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Abstract

Setpoints in physiology have been a puzzle for decades, and especially the

notion of fixed or variable setpoints have received much attention. In this

paper, we show how previously presented homeostatic controller motifs,

extended with saturable signaling kinetics, can be described as variable set-

point controllers. The benefit of a variable setpoint controller is that an

observed change in the concentration of the regulated biochemical species (the

controlled variable) is fully characterized, and is not considered a deviation

from a fixed setpoint. The variation in this biochemical species originate from

variation in the disturbances (the perturbation), and thereby in the biochemi-

cal species representing the controller (the manipulated variable). Thus, we

define an operational space which is spanned out by the combined high and

low levels of the variations in (1) the controlled variable, (2) the manipulated

variable, and (3) the perturbation. From this operational space, we investigate

whether and how it imposes constraints on the different motif parameters, in

order for the motif to represent a mathematical model of the regulatory sys-

tem. Further analysis of the controller’s ability to compensate for disturbances

reveals that a variable setpoint represents a relaxing component for the con-

troller, in that the necessary control action is reduced compared to that of a

fixed setpoint controller. Such a relaxing component might serve as an impor-

tant property from an evolutionary point of view. Finally, we illustrate the

principles using the renal sodium and aldosterone regulatory system, where

we model the variation in plasma sodium as a function of salt intake. We

show that the experimentally observed variations in plasma sodium can be

interpreted as a variable setpoint regulatory system.

Introduction

Setpoints in physiology have been a puzzle for decades,

and issues like (1) do setpoints exist? (2) what is the level

of the setpoint? (3) is the setpoint fixed or variable? (4)

how can the setpoint be mathematically expressed? and

(5) what are the possible biochemical mechanisms behind

a setpoint? have been extensively discussed (Cram 1983;

Nemeth et al. 1986; Koeslag et al. 1997; Mekjavi�c et al.

1991; Briese 1998; Saunders et al. 1998; Kronzucker et al.

2003; Kurbel et al. 2003; St Clair Gibson et al. 2005;

Cabanac 2006). Many of these issues have further been

related to the concepts of homeostasis (Cannon 1929;

Langley 1973; Cooper 2008), predictive homeostasis

(Moore-Ede 1986), rheostasis (Mrosovsky 1990), and

allostasis (Mathison 1995; Sterling et al. 1988; Schulkin

2003; Stumvoll et al. 2003; Sterling 2004).

One of the first attempts to describe what can actually

be interpreted as a variable setpoint, was done by Ludwig

(1885) when studying the physiological responses to vari-

ations in salt intake. Extracts from his work is presented

by Bonventre and Leaf (1982b) where they argue for the

existence of sodium homeostasis without a fixed setpoint.

Prior to this, Hollenberg (1980) described a fixed setpoint

for sodium being the sodium level at no-salt intake. The

discussion between Hollenberg on one side and Bonventre

and Leaf on the other continued in Hollenberg (1982)

and Bonventre and Leaf (1982a).
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In the last decades, the notion of a physiological setpoint

have repeatedly been revisited, in particular in relation to

the concepts of integral feedback control and perfect adap-

tation (Yi et al. 2000; Saunders et al. 2000; El-Samad et al.

2002; Ma et al. 2009; Drengstig et al. 2012a; Ang et al.

2013; Somvanshi et al. 2015; Briat et al. 2016). Most of

these contributions view the regulatory networks from a

control theoretic perspective where a fixed setpoint is the

main goal. Common for the “fixed setpoint” approaches are

the lack of a framework to include and describe the situa-

tion where the controlled variable deviates from the set-

point. An example of such is presented by ourselves

(Drengstig et al. 2012a) where we termed this deviation for

controller accuracy.1 The existence of such accuracy mea-

sures in physiological controllers have also been found by

others. In the work by Ma et al. (2009), they introduced the

terms Sensitivity and Precision to quantify the level of accu-

racy, whereas Ang and McMillen (2013) use the term near-

perfect adaptation for the same. Others again (including

ourselves) have also defined such a response for partial

adaptation (Asthagiri et al. 2000; Drengstig et al. 2008).

Each of these different classifications of setpoint deviation

indicates that the complexity of physiological regulatory sys-

tems exceed (not really surprisingly) the functionality/com-

plexity available in standard control theoretic terminology.

Leaving the search for a fixed setpoint and instead focus

on characterizing a variable setpoint, give us the framework

to also describe other aspects of physiological control. One

such aspect is the assistance provided to the controller from

variations in the controlled variable. This assistance repre-

sents a relaxing component for the controller as the out-

come is reduced control effort, which makes it interesting

from an evolutionary point of view. Furthermore, a vari-

able setpoint description shares similarities with rheostasis

(Mrosovsky 1990), and based on how Mrosovsky (1990)

describes this variation, that is, “Change is not a failure of

regulation, but an adaptive response, promoting the sur-

vival of the animal”, we will in this paper reinvestigate our

previously published controller motifs (Drengstig et al.

2012a) from a rheostatic point of view.

Computational methods

Rate equations were solved symbolically and numerically

by using MATLAB/SIMULINK. To make notations sim-

pler, concentrations of compounds are denoted by com-

pound names without square brackets. Concentrations

and rate constants are given in arbitrary units (a.u.) if

not stated otherwise.

Controller Motifs With Saturable
Signaling Kinetics

As a preamble, we present in this section a short sum-

mary of previously published homeostatic controller

motifs (Drengstig et al. 2012a). These motifs consist of a

controlled species A and a controller species E interacting

with each other in different negative feedback configura-

tions. Based on the controller action, these controller

motifs are further classified as either inflow or outflow

controllers with activating or inhibiting control action,

see Figure 1A. The activating signaling kinetics between A

and E in our models (Drengstig et al. 2012a,b; Thorsen

et al. 2013) have so far been based on first-order kinetics,

which implies that the controller species E in theory can

compensate for infinite level of perturbation. This signal-

ing model are in many modeling efforts an adequate sim-

plification (Bocharov et al. 2011; Palumbo et al. 2013),

and could as such have been here used to describe the

relationship between fixed and variable setpoints. How-

ever, as the use of more complex signaling events are in

other modeling efforts a better assumption (Korsgaard

et al. 2006; Ang et al. 2010; Schaber et al. 2013), we have

in this paper extended our controller motifs to include

saturable signaling kinetics between A and E.

To illustrate the saturable signaling kinetics, we refer to

Figure 1A, and show the model equations (1) and (2) for

inflow controller 1

_A ¼ VAext
max � Aext � E

ðKE
a þ EÞ � kop �

A

KA
MþA

(1)

_E ¼ kEs � VE
max �

E�
KE
M þ E

� � A

ðKA
a þ AÞ (2)

where the kinetics between A and E, and between E and

A, are characterized by the activation constants KA
a and

KE
a , respectively. The variable kop represents an uncon-

trolled outflow perturbation, which is compensated by

the E-mediated inflow of A. Aext is an external source of

A generating the compensatory flux opposing kop. The

enzymatic degradation of A and E are modeled as stan-

dard Michaelis–Menten expressions.

To organize the different parameters occurring in all of

the eight controller motifs, we sort them into the follow-

ing sets:

DA ¼ �VAext
max;K

A
M ;V

A
max

� SEA ¼ �KE
a ;K

E
I

�
DE ¼ �kEs ;VE

max;K
E
M

� SAE ¼ �KA
a ;K

A
I

�
where DA is related to the dynamics of A, SEA is related

to the signaling from E to A, DE is related to the

dynamics of E, and SAE is related to the signaling from A
1Although a better term is inaccuracy as pointed out in Thorsen
(2015).
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to E. The dynamics of A and E for all eight controller

motifs can then be written as

_A ¼ f1ðA; E;DA;SEA; k
i=o
p Þ (3)

_E ¼ f2ðA; E;DE;SAEÞ (4)

where the functions f1(�) and f2(�) are the basis for the

analysis shown later. A graphical illustration of this struc-

ture is shown in Figure 1B for inflow controller 1 and

outflow controller 8.

From control theory, we know that integral action is

necessary to keep a controlled variable at a fixed setpoint in

the presence of disturbances (�Astr€om et al. 1995). For our

previously published controller motifs, zero-order degrada-

tion of the controller species E is a necessary condition for

the motifs to have integral action (Drengstig et al. 2012a),

and based on this condition we developed a procedure to

calculate a fixed setpoint (Drengstig et al. 2012a). In short,

this procedure use the differential equation for the con-

troller species E and assume (1) zero-order kinetics, that is,

KE
M�E (in practice KE

M ¼ 0) and (2) steady-state condi-

tion ( _E ¼ 0), to determine the steady-state value of A. As

this value of A is independent of the perturbations, it rep-

resents therefore the fixed setpoint Aset. The procedure

then returns to the original differential equation for E, and

reorganizes it into a structure similar to the integral control

law _E ¼ Gi � ðAset � AmeasÞ. Here, Gi is the controller gain

and Ameas is the measurement or feedback function. How-

ever, since Aset is calculated assuming KE
M ¼ 0, the level of

A will not adapt to Aset, and as mentioned above, we ter-

med this deviation for accuracy a (Drengstig et al. 2012a).

Results and Discussion

Throughout this section, we will use controller motif 1

given by Equations (1) and (2) as an illustrative example.

First, we will present the structural differences behind the

fixed setpoint approach and the new variable setpoint

approach. Thereafter, we will give an in depth analysis of

the variable setpoint controller.

The homeostatic view of controller motifs

In this paper, we term the procedure described above for

calculating the fixed setpoint (Drengstig et al. 2012a) as

the homeostatic view approach. Using the procedure on

the differential equation for E in Equation (2) gives the

reorganized equation in Equation (5).

_E ¼ VE
max � kEs
KA
a þ A|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Gi

kEs K
A
a

VE
max � kEs|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Aset

�
VE
max � E

KE
MþE

� kEs

VE
max � kEs

 !
� A|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ameas

0
BBBB@

1
CCCCA
(5)

A

B

Figure 1. (A) Inflow and outflow controllers with saturable

activating action (gray background) or inhibiting action (white

background). The controlled species A is subject to outflow or

inflow perturbation (kop or kip), where the controller species E

compensates for this perturbation through E-mediated inflow or

outflow of A, respectively. The synthesis of E is modeled with a

rate constant kEs , whereas the degradation of E is assumed to be a

saturable enzymatic reaction with a Michaelis–Menten constant KE
M.

Similar saturable enzymatic reactions are also assumed in the

degradation of controlled species A. (B) Illustration of how the

different parameter sets DA=SEA (dark gray), and DE=SAE (light

gray) relate to the different motif parts. The two examples are

inflow controller 1 (left) and outflow controller 8 (right).
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As we see, the expression for the fixed setpoint consists

only of parameter values from the sets DE and SAE. Since

this is generally true for all of the eight controller motifs

in Figure 1A, the integral control law from the homeo-

static view can be expressed as

_E ¼ Gi

�DE;SAE;A; E
� � �Aset

�DE;SAE

�
� AmeasðDE;SAE;A; EÞ

�
(6)

The syntax AsetðDE;SAEÞ indicates that Aset is a function

of the parameters in DE and SAE. The structure in Equa-

tion (6) is schematically illustrated in Figure 2A, which is

recognized as a negative feedback loop with integral

action, and where the dashed arrows indicate additional

information flow in the control loop. From a control the-

oretic point of view, the information about the level of A

which is fed back to the controller has similarities with

gain scheduling (�Astr€om et al. 1995), which is an adaptive

control strategy. On the other hand, the information

about the level of E fed back to the controller gain and

fed forward to the measurement function are not com-

mon in control engineering. However, the structure has

similarities to Figure 8 in the work of He et al. (2013),

where the integral part of the controller is partly repre-

sented by a first-order system.

The structure in Figure 2A gives an intuitive explana-

tion of why deviation from a fixed setpoint occurs, since

the information arrow from E fed forward to the mea-

surement function Ameasð�Þ represents the ratio

E=ðKE
M þ EÞ (see Eq. 5). In a situation where KE

M 6¼0, this

ratio is less than unity, which implies that the output

from the measurement function Ameasð�Þ will no longer

reflect the level of A alone. As the output from Ameasð�Þ
will become equal to Aset(�) (control error e = 0), the

level of A will not adapt to Asetð�Þ. Thus, the deviation

from Asetð�Þ will change according to the level of E.

The rheostatic view of controller motifs

The idea behind the rheostatic view of controller motifs is

to describe the regulatory behavior in terms of a variable/

rheostatic setpoint. Thus, instead of a fixed setpoint

together with a variable deviation, we lump it all into a

variable setpoint. In this regard, we use the fact that the

A

B

Figure 2. Negative feedback loops for the homeostatic view (A) and the rheostatic view (B) of controller motifs. Functionally there is no

difference between solid and dashed lines. Solid lines are used to highlight the well known negative feedback configuration, whereas dashed

lines are used to indicate additional functionality which traverse their target to resemble an adjustment. Note that the setpoint calculation in (A)

only depends on parameter values, whereas the setpoint in (B) in addition depends on the level of E, and hence, becomes a variable setpoint.
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deviation depends on the level of E as described above. In

other words, by reorganizing the differential equation for

E directly, we find a setpoint which incorporates not only

parameters, but also the variable E. This is shown in

Equation (7) for inflow controller 1 from Equation (2)

_E ¼ VE
max �

E�
KE
M þ E

�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Gi

� kEs
VE
max

�
�
KE
M þ E

�
E|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

f ð�Þ

� A

ðKA
a þ AÞ|fflfflfflfflffl{zfflfflfflfflffl}
gað�Þ

0
BBB@

1
CCCA
(7)

Here, Gið�Þ still represents the controller gain, f(�) is the

rheostatic setpoint function, and gað�Þ is the measurement

function based on activating signaling kinetics. Motifs

with inhibiting signaling from A to E will in the same

way have a measurement function based on inhibiting

signaling kinetics gI(�), and hence, a general structure for

Equation (7) valid for all eight controller motifs is:

_E ¼ Gi

�DE; E
� � �f �DE; E

�� ga=IðSAE;AÞ
�

(8)

This new structure is illustrated in Figure 2B, and we

argue that this way of looking at the system has several

advantages compared to Figure 2A. The most obvious

one is that the information flow from the level of E to

the measurement function is removed, implying that

there is no need for any accuracy measures. Instead the

information about E is fed back to the setpoint, which

will vary according to the level of E. Since the level of

E reflects the level of disturbances, the adjustment of

the setpoint is, from a physiological point of view, a

way to relax the control system. In this context, the

signaling kinetics between E and E is of importance,

and we will return to this towards the end of the

paper.

Analysis of the rheostatic controller

Both of the measurement functions gaðSAE;AÞ and

gIðSAE;AÞ transform the actual level of A into a relative

value between 0 and 1. Consequently, the value of the rheo-

static setpoint function f(�) must also be a value between 0

and 1, and at steady state, the control error e = 0 and

f
�DE; E

� ¼ ga=I
�SAE;A

�
(9)

Since the steady-state level of A will always be identical to

the variable setpoint value, we define the rheostatic set-

point Arheo
set as A ¼ Arheo

set . Inserting this into Equation (9)

and solving for Arheo
set , we find

Arheo
set ¼ g�1

a=I

�
SAE; f

�DE; E
��

(10)

Similar to Equation (6), we write the setpoint as

Arheo
set ðSAE;DE; EÞ. We have considered all of the eight

controller motifs in Figure 1A from this new viewpoint

and derived the symbolic expression for GiðDE; EÞ and

f ðDE; EÞ from Equation (8), together with

Arheo
set ðSAE;DE; EÞ. These are all shown in Table 1. In the

following sections, we will analyze different aspects of this

new definition of a variable setpoint. We will use that the

steady-state levels of A, E, and k
i=o
p are dependent and that

they can be organized into combinations of high and/or

low steady-state levels. We recognize that these high and

low levels can be related to what Cannon (1929); termed

physiological range. Since our definition of a variable set-

point depends on several of the motif parameters, we will

also analyze how the combinations of steady-state levels

relates to the different motif parameters.

In the literature, we find examples where the steady-

state regulatory behavior can be organized into such high

and/or low level combinations, for example, plasma

sodium levels in relation to aldosterone and salt intake

(Laragh et al. 1957), or blood glucose levels in relation to

insulin and food intake (Topp et al. 2007).

Steady-state trajectory

The above-mentioned dependencies between A, E and k
i=o
p

define, what we call, an operational space, see Figure 3A.

This is a three-dimensional representation of the space

spanned out by the combinations of high and/or low

levels of A, E and k
i=o
p . The corners of the cube in Fig-

ure 3A represent the combinations of the high/low levels

where the steady-state trajectory of the different motifs go

through, and the numbers in the corners correspond to

the motifs numbers in Figure 1A. The different pathways

through the cube illustrate two properties. First, it reveals

the kind of controller, that is, inflow or outflow. This is

identified by considering the level of A at k
i=o;high
p . If

A = Alow, then it is an inflow controller since an outflow

perturbation will drag the A-level down. Similarly, if

Table 1. Expressions for GiðDE ; EÞ, fðDE ; EÞ, and Arheo
set ðSAE ;DE ; EÞ

for all eight controller motifs, together with the corresponding

measurement function ga=IðSAE ;AÞ

Motif GiðDE ; EÞ fðDE ; EÞ ga=IðSAE ;AÞ Arheo
set ðSAE ;DE ; EÞ

1, 6 VE
max � E

ðKE
M
þEÞ

kEs
VE
max

� ðKE
M
þEÞ
E

A
KA
a þA

KA
a �kEs �ðKE

M
þEÞ

E�ðVE
max�kEs Þ�KE

M
�kEs

2, 5 �kEs
VE
max

kEs
� E
ðKE

M
þEÞ

A
KA
a þA

KA
a �VE

max �E
E�ðkEs �VE

maxÞþKE
M
�kEs

3, 8 �kEs
VE
max

kEs
� E
ðKE

M
þEÞ

KA
I

KA
I
þA

KA
I
�kEs �ðKE

M
þEÞ

E�VE
max

� KA
I

4, 7 VE
max � E

ðKE
M
þEÞ

kEs
VE
max

� ðKE
M
þEÞ
E

KA
I

KA
I
þA

KA
I
�VE

max �E
kEs �ðKE

M
þEÞ � KA

I
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A = Ahigh at k
i=o;high
p , then it is an outflow controller since

an inflow perturbation will increase the level of A. Sec-

ondly, it tells us whether there is activating or inhibiting

signaling from E to the compensatory flow of A. This is

identified by considering the level of E at k
i=o;high
p . If

E = Ehigh, then it is an activating controller since k
i=o;high
p

will be compensated by a high level of E. Similarly, if

E = Elow at k
i=o;high
p , then it is an inhibiting controller

since k
i=o;high
p will be compensated by a low level of E.

Thus, one way to use such an operational space is to fore-

see structural information about the underlying regulatory

mechanism based on reported and/or experimentally

measured steady-state values of A, E and k
i=o
p .

The operational space can be further projected into an

operational area as a function of A and E only, see Fig-

ure 3B. This enables us to illustrate that the controllers

are also able to operate outside the operational area,

although exceeding the specified combinations of high/

low levels. These additional areas are termed functional

areas. From a physiological point of view, the transition

into a functional area might as well initiate other control

mechanisms to bring the organism back into the opera-

tional area again, but such mechanisms are not consid-

ered in this paper.

The qualitative behavior of the steady-state trajectories

through the operational and functional areas of the eight

controller motifs are shown in Figure 3C and D. The

arrows on the trajectories indicate the direction of move-

ment when k
i=o
p increases from k

i=o;low
p to k

i=o;high
p .

As our goal is to make mathematical models able to fit

steady-state levels of A, E, and k
i=o
p in terms of a variable

setpoint regulatory mechanism, the model behavior

depends heavily on model parameters. We will therefore in

the following two sections investigate whether and how the

defined operational space/area impose constraints on the

different motif parameters. In this context, we define the

difference between the highest and the lowest level of a

variable, e.g. Ahigh�Alow, as the range in that variable. Fur-

thermore, since the saturable signaling kinetics represents a

non-linear mapping of concentration levels into a relative

measure, we focus in particular on constraints imposed on

the activation and inhibition constants in SEA and SAE.

Imposed constraints on the parameters in
DA and SEA

We start with the two parameter sets DA and SEA related

to the dynamics of A and the signaling from E to A,

A B

C D

Figure 3. Visualization of the operational space/area and functional area of all eight controller motifs. (A) Operational space spanned out by

the high and/or low levels of A, E and ki=op , where the corners are indexed with a number corresponding to the controller motifs in Figure 1A.

A corner represents a combination of steady-state high/low levels for that motif, and is therefore a location where the steady-state trajectory

by definition goes through. Motifs 5 and 7 go through the hidden lower corner in the back. (B) Projection of the operational space into an

operational area (light gray) and functional areas (dark gray) as a function of A and E only. (C, D) Illustration of how the steady-state trajectory

of the different controller motifs traverse the operational and functional areas. The illustration shows typical behavior and gives a qualitatively

description of each motif. The corresponding perturbation levels are indicated in the transition from operational to functional areas, and the

arrows on the trajectories indicate the direction of movement when ki=op increases.
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respectively, and the analysis is therefore based on the

steady-state version of the generalized differential equa-

tion of A given in Equation (3). By inserting each of the

two relevant combinations of high and low levels of A, E

and k
i=o
p , we get a system of two equations and three

unknowns (VAext
max/V

A
max, K

A
M and KE

a /K
E
I ). This is shown in

Equations (11) and (12) for inflow controller 1 in Equa-

tion (1), where we have inserted the combinations repre-

senting the corners of the cube in Figure 3A.

f1
�
Alow; Ehigh; k

o;high
p ;VAext

max;K
E
a ;K

A
M

� ¼ 0 (11)

f1
�
Ahigh; Elow; k

o;low
p ;VAext

max;K
E
a ;K

A
M

� ¼ 0 (12)

As the system is underspecified, and because we are par-

ticularly interested in the signaling kinetics, we solve the

equations with respect to KA
M and VAext

max. These two

parameters will then be a function of KE
a and the opera-

tional space, and thus, in order to obtain positive and real

values for KA
M and VAext

max, we identify constraints on KE
a as

a function of the operational space.

As a general result for all of the eight controller motifs,

we identify as parts of the solutions the following two

expressions

b1 ¼
Ahigh � Ehigh � ki=o;lowp � Alow � Elow � ki=o;highp

Alow � ki=o;highp � Ahigh � ki=o;lowp

¼ b1;num
b1;denom

(13)

b2 ¼
Ehigh � ki=o;lowp � Elow � ki=o;highp

k
i=o;high
p � k

i=o;low
p

¼ b2;num
b2;denom

(14)

Note that b1 takes the entire operational space into considera-

tion, whereas b2 only considers the ranges in E and k
i=o
p , and

that both the numerators b1,num and b2,num, and the denomi-

nator b1,denom, can be either positive or negative. Based on the

signs of b1,num, b2,num, and b1,denom, Table 2 summarizes the

constraints imposed on KE
a /K

E
I in order for the steady-state

trajectory of A, E and k
i=o
p to go through the corners of the

operational area. From Table 2, we see that the sign of b1,num
determines whether there is a solution or not. If b1,num is pos-

itive, the four possible combinations of the signs of b1,denom
and b2,num determines the conditions on KE

a and KE
I . We note

also that if either b1,denom or b2,num is negative, then the

respective b1 and b2 is not a part of the condition. When b1,
num is negative, it can easily be shown from Equations (13)

and (14) that there is only one possible sign combination of

b1,denom and b2,num, and for this combination, there is no

solution to either KE
a or KE

I .

So, what is the effect of selecting an arbitrary value for

KE
a /K

E
I satisfying the conditions in Table. 2? Well, even

though the high/low levels of A and E representing the

corners of the operational area are still the same, the

steady-state trajectory inside the operational area is

slightly altered. However, the largest effect is found in the

dynamic behavior of the controller motifs. Thus, given

time series measurements of A, E and k
i=o
p would provide

us with data to perform parameter estimation (Isermann

et al. 1992). This is, however, not a topic in this paper as

we here focus on the steady-state behavior.

To illustrate the principles, we use controller motif 1 in

Equations (1) and (2), where we assume that the following

values are found experimentally and are considered to rep-

resent the operational space; Alow = 1, Ahigh = 3, Elow = 2,

Ehigh = 8, ko;lowp ¼ 3, and k
o;high
p ¼ 5. Inserting these values

into Equations (13) and (14) reveals that

b1,denom is negative, and that KE
a\2:28. This is shown in

Figure 4A, where KA
M and VAext

max from the parameter set DA

is presented as a function of KE
a from the parameter set

SEA. We observe that KA
M becomes negative for KE

a [ 2:28.

The effect of selecting different values for KE
a within the

available range in Figure 4A (and thereby other combina-

tions of KA
M and VAext

max), is found in the dynamic behavior as

shown in Figure 4B. We note that the dynamic properties

of A, especially the level of overshoot, is highly influenced

by the level of KE
a . Note, however, that the steady-state level

of A and E inside the functional area are slightly altered,

implying that the path through the operational space varies

as a function of parameter values. Similar results are

obtained in the analysis of the outflow controllers.

Imposed constraints on parameters in DE

and SAE

Moving on to the parameters in the sets DE and SAE

related to the dynamics of E and the signaling from A to

E, respectively, it is sufficient to focus on the operational

area shown in Figure 3B. The reason for this is that the

perturbation is not a part of the differential equation of

E. Similar to the previous section, we focus also here in

particular on conditions on the signaling kinetic parame-

ters KA
a =K

A
I in SAE.

Table 2. Constraints imposed on the parameters KE
a and KE

I , as a

function of the sign of b1,num, b2,num, and b1,denom from Equations

(13) and (14)

b1,num b2,num b1,denom KE
a KE

I

� � + no solution no solution

+ � � KE
a [0 KE

I [ 0

+ � + KE
a [

Ehigh �Elow
b1

KE
I \b1

+ + � KE
a\

Ehigh �Elow
b2

KE
I [ b2

+ + +
Ehigh �Elow

b1
\KE

a\
Ehigh �Elow

b2
b2\KE

I \b1

ª 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society

2017 | Vol. 5 | Iss. 17 | e13408
Page 7

G. B. Risvoll et al. Variable Setpoint Controller



In general, the parameters kEs and VE
max in DE are

related to the dynamic properties of the controller motifs,

for example, overshoot and rise time after a step in the

disturbance. The explanation behind this is that one of

these two parameters always constitute the controller gain

Gi (see Table 1). Furthermore, both of the parameters are

also always part of the rheostatic setpoint. Thus, if the

controller gain increases by, for example, increasing the

synthesis rate of E, then the degradation rate of E must

also increase in order to maintain the rheostatic setpoint.

This implies that these two parameters are dependent,

and we take advantage of this in the analysis.

The analysis is based on the steady-state version of the

generalized differential equation of E given in Equation (4).

By inserting each of the two relevant combinations of high

and low levels of A and E into this equation, we get also

here a system of two equations and three unknowns

(kEs =V
E
max, K

E
M , and KA

a /K
A
I ). This is shown in Equations

(15) and (16) for inflow controller 1 in Equation (2).

f2
�
Ahigh; Elow; k

E
s ;V

E
max;K

E
M ;K

A
a

� ¼ 0 (15)

f2ðAlow; Ehigh; k
E
s ;V

E
max;K

E
M ;K

A
a

� ¼ 0 (16)

Similar to the previous section, we solve for KE
M and the

ratio of the dependent parameters kEs =V
E
max, and find that

the solutions depend on KA
a and the operational area. As

a general result for all eight controller motifs, we find the

following constraints on KA
a and KA

I :

KA
a \

1 if Ahigh � Elow � Alow � Ehigh\0
Ahigh �Alow �ðEhigh�ElowÞ
Ahigh�Elow�Alow �Ehigh otherwise

(

(17)

KA
I [

0 if Ahigh � Elow � Alow � Ehigh\0
Ahigh�Elow�Alow �Ehigh

Ehigh�Elow
otherwise

(

(18)

From the conditional expressions in Equations (17) and

(18), we note that there are no constraints on KA
a or KA

I

if
Ehigh

Elow
[

Ahigh

Alow
(19)

This means that if the variability in A is too large or the

corresponding variability in E is too small, the controller

is not able to bring the system through the specified

high/low levels, that is, the operational area, without

imposing constraints on KA
a or KA

I .

So, what is the effect of selecting an arbitrary value for

KA
a or KA

I if the condition in Equation (19) is fulfilled?

Similar to in the previous section, it alters the solution to

the related parameters kEs =V
E
max and KE

M . This is illustrated

in Figure 5A for inflow controller 1 in Equations (1) and

(2), where we have specified the controller gain Gi to

VE
max ¼ 0:5 (see Table 1). The largest effect of varying KA

a

(and thereby also kEs and KE
M) within the available range is

also here found in the dynamic behavior. This is shown in

Figure 5B for stepwise increases in the outflow perturba-

tion, where an increased KA
a results in slower response in E.

The relaxing impact of a variable setpoint

In realistic models of biochemical systems/physiological

processes with (1) saturable signaling kinetics and (2) sat-

urable reaction kinetics, it is a challenge to have an intu-

itive understanding of how a controller motif is able to

A B

Figure 4. (A) KA
M and VAext

max (from parameter set DA) as a function of KE
a (from parameter set SEA) for inflow controller 1 in Equations (1) and

(2). The operational space is specified as follows: Alow = 1, Ahigh = 3, Elow = 2, Ehigh = 8, ko;lowp ¼ 3, and ko;highp ¼ 5. The dashed vertical lines

correspond to parameter selection used in (B). (B) Responses in A and E for a stepwise increase in kop from ko;lowp = 3–4 at time t = 200 a.u.,

and further increased to ko;highp ¼ 5 at time t = 800 a.u. It illustrates that increased KE
a influences mostly the dynamics of A. Dark and light

gray represent functional and operational areas, respectively. Parameter values for solid line: KE
a ¼ 1:5, VAext

max ¼ 5 and KA
M ¼ 0:19. Parameter

values for dashed line: KE
a ¼ 0:5, VAext

max ¼ 3 and KA
M ¼ 0:77. For both simulations the other parameter values are as follows: KA

a ¼ 8,

kEs ¼ 0:028, KE
M ¼ 7:52, and VE

max ¼ 0:5, see the next section.
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compensate for large variations in the perturbation. The

comprehensional difficulty lies in the fact that the con-

troller’s maximum impact on the compensatory flux of A

is limited to 1, and the maximum dependence on the

substrate species concentration is also only 1 (through the

Michaelis–Menten relationship). As we will show, the key

to understand this puzzle is found in the ratios of signal-

ing values and Michaelis–Menten expressions at high and

low levels of E and A, respectively, and from this we iden-

tify a relaxing component in physiological control.

Let us first consider how the manipulated variable E

through the saturable signaling kinetics is able to com-

pensate for large variations in k
i=o
p . Since both the activat-

ing and the inhibiting functions from E to A are

structurally similar to the measurement functions

ga=IðSAE;AÞ defined in Table 1, we reuse the function

names as ga=IðSEA; EÞ, where

gaðKE
a ; EÞ ¼

E

KE
a þ E

(20)

gIðKE
I ; EÞ ¼

KE
I

KE
I þ E

(21)

The functional values of Equations (20) and (21) as a

function of E and different values of KE
a or KE

I are shown

in Figures 6A and B, and we note that the maximum dif-

ference in the signaling value is 1. As two examples, we

have indicated the functional values of gaðKE
a ; EÞ and

gIðKE
a ; EÞ at Elow and Ehigh for KE

a ¼ ðElow þ EhighÞ=2 and

KE
I ¼ 0:1 � Elow, respectively. The change in the functional

values when going from Elow to Ehigh (activating

controller in Figure 6A), or from Ehigh to Elow (inhibiting

controller in Figure 6B), are rather small. However, as the

manipulated variable E varies between Ehigh and Elow, the

controller performance is not characterized in the range

between the functional values, but rather in the ratio. The

reason for this is that the relative change in the functional

value represents the control signal amplification.

For the activating and inhibiting controllers, these

ratios are given in Equations (22) and (23).

gaðKE
a ; EhighÞ

gaðKE
a ; ElowÞ

(22)

gIðKE
I ; ElowÞ

gIðKE
I ; EhighÞ

(23)

and illustrated in Figures 6C and D. Interesting, we find

the largest amplification when the functional values of

gaðKE
a ; EÞ and gIðKE

I ; EÞ are at their smallest. Thus, the

maximum amplification value of Ehigh/Elow is obtained

when KE
a!1 or KE

I !0, and this rather contradictory

result is the key to the puzzle.

To illustrate how these ratios imply that a variable set-

point represents a relaxing component, we consider again

inflow controller 1 in Equations (1) and (2). Since this is

an activating controller, the controller species E will be at

Ehigh when the disturbance is at k
o;high
p (Elow and ko;lowp are

similarly related), and the controller amplification/ratio

shown in Figure 6C must therefore be related to the ratio

of the perturbation rate constants. Thus, from the quo-

tient between the steady-state relationships in Equations

(11) and (12), we identify this ratio as

A B

Figure 5. The relationship between the parameters in DE as a function of the parameters in SAE . (A) KE
M and kEs as a function of KA

a for

inflow controller 1 in Equations (1) and (2). The dependent parameter VE
max (being the controller gain) is specified as VE

max ¼ 0:5. The

operational area is the same as in Figure 4, that is, Alow = 1, Ahigh = 3, Elow = 2 and Ehigh = 8. The two vertical lines are related to the results

in B. (B) Responses in A and E for the system in A for a stepwise increase in kop from ko;lowp = 3–4 at time t = 200 a.u., and further increased to

ko;highp ¼ 5 at time t = 800 a.u. It illustrates that increased KA
a influences mostly the dynamics of E. Dark and light gray represent functional

and operational areas, respectively. The dashed curve is the same as the dashed curve in Figure 4B. Parameter values for solid line: KA
a ¼ 2,

kEs ¼ 0:12 and KE
M ¼ 2:91. Parameter values for dashed line: KA

a ¼ 8, kEs ¼ 0:028 and KE
M ¼ 7:52. For both simulations the other parameter

values are as follows: VE
max ¼ 0:5, KE

a ¼ 0:5, VAext
max ¼ 3, and KA

M ¼ 0:77.
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k
o;high
p

ko;lowp

¼ Ehigh � Ahigh � ðKE
a þ ElowÞ � ðKA

M þ AlowÞ
Elow � Alow � ðKE

a þ EhighÞ � ðKA
M þ AhighÞ (24)

¼ gaðKE
a ; EhighÞ

gaðKE
a ; ElowÞ

� Ahigh � ðKA
M þ AlowÞ

Alow � ðKA
M þ AhighÞ (25)

Using further that the Michaelis–Menten expression is

structurally similar to the activating signaling kinetics in

Equation (20), the ratio in Equation (25) can be written as

k
o;high
p

ko;lowp

¼ gaðKE
a ; EhighÞ

gaðKE
a ; ElowÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ratio from
controller

� gaðK
A
M ;AhighÞ

gaðKA
M ;AlowÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
relaxing
factor

(26)

Here, we identify the last part as the relaxing factor, since

that ratio has a value larger than 1 (similar to Eq. 22).

This implies that the controller is assisted from variations

in A in its task of compensating for the disturbances, that

is, the variations in A reduces the necessary amplification

in the controller output obtained by increasing textitE

from Elow to Ehigh. It is here worth repeating that the

variations in A represents the rheostatic setpoint Arheo
set .

To illustrated this concept using a familiar process,

consider a tank of water with a level controller

manipulating a valve in the outlet pipe. The inflow of

water into the tank is considered a disturbance. If the

inflow perturbation increases, a rheostatic controller with

a variable setpoint would let the water level in the tank

increase in order to take advantage of the increased

hydrostatic pressure. Compared with a standard controller

with a fixed setpoint, the necessary effort represented by

changes in the controlled variable, is for a rheostatic con-

troller reduced since the increased hydrostatic pressure

increases the outflow in itself. As long as the increased

water level is neither a safety issue nor a product quality

issue, it is beneficial with respect to wear and tear of the

equipment. Or in the context of physiology, Mrosovsky’s

statement (Mrosovsky 1990) is worth repeating: “Change

is not a failure of regulation, but an adaptive response,

promoting the survival of the animal”.

Illustrating the principles

We will illustrate the principles presented here using the

renal plasma sodium and aldosterone regulatory system

(Hollenberg 1982). In this context, the salt intake is con-

sidered a disturbance for the regulatory system. We will

show that the described variation in steady-state plasma

sodium concentration is in accordance with a variable

A B

C D

Figure 6. (A) The functional value of the activating signaling kinetics in Equation (20) as a function of KE
a and E. The values of KE

a for the

three lines are KE
a ¼ 0:1 � Elow, KE

a ¼ ðElow þ EhighÞ=2, and KE
a ¼ 5 � Ehigh. The black dots correspond to the readings on the ordinate axis,

which is linked to the black dot in C. (B) The functional value of the inhibiting signaling kinetics in Equation (21) as a function of KE
I and E. The

values of KE
I for the three lines are KE

I ¼ 0:1 � Elow, KE
I ¼ ðElow þ EhighÞ=2, and KE

I ¼ 5 � Ehigh. The black dots correspond to the readings on

the ordinate axis, which is linked to the black dot in D. (C) The ratio of the highest to lowest value of gaðKE
a ; EÞ, corresponding to Equation

(22). The black dot represents the amplification performed by the controller going from Elow to Ehigh in (A), using KE
a ¼ ðElow þ EhighÞ=2. (D) The

ratio of the highest to lowest value of gIðKE
I ; EÞ, corresponding to Equation (23). The black dot represents the amplification performed by the

controller going from Ehigh to Elow in B, using KE
I ¼ 0:1 � Elow
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setpoint description for sodium. Note that the model we

make is a very simple representation of all the physiologi-

cal events occurring in body sodium regulation, but the

example demonstrates how such regulatory systems can

be abstracted into a two-component controller motif rep-

resentation. Examples of other physiological processes

modeled in a similar way include blood glucose regula-

tion (Bolie 1961; Cobelli et al. 1987); and calcium oscilla-

tions (Sneyd et al. 2004), to mention a few.

One of the important hormones in the regulation of

body sodium is aldosterone, which is part of the renin–an-
giotensin–aldosterone system (RAAS) (Garrett et al.

2012). When plasma sodium concentration is, for exam-

ple, low, the function of the RAAS is essentially to initiate

a series of intermediate steps resulting in the synthesis of

the peptide angiotensin, which in turn stimulates the

secretion of aldosterone from the adrenal cortex. Aldos-

terone causes the kidney to increase the reabsorption of

sodium ions, thereby reducing the urinary sodium excre-

tion (Garrett et al. 2012). Altogether, the overall function

of the RAAS can be summarized and simplified as follows:

• At high salt intake (k
i;high
p ), the sodium level (repre-

sented as the controlled variable A) is high, and thus,

the regulatory system can be represented as an outflow

controller.

• At high salt intake, the aldosterone level (represented as

the manipulated variable E) is low. This implies that

sodium reabsorption decreases, and the net sodium

excretion is increased. Thus, the signaling from aldos-

terone to the compensatory sodium outflow is based on

inhibiting kinetics.

From this description, we find from Figure 3A two possi-

ble controller candidates, that is, outflow controller 6 or

outflow controller 8. The main difference between these

two motifs is that sodium either activates the aldosterone

degradation or inhibits the aldosterone synthesis, respec-

tively. Both will, however, decrease aldosterone concentra-

tion at high plasma sodium concentration. Though, based

on the fact that at low sodium level, aldosterone synthesis

is stimulated (Garrett et al. 2012), the overall description

fits an outflow controller 8. This is illustrated in Fig-

ure 7A, where kip represents the salt intake, and the corre-

sponding model equations for the system are:

_Naþ ¼ kip � VNaþ
max � Naþ

KNaþ
M þ Naþ

� KAldo
I

KAldo
I þ Aldo

_Aldo ¼ kAldos � KNaþ
I

KNaþ
I þ Naþ

� VAldo
max � Aldo

KAldo
M þ Aldo

The World Health Organization presents different rec-

ommendations with respect to sodium intake for human

adults (World Health Organization 2012), though

500 mg/day seems to be a recurring number for the lowest

recommended intake, with an upper level of 2300 mg/day

(U.S. Department of Health and Human Services and U.S.

Department of Agriculture 2015; World Health Organiza-

tion 2012). These levels correspond to ki;lowp ¼ 1:5 � 10�5

mol/min and k
i;high
p ¼ 6:9 � 10�5 mol/min. Normal levels

of body sodium is reported to lie between 0.135 and

0.145 mol/L (Garrett et al. 2012), and we therefore define

Naþlow ¼ 0:135 mol/L and Naþhigh ¼ 0:145 mol/L. Exam-

ples of reported levels of aldosterone varies between

0.19 nmol/L at high salt intake and 0.83 nM at low salt

intake (Fischbach et al. 2009), and hence, we define

Aldolow = 0.19 nmol/L and Aldohigh = 0.83 nmol/L.

We start by considering the parameters in the sets

DA ¼ fKNaþ
M ;VNaþ

max g and SEA ¼ fKAldo
I g. Based on the

operational space of high and low plasma sodium concen-

tration, aldosterone concentration and salt intake, we find

from Equations (13) and (14) that b1,denom>0 and

b2,num<0. Thus, from Table 2 we find

KAldo
I \4:96 � 10�3 nmol/L, and the solutions to KNaþ

M and

VNaþ
max as a function of KAldo

I are shown in Figure 7B. As

indicated, we select KAldo
I ¼ 4 � 10�3 nmol/L, and find

VNaþ
max ¼ 0:06 mol/min and KNaþ

M ¼ 2:4 mol/L.

Moving on to the parameters in the sets

DE ¼ fkAldos ;VAldo
max ;K

E
Mg and SAE ¼ fKNaþ

I g, we find

from the operational area that the regulatory system satis-

fies Equation (19), that is,

Naþhigh
Naþlow

[
Aldohigh

Aldolow

Since this condition holds, it means that the value of the

parameter KNaþ
I does not influence the steady-state proper-

ties of the system. In order to identify suitable values for

the parameters in the set DE, we consider first the synthesis

rate of aldosterone, jAldos , shown in Equation (27),

jAldos ¼ kAldos � KNaþ
I

KNaþ
I þNaþ

(27)

This rate is in the literature found to be in the interval 0.10–
0.15 mg/day (Meisenberg et al. 2017), corresponding to

0.19–0.29 nmol/min. We assume further that the average of

this interval corresponds to sodium being at Na+ = 0.140

mol/L, and thus, we find kAldos ¼ 0:48 nmol/min.2 Based on

this value, Figure 7C illustrates how the values of VAldo
max and

KE
M depend on, the yet unspecified, value of KNaþ

I .

As the inhibitory signaling between sodium and aldos-

terone synthesis in the model represents several interme-

diate steps, there is no literature value available for KNaþ
I .

2Note that this value represents the controller gain as shown in
Table 1.
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We therefore choose a value corresponding to the average

between the high and low sodium values, that is,

KNaþ
I ¼ 0:140 mol/L, indicated with a vertical line in Fig-

ure 7C. Thus, we find VAldo
max ¼ 25 nmol/min and

KAldo
M ¼ 9 � 10�3 nmol/L

Using these parameter values, Figure 7D shows the

responses in Na+ and aldosterone for a stepwise increase

in kip from a value in the lower functional space, through-

out the operational space, and into the upper functional

space. The light gray area represents the operational space.

The steady-state relationship between Na+ and aldos-

terone corresponding to the different steady-state levels in

Figure 7D are shown as functional and operational areas

in Figure 7E. As we see, the profile is similar to the quali-

tative sketch found in Bonventre et al. (1982b), redrawn

in Figure 7F.

Finally, we calculate the value of the relaxing factor

similar to Equation (26). The ratio of the high to low

perturbation rate constant is 6.9�10�5/1.5�10�5 = 4.6, and

below we see how the variation in the controlled variable

Na+ (ratio 1.07) assists the controller (ratio 4.3) in

obtaining a ratio of 4.6:

k
in;high
p

kin;lowp

¼ gIðKAldo
I ;AldolowÞ

gIðKAldo
I ;AldohighÞ

�
gaðKNa

M ;NaþhighÞ
gaðKNa

M ;NaþlowÞ

¼ 20:6 � 10�3

4:8 � 10�3
� 5:7 � 10

�2

5:33 � 10�2

¼ 4:3 � 1:07
¼ 4:6

To summarize, we have used experimental data for

high and low levels of sodium, aldosterone and salt intake

A B

C D

E F

Figure 7. (A) The renal sodium/aldosterone system modeled as an outflow controller 8. (B) The solution to the parameters KNaþ
M and VNaþ

max as a

function of KAldo
I . The vertical line corresponds to the selected value of KAldo

I ¼ 4 � 10�3 nmol/L. (C) The solution to the parameters KAldo
M and VAldo

max

as a function of KNaþ
I for a given kAldos ¼ 0:48 nmol/min. The vertical line corresponds to the selected value of KNaþ

I ¼ 0:14 mol/L. (D) Responses

in Na+ and aldosterone for stepwise increase in salt intake (for parameter values, see main text). The level of salt intake starts at kip ¼ 1 � 10�5 mol/

min in the lower functional space (dark gray). The light gray part illustrates the operational space. The letters a–f indicate steady-state levels used in

E. (E) The corresponding steady state relationship from the responses in D, where both the functional and operational areas are indicated. (F)

Qualitative steady-state relationship between body sodium and aldosterone, redrawn from Bonventre et al. (1982b).
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to parameterize a rheostatic model of the renal sodium

regulatory system. Thus, related to the discussion regard-

ing physiological setpoints, we argue for the existence of a

variable setpoint for sodium.

Even though the model complexity is limited, this

example illustrates how a two-component controller motif

can be constructed based on available steady-state values.

Thus, the signaling kinetic structure applied in the model

and the parameter values identified can serve as a base

for comparison in the development of more complex

models of body sodium regulation.

Conclusion

We have in this paper introduced and examined a new

facet into the puzzle and discourse on the notion of set-

points in physiology. Based on our previously published

homeostatic controller motifs, we have identified plausible

mechanisms behind the existence of a variable setpoint,

which share similarities with the concept of rheostasis

which again describes regulation around shifting setpoints

(Mrosovsky 1990).

One of the aspects of a variable setpoint is that the

setpoint depends on the level of the manipulated variable,

that is, the concentration of the species that performs reg-

ulatory actions on the compensatory inflow or outflow of

the controlled variable. Moreover, the level of the

manipulated variable is again dependent on the level of

disturbance (or perturbation), which is the driving force

behind a varying setpoint. Our explanation behind a vari-

able setpoint is therefore a combination of the two alter-

natives presented by Woods and Ramsay (2007), as they

stated the following: “The point is that an interpretational

complexity arises in studies on homeostasis because an

observed change in a regulated variable can result from a

forced deviation away from its defended value by an

externally arising disturbance or else from a rheostatic

adjustment of the value to a new defended level.”

Since the high and low levels of (1) the perturbation

k
i=o
p , (2) the manipulated variable E and (3) the controlled

variable A are related, we have further defined an opera-

tional region of the controller motif. This operational

region imposes constraints on the different motif parame-

ters, and we have identified conditions on the signaling

kinetics parameters between A and E, that is, the activa-

tion and inhibition constants.

In effect, our approach comprises both the fixed set-

point approach (homeostatic system) and the variable set-

point approach (rheostatic system) in a single formulation.

In order to define a homeostatic system, it is only a matter

of defining the variability of the controlled (or regulated)

variable. Hence, an approximate fixed (homeostatic) set-

point is achieved by specifying Ahigh = Alow+e, where e is

an adequate small number. In this context, e will reflect

what we defined as the accuracy a in (Drengstig et al.

2012a) to describe deviation from the fixed setpoint.

We have further shown that the notion of a variable

setpoint is indeed a relaxing component in that the varia-

tion in the controlled variable (being the rheostatic set-

point) reduce the effort needed from the controller

species to counteract the effect of the disturbance. Hence,

from an evolutionary point of view, the rheostatic set-

point represents a trade-off between energy savings and

possible disadvantages from variations in the regulated

variable. This represents an optimization problem, and is

a topic for ongoing research.
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