < .001.
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Figure 5 Concurrent cardiometabolic diagnoses explain neural network over-/underestimation of body mass index. Prevalences of the 4 conditions are pre-

sented for the 4 prediction groups: true-negative (TN), n = 4926/2902 (female/male); false-positive (FP), n = 1824/1380 (female/male); false-negative (FN),n =
1956/1865 (female/male); true-positive (TP), n = 5593/7225 (female/male). There was higher prevalence of hypertension and dyslipidemia in the FP group
compared to TN, suggesting that normal-weight participants with cardiometabolic comorbidities may share similar ECG features with overweight/obese partic-
ipants, leading to those normal-weight individuals being misclassified as overweight. Conversely, the prevalence of hypertension, diabetes, and dyslipidemia in
the FN group is lower than that in the TP group, suggesting that overweight/obese participants without cardiometabolic comorbidities, ie, relatively healthy over-
weight/obese, may have electrocardiogram features similar to those recorded in normal-weight participants, leading to their being misclassified as normal-weight.

*P < .05, ¥*¥P < .01, #*P < .001.

Different NN models, including convolutional and recur-
rent neural networks, have been applied to ECGs for various
classification tasks.'®'” In this work, we proposed architec-
tures consisting of both convolutional layers and recurrent
NN units, and we showed that subtle differences in ECG
due to obesity can be detected by the NN models. Figure 6
demonstrates that although morphological differences be-
tween normal weight and overweight/obese may be difficult

to quantify visually, our models can predict BMI >25 kg/m>
with accuracies >73%, which is comparable to that of
routine cardiovascular diagnostic tests.”’ Models with a
greater number of convolutional layers did not improve clas-
sification accuracy and classification accuracy was robust
against batch size and learning rate.

We also tested simple logistic regression models with
maximum absolute amplitudes of raw ECG as inputs. If the
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Examples of QRS complexes from different estimation groups. The differences between electrocardiograms from normal-weight (body mass index

[BMI] <25 kg/m?) and overweight/obese individuals (BMI >25 kg/m?) are difficult to discern by visual evaluation, though the proposed neural network model
captures electrocardiographic changes due to obesity. TN = true-negative; TP = true-positive.

differences in ECGs between normal-weight and overweight/
obese subjects were attributable to differences in amplitude
as a consequence of greater impedance associated with
obesity,”"**” it may be possible to differentiate the 2 groups
using maximum absolute amplitudes with a simple classifier.
However, simpler models utilizing amplitude features alone
yield a lower degree of accuracy than the NN, suggesting
that amplitude attenuation does not make a significant contri-
bution to NN-derived ECG classification.

Differences between NN-predicted and actual BMI
reflect underlying visceral adiposity

The classification for obesity is commonly based on anthro-
pometric measurements such as BMI. These methods are
insensitive to body composition and do not differentiate be-
tween muscle mass, adipose tissue, or adipose volumes in
different depots. VAT, which constitutes adipose tissue sur-
rounding internal organs, has been shown to be more detri-
mental to health than subcutaneous fat tissue.”” For
example, epicardial adiposity has been associated with coro-
nary artery disease’* and arrhythmogenesis,” with electro-
physiological remodeling most profound in regions
adjacent to epicardial adipose tissue.”® Despite this, there is
no clinically accessible method by which VAT volumes,

and thereby the associated arrhythmic risk, can be easily esti-
mated.

Given that BMI is only a surrogate measure of adiposity,
we demonstrated that differences between NN-predicted and
actual BMI are correlated with VAT volumes. Controlling for
actual BMI, the greater the discrepancy between NN-
predicted and actual BMI, the greater the VAT volume
(Supplemental Figure 2). Despite limited datasets with both
VAT volumes from MRI and ECG traces, we showed in
Figure 3 the AUC of using NN-estimated VAT to predict
true measured VAT with median VAT as cut-off is around
0.80. Nevertheless, we speculate that as data accrue in the
UK Biobank, more accurate NN models on 12-lead ECG
could be developed to identify lean individuals who have a
high VAT volume and consequently a higher risk of cardio-
metabolic disease. At present, adipose volume can only be
accurately determined using time-consuming and expensive
modalities such as dual-energy x-ray absorptiometry
(DEXA) and MRI. NNs applied to ECG may provide a
more convenient low-cost alternative to identify individuals
with higher risk of cardiometabolic disease. Although we
acknowledge that NN-based derivations are unlikely to
replace routine anthropometry, our results demonstrate that
they nonetheless provide added value to standard indices.
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NN-derived BMI measures reflect concomitant
cardiometabolic morbidity

Obesity is strongly associated with cardiometabolic perturba-
tion.”” Just as differences between chronological and biolog-
ical age have been attributed to concomitant comorbidity,*®
our logistic regression analysis showed that NN-derived
BMI measures, ie, NN-predicted BMI and /A BMI, are asso-
ciated with hypertension and dyslipidemia in females and
with hypertension, diabetes, dyslipidemia and CHD in males.
By comparing prevalence of these morbidities among
normal-weight and overweight/obese groups, we show that
some normal-weight participants with concomitant cardio-
metabolic morbidity had NN-predicted BMIs that misclassi-
fied them as overweight/obese. Similarly, some overweight/
obese participants were misclassified as having a normal
weight in the absence of concomitant comorbidity. Our find-
ings are consistent with studies that have shown over a third
of normal-weight individuals may be metabolically un-
healthy,”” which confers a cardiometabolic risk similar to
that associated with obesity.”’ Importantly, our data suggest
that NN-derived BMI estimates based on ECGs may provide
a better indication of underlying cardiometabolic risk than
BMI.

Limitations and future work

Although we show NN-predicted BMI is influenced by
adiposity, our analysis did not account for differences in
intra-depot adipose variation. For instance, the fraction
of VAT that constituted epicardial and adipose tissue
around other abdominal organs was not known. We antic-
ipate that with more detailed information on body compo-
sition it may be possible to provide organ-specific risk
profiles using artificial intelligence. Theoretically, it
would have been preferable to train NN with VAT vol-
umes as labels. However, because VAT labels were avail-
able for only 7,461 ECG samples, the OR of NN-
predicted VAT in predicting cardiometabolic perturbation
is not superior to NN-predicted BMI. Future work could
include developing a VAT-specific model for risk stratifi-
cation and the application of NN-derived BMI to follow-
up data in the UK Biobank to compute risks for develop-
ment of cardiometabolic ill-health. Similarly, it would be
of interest to identify the ECG features utilized by the NN
to predict BMIL.

Conclusion

Application of NN to ECGs can determine BMI to a degree of
accuracy comparable to that of existing diagnostic tests. The
differences between NN-predicted and calculated BMI can
partly be attributed to underlying adiposity, particularly of
the visceral subtype, and the presence of CHD, diabetes, hy-
pertension, and/or dyslipidemia. NN-derived parameters may
be useful in supplementing conventional anthropometric
measures of obesity to identify individuals at higher risk of
cardiometabolic ill-health.
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