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Abstract: Extracellular vesicles (EVs), such as exosomes, microvesicles, and apoptotic bodies, are cell-
derived, lipid bilayer-enclosed particles mediating intercellular communication and are therefore vital
for transmitting a plethora of biological signals. The vascular endothelium substantially contributes
to the circulating particulate secretome, targeting important signaling pathways that affect blood cells
and regulate adaptation and plasticity of endothelial cells in a paracrine manner. Different molecular
signatures and functional properties of endothelial cells reflect their heterogeneity among different
vascular beds and drive current research to understand varying physiological and pathological effects
of blood and lymphatic endothelial EVs. Endothelial EVs have been linked to the development and
progression of various vascular diseases, thus having the potential to serve as biomarkers and clinical
treatment targets. This review aims to provide a brief overview of the human vasculature, the biology
of extracellular vesicles, and the current knowledge of endothelium-derived EVs, including their
potential role as biomarkers in disease development.

Keywords: vasculature; vascular endothelial cell; exosome; microvesicle; apoptotic body; EV biogenesis;
cargo; miRNA; biomarker; vasculopathy

1. The Human Vasculature and Endothelial Cell Heterogeneity

The human vascular system can be broadly separated into the blood and the lymphatic
system. The blood vasculature is responsible for the active supply and distribution of blood
and its components, whereas the lymphatic system removes accumulating interstitial fluid
to ensure tissue homeostasis. Thus, the formation, maintenance, and remodeling of a func-
tioning vascular network is essential for oxygen and nutrient supply as well as lymphatic
fluid drainage in the healthy human body [1]. Vasculogenesis describes the formation of
new vessels from endothelial progenitor cells [2]. In contrast, angiogenesis refers to the
formation of new vessels splitting and sprouting from preexisting ones [3]. Endothelial
cells (ECs) arise from the mesodermal stem cell lineage. Mesodermal progenitor cells
develop to angioblasts under the influence of a group of transcription factors including E26
transformation-specific (ETS) [4]. Specification into endothelial and hematopoietic lineage
is primarily driven through the expression of transcription factors Etv2 and Npas4l [5].
During this process, activation of distinct signaling networks leads to further differen-
tiation into arterial, venous, and lymphatic subtypes [1]. The specification into arterial
or venous fate is further driven by regulators such as SoxF transcription factors, Notch
receptor proteins, bone morphogenic proteins (BMPs), and transforming growth factor-beta
(TGF-ß) [5]. The upregulation of Notch has been shown to lead simultaneously to the
expression of arterial markers and the downregulation of venous ones [6]. By suppress-
ing of Notch signaling, the nuclear receptor Coup-TFII acts as a key regulator of venous

Life 2022, 12, 654. https://doi.org/10.3390/life12050654 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life12050654
https://doi.org/10.3390/life12050654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0001-9538-9976
https://orcid.org/0000-0001-6425-9028
https://doi.org/10.3390/life12050654
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life12050654?type=check_update&version=1


Life 2022, 12, 654 2 of 12

identity [4]. Regarding the “second” vascular system, lymphatic cell commitment is in-
fluenced by vascular endothelial growth factor-C (VEGF-C)/vascular endothelial growth
factor receptor-3 (VEGFR3, FLT4)-signaling and activation of transcriptional programs by
prospero homeobox-1 (Prox1) and the SRY-related HMG-box family member Sox18 [5]. Fi-
nally, circulating endothelial progenitor cells (EPCs), which can be experimentally isolated
and differentiated into highly proliferating endothelial colony-forming cells (ECFCs), are
thought to aid postnatal vasculogenesis and to contribute to the regeneration of damaged
vasculature [7].

The heterogeneity of ECs reflects tissue-dependent differences in their functionality.
Meeting these different demands requires a certain morphological variability, which is
partially manifested by regional differences in intercellular junctions [3]. The endothelium
of arteries and veins is continuous, while the endothelium of capillaries may also be
fenestrated or discontinuous depending on the different underlying needs of the tissue [8].
In most capillaries of the brain, lungs, and skeletal muscle, a continuous sheet of ECs is held
together by tight junctions and is anchored to the basal membrane [3]. Other tissues build on
a fenestrated endothelium with pores of around 60–80 nm in diameter that are spanned by a
diaphragm, which increase permeability and allow small molecules to diffuse [7]. This type
of endothelium is found in organs involved in filtration or secretion, including exocrine and
endocrine glands, gastric and intestinal mucosa, choroid plexus, kidney glomeruli, and a
subpopulation of renal tubules [3,8]. In contrast to the intact basal membrane in fenestrated
endothelium, the underlying basement membrane in discontinuous endothelium is poorly
formed and exhibits larger fenestration (100–200 nm) among ECs, which are devoid of
diaphragm [9]. Discontinuous endothelium is found in the sinusoids of the liver, spleen,
and bone marrow [3]. Other morphologic differences are seen in the size and thickness of
ECs. Aortic ECs are 1 µm thick compared to the cells of capillaries, which are 0.1 µm thick,
and veinous ECs are 0.1–0.2 µm [9]. ECs can be remodeled in response to hemodynamic
shear stress [8]. Changed flow patterns do not only result in region-specific phenotypic
differences but also lead to changes on a molecular level by modifying gene expression [5].
The special role of the endothelium as an interface between underlying tissue and blood or
lymphatic fluid makes it an important contributor to the circulating secretome. Therefore,
it can have an impact on the plasticity and adaptation of ECs in different vascular beds
as well as on circulating immune cells [4]. Taken together, ECs in different vascular beds
reflect their respective physiological roles, which meet tissue-specific demands, by highly
adopted and therefore heterogeneous phenotypes. The question that remains is if those
heterogeneities of endothelial cells are transferred to their respective extracellular vesicles.

2. Biology of Extracellular Vesicles

Extracellular vesicles (EVs) have been found to influence a variety of pathological
and physiological processes, such as inflammation, coagulation, or atherosclerosis, specif-
ically in the context of vascular biology. However, their small subfractions (<200 nm)
especially, together with possible differences between different vascular origins, remain
poorly understood to this day. In general, EVs are defined as lipid membrane-enclosed
vesicles with cellular origin that transport bioactive cargo including lipids, proteins, and
nucleic acids. Not considering their cellular origin or cargo, they are commonly differen-
tiated based on their size and release pathway into exosomes (30–150 nm), microvesicles
(100 nm–1 µm), and apoptotic bodies (50 nm–5 µm) as the three main subcategories [10].
The small subset of EVs, most often termed exosomes, are vesicles that are actively se-
creted via an endosomal pathway. After the inward budding of the plasma membrane
during endocytosis, membrane-bound proteins as well as extracellular components are
internalized [11]. Subsequently, after scission from the membrane, the internally formed
vesicles, now termed early endosomes, experience further regulated inward budding and
cargo sorting during the maturation to late endosomes. The regulated inward budding
and transport of cytoplasmic cargo leads to the formation of intraluminal vesicles (ILVs),
which hallmarks the transition of late endosomes to multivesicular bodies (MVBs) [12].
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These sorting and vesicle-formation processes are a topic of ongoing research that has
revealed the high complexity and involvement of a variety of different proteins such as the
endosomal sorting complex required for transport (ESCRT) or RAS-related protein RAB31.
Mature MVBs are either fused with lysosomes for content degradation by hydrolytic en-
zymes through a ubiquitin- and clathrin-dependent manner or are trafficked to the cell
membrane, where the subsequent fusion causes the release of the ILVs into the extracellular
space in which they are then termed exosomes [12–18]. The commonly larger species of
EVs, termed microvesicles (MV), originate, in contrast to exosomes, from the budding
of the plasma membrane into the extracellular space and subsequent dissociation from
the membrane. Specific adaptation of physical properties by changes of lipid and protein
components thereby allows the remodeling of the cellular membrane, leading to separation
and release of the MVs. Various molecules such as the ARF6 GTPase or vesicle-associated
membrane protein 3 (VAMP3) have been shown to facilitate the active transport of cargo,
such as proteins, enzymes, as well as nucleic acids, to the membrane prior to the budding
process [19–21]. Although similar in size, apoptotic bodies show distinct differences to
their exosomal and microvesicular counterparts. Apoptotic bodies are generally released
through internal changes of the cytoskeleton and increasing hydrostatic pressure during
cell death. These vesicles mainly function as a means of disposal of the dying cell, resulting
in a highly similar proteomic profile to the cell lysate itself. The release of apoptotic bodies
has been shown to influence various biological processes, such as the activation and modu-
lation of the immune system by transferring antigens, increasing cell proliferation in stem
cells as well as tumor niche formation [10,22–25]

3. Molecular Signatures of Endothelial Cells and Endo-EVs

Identifying molecular profiles that could serve as endothelial EV (endoEV)-specific
biomarkers relies on solid evidence of tissue-specific signatures of parental ECs. In addition
to the pan EC markers vascular endothelial (VE)-cadherin (CD144), platelet endothelial
cell adhesion molecule-1 (PECAM-1, CD31), and van Willebrand factor [26], recent studies
revealed further constitutively expressed markers in circulating precursors and mature
ECs of different vascular beds. ECFCs express homing-associated cell adhesion molecule
(HCAM, CD44), mast/stem cell growth factor receptor (SCFR, c-kit, CD117), endoglin
(ENG, CD105), 5′-nucleotidase (NT5, CD73), and stemness-associated transcription factors
Klf4, Oct4 and c-Myc [27–31]. Blood vascular endothelial cells (BECs) express neural (N)-
cadherin (CD325), pathologische Anatomie Leiden-endothelium (PAL-E) reactive antigen,
urokinase, versican, collagen 8A1, ENG, and endothelial cell specific molecule-1 (ESM-1,
endocan) [26,31–34]. More specifically, PAL-E is characteristic for ECs of blood capillaries
and small veins [35,36]. Lymphatic endothelial cells (LECs) also express lymphatic vessel
endothelial hyaluronan receptor-1 (LYVE-1), VEGFR-3, neuropilin-2 (NRP-2), podoplanin
(PDPN), Prox-1, forkhead box protein C2 (FOXC2), and integrin α9 [32,33,37–39]. Generally,
ECs can differ in their marker expression in a tissue-specific manner or share certain markers
across vascular beds. Highlighting just a few uniquely expressed BEC markers, glucose
transporter type 1 (GLUT-1) and integral membrane protein 2A (ITM2A) are seen to be
specific to brain vascular ECs in mice, just as fatty acid binding protein 4 (FABP4) is to
coronary vessel ECs and natriuretic peptide receptor C (NPR3) and cytokine-like protein 1
(C17) are to endocardial ECs [40]. VEGFR-3 is widely accepted to be LEC-specific although
also expressed in BECs, constituting fenestrated capillaries in bone marrow, liver, spleen,
and kidney glomeruli [37]. LECs that line different lymph node regions differentially
express LYVE-1 [41]. The intricacy of EC marker expression profiles reflects the need for
combinatorial detection strategies. This is equally important for characterizing endoEVs
from different vascular beds in different host tissues and under varying stimuli.

EndoEVs as liquid biopsy-derived biomarkers are increasingly coming into focus
as their abundance and cargo provide valuable information on EC response to certain
stimuli and can be pathognomonic for EC damage. EndoEVs can be characterized by
markers inherent to their biogenesis or parental cells or those accumulating under certain
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conditions (Figure 1). Contrary to common assumptions, phosphatidylserine (PS) is not
only found in the outer membrane leaflet of MVs but also exosomes [42]. PS on endoEVs
facilitates tethering to distant ECs and conveys pro-coagulant effects, as was shown by
tissue factor (CD142)-bearing BEC-EVs [43,44]. Recent evidence suggests an apoptosis-
related subtype of exosomes (apoExos) that in BECs are shed in a caspase 3-dependent
manner [45]. ApoExos, alongside exosome-specific tetraspanin CD63, express the lysosomal
marker LAMP1 (CD107a), heat-shock protein 70 (HSP70), and sphingosine 1-phosphate
receptors 1 and 3 (S1PR1, S1PR3) [46,47]. BEC apoExos also enrich pro-inflammatory
non-ribosomal non-coding viral-like RNAs [45].

ECFC-EVs constitutively express HCAM (CD44), which is intrinsic to their parental
cells [29,48], and further reveal an expression of certain adhesion molecules, e.g., hematopoi-
etic progenitor cell antigen (CD34), intercellular adhesion molecule-1 (ICAM-1, CD54),
L-selectin (CD62L), integrins α4 (CD49d), α6 (CD49f), ß1 (CD29), and αvß3 (CD51/61),
but also CD40 ligand, which is involved in activation of antigen presenting cells [48–50].
ECFC-exosomes exert anti-inflammatory effects through lncRNA TUG1-mediated alter-
ation of macrophage histone deacetylation [51]. ECFC-MVs convey pro-angiogenic signals
via transfer of miR-126 and miR-296, while specific sorting of further miRNAs to MVs was
also described [49].

BEC-EVs were found to express EC markers VE-cadherin, PECAM-1, vWF, and
ENG [52–61]. In addition, angiogenesis-implicated growth factor receptors VEGFR-1
and VEGFR-2 and their ligand VEGF-A were detected, with the latter’s expression being
increased under hypoxic conditions [52,62,63]. VE-cadherin expression on BEC-EVs is
also primed under hypoxia [55,57]. PECAM-1 and ENG were upregulated on BEC-EVs
upon growth factor depletion-mediated EC apoptosis [54]. While ENG is downregulated
in blood—brain barrier ECs under TNF stimulation, it is highly upregulated in their MVs
but consistently expressed in exosomes [56]. TNF pro-inflammatory stimuli further ex-
ceeded baseline expression of the cell adhesion molecules intercellular adhesion molecule-1
(ICAM-1, CD54), vascular cell adhesion molecule-1 (VCAM-1, CD106), and E-selectin
(CD62E), the classical complement pathway activator pentraxin-related protein (PTX3),
and the transcription factor signal transducer and activator of transcription 1 (STAT1) in
both BEC-MVs and -exosomes [54–56]. MVs from blood—brain barrier ECs also increased
expression of eukaryotic translation initiating factors (eIFs) and cell-death-preventing
superoxide dismutase 2 (SOD2) [56]. As a transcription regulator, Tet methylcytosine
dioxygenase 2 (TET2) was found in BEC-exosomes and is downregulated by CD137 TNF
receptor signaling [64]. EV-mediated transfer of CD142 by TNF-stimulated BECs was
linked to marked coagulation factor activation [44] although BECs line up an otherwise
hemocompatible interface between blood and extravascular tissue. As widely described for
CD142 in MSC-derived therapeutics [65], BEC-EVs may pose a similar procoagulant risk
when administered intravascularly, necessitating proper endoEV characterization. MVs
from brain-BECs express receptors that transfer molecules across the blood—brain barrier,
i.e., transferrin receptor, insulin receptor (CD220), low-density lipoproteins (LDL), LDL
receptor-related proteins (LRPs), and transmembrane protein 30A (TMEM30A) [66]. Fur-
ther adhesion molecules found on BEC-EVs are melanoma cell adhesion molecule (MCAM,
CD146), P-selectin (CD62P), and integrin αvß3 [53–55,58]. BEC-EVs were also shown carry-
ing matrix degrading metalloproteinases, i.e., ADAM15 and ADAM17 in exosomes [56] and
MMP-2, MMP-9, and MT1-MMP in MVs [67]. Furthermore, metalloproteinase inhibitors
TIMP-1 and TIMP-2 could be found [67]. EVs from hypoxic BECs were also shown to
promote extracellular matrix crosslinking via lysyl oxidase-like 2 (LOXL2) transfer [68].
BEC-exosomes further express pro-angiogenic molecules, e.g., angiopoietin-like protein 2
(ANGPTL2) [69]. Pro-angiogenic effects of BEC-EVs could also be observed due to transfer
of miR-24, miR-214, and miR-126 [61,70–72]. Beside cardioprotective miR-126 and miR-
199a [61] and pro-proliferative miR-25, miR-186, and miR-221 [71], BEC-EVs transfer a
plethora of further miRNAs, yRNA fragments [71], and lncRNAs [73]. Cardioprotective EV
properties could be hampered by caveolin-1 exosomes from interleukin-3 (IL-3)-stimulated
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BECs [74]. In vitro, EC morphology also regulates inflammatory response, as EVs from
elongated BECs carry markedly higher amounts of anti-inflammatory miR-10a [75]. Over
and above this excerpt of molecules, RNA sequencing and proteomic studies on BEC-EVs
revealed a variety of further RNAs and proteins, respectively [52,56,71].

In LEC-EVs, there is sparse information on molecular patterns. In one proteomic study
using exosomes from primary human LECs, more than 1700 proteins were detected [76].
Beside vWF, PECAM-1, and ENG, in this study, LEC markers VEGFR-3 and NRP-2 (also
NRP-1) and the lymphangiogenic factor VEGF-C were also found. Further adhesion
molecules, e.g., VCAM-1 and integrins α1, α3, α4, α5, αV, ß1, ß3, and subunit beta-like
1, could also be detected. Treatment of LECs with TNF resulted in an overall motility-
promoting protein signature [76]. In conclusion, further studies are needed to elucidate
additional and specific molecular signatures for different vascular bed-derived endoEVs.

Figure 1. Overview on molecules commonly expressed with EVs of different biogenesis pathways and
molecules found in association with EVs from endothelial colony-forming (progenitor) cells (ECFCs)
and ECs of blood (BEC) and lymphatic vascular beds (LEC). Underlined bold molecules indicate par-
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ental cell markers. Common EV markers [5,42,46,77]; ECFC EV markers [29,48–51]; BEC EV mark-
ers [44,52–58,61–64,66–73,75,78–82]; and LEC EV markers [76]. ACE, angiotensin converting en-
zyme; ADAM15/17, disintegrin and metalloproteinase domain-containing protein 15/17; ALIX,
apoptosis-linked gene (ALG)-2 interacting protein X; ANGPTL2, angiopoieitin-like protein 2; ARF6,
ADP-ribosylation factor 6; Casp3; caspase 3; CAV1, caveolin 1; CCL2/5, chemokine ligand 2/5; CD,
cluster of differentiation; CX3CL1, fractalkine; EDF-1, endothelial differentiation-related factor-1;
EGFR, epidermal growth factor receptor; eIFs, eukaryotic initiation factors; FABP4, fatty acid binding
protein 4; FLOT-1/2, flotillin 1/2; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GMFγ,
glia maturation factor gamma; HSP70/90, heat-shock protein 70/90; HSPß1, heat-shock protein ß1;
IR, insulin receptor; ITGBL1, integrin subunit beta-like 1; LDL, low-density lipoprotein; (l)ncRNA,
(long) non-coding RNA; LOXL2, lysyl oxidase-like 2; LPAR3, lysophosphatidic acid receptor 3;
LRPs, low-density lipoprotein receptor-related proteins; MEK1/2, mitogen-activated protein kinase
1/2; MFGE8, milk fat globule-epidermal growth factor 8 protein (lactadherin); miR, micro RNA;
MMP-2/-9, matrix metalloproteinase-2/-9; MT1-MMP, membrane-type 1 matrix metalloproteinase;
NRP-1/-2, neuropilin-1/-2; PGF, placental growth factor; PKN, protein kinases; PS, phosphatidylser-
ine; PTX3, pentraxin-related protein; RAB/RAB11, Ras superfamily of small G proteins (GTPases);
ROK, Roh-associated kinases; S1PR1/3, sphingosine-1-phosphate receptor 1/3; SEMA5A, semaphor-
ing 5A; SOD2, superoxide dismutase 2; STAB-1, stabilin-1; Stat1, signal transducer and activator
of transcription-1; TDP43, transactive response DNA binding protein 43; TET2, Tet methylcyto-
sine dioxygenase 2; TFR, transferrin receptor; TIE1, tyrosine kinase with immunoglobulin-like and
EGF-like domains 1; TIMP-1/-2, tissue inhibitor of matrix metalloproteinase-1/-2; TMEM30A, trans-
membrane protein 30A; TSG101, tumor susceptibility gene 101 protein; TSPAN-6/8, tetraspanin
6/8; TUG1, taurine upregulated gene 1 long non-coding RNA (lncRNA); VEGF-A/-C, vascular
endothelial growth factor-A/-C; VEGFR-1/2/3, vascular endothelial growth factor receptor-1/-2/-3;
VPS4/32, vacuolar protein sorting-associated protein 4/32; vWF, van Willebrand factor; yRNA, small
non-coding RNA; 14-3-3, signaling protein superfamily.

4. The Role of EndoEVs in Pathology

The secretion of EVs represents one form of cell—cell communication and is thus an
important component in physiological and pathological processes [5,83]. Although little
is known about the exact identity of endoEVs, recent studies suggest a high degree of
heterogeneity and plasticity influencing cells, tissues, and organs both locally and systemi-
cally [5,84]. EndoEVs exhibit molecular patterns, which suggests that they contribute to the
maintenance of tissue homeostasis, including cell survival and protection, angiogenesis,
and an anti-inflammatory state. Moreover, through the production of nitric oxide (NO) ECs
are able to control vasodilation, vasoconstriction, and thrombogenesis. In this context, it
has been shown that the endothelial NO release triggered by high shear stress can impair
the release of endoEVs [83]. A recent study investigated the effect of impaired blood flow
on endothelial MV release in healthy subjects using an occlusion cuff model. In comparison
to the control arm, significantly higher levels of CD62E+ and CD31+/CD42b- endoMVs
were observed [85]. Accordingly, the levels of circulating endoEVs in the physiological
state are considered to be rather low [83,86]. Nonetheless, EndoEVs exhibit molecular pat-
terns that suggest that they contribute to the maintenance of tissue homeostasis, including
cell survival and protection, angiogenesis, and an anti-inflammatory state. Other studies
provide evidence that exosomes derived from ECs exposed to hypoxia and inflammatory
cues contain proteins and mRNA that indicate the state of the cell of origin [87]. In addition,
ECs have been shown to actively protect themselves from apoptosis and cellular stress by
releasing endoMVs. This is achieved by the encapsulation of intercellular caspase-3 into
endoMVs and their subsequent release from ECs, which results in a reduction of respective
molecule levels within the cell [88]. Moreover, by presenting the endothelial protein C recep-
tor, endoMVs can accelerate the activation of protein C, which may have anti-inflammatory
and anti-apoptotic effects and thereby promote cell survival [89]. By transferring miRNA-
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rich microvesicles, protein and mRNA expression in recipient cells has been shown to be
influenced by endoEVs [90]. For example, the horizontal transfer of miR-126 can inhibit
the expression of SPRED-1 (an intracellular inhibitor of angiogenic signaling), leading to
the promotion of angiogenesis [91]. Additionally, endoMVs were shown to express the
urokinase-type plasminogen activator (uPA) and its respective receptor (uPAR). Therefore,
endoMVs may contribute to the generation of plasmin, which in turn can have beneficial ef-
fects on tissue remodeling and in vitro tube formation [78]. Matrix metalloproteinase-2 and
-9 in secreted endothelial vesicles can be associated with degradation of the surrounding
extracellular matrix, release of growth factors, and thereby promotion of angiogenesis [67].
Some studies indicate that these effects are dose-dependent, with low (physiological)
concentrations of endoMVs appearing to favor the formation of capillary-like structures
and high concentrations inhibiting tube formation [78]. EndoEV-dependent transfer of
functional miRNA-222 into ECs can decrease the expression of ICAM-1, which appears
to have anti-inflammatory effects [92]. Moreover, endoEVs containing anti-inflammatory
miRNAs are able to limit monocyte activation [93]. In contrast to the observation that
rather low levels of endoEVs can be detected in physiological conditions, elevated levels
of endoEVs may be indicative of diseases associated with endothelial dysfunctions [83].
Increased amounts of endoEVs are produced and released upon activation or apoptosis
of endothelial cells. These EVs may play a role in the onset and progression of various
vascular diseases [83]. Activating stimuli for ECs include proinflammatory cytokines such
as TNF-a, bacterial lipopolysaccharide, reactive oxygen species (ROS), plasminogen activa-
tor inhibitor, thrombin, C-reactive protein, low shear stress [94], hypoxia, cell injury, and
senescence [95]. EndoEVs released in response to proinflammatory signals may further
drive inflammation through paracrine signal transduction, thereby promoting endothelial
dysfunction [5]. These findings were further demonstrated by showing that endoMVs were
able to activate human pulmonary microvascular endothelial cells and to induce the produc-
tion of proinflammatory cytokines [96]. EndoEVs released upon TNF-α stimulation showed
a significant change in the amount of proinflammatory mRNA, such as IL-8, MCP-1, IL-32,
and VCAM-1, the latter being involved in the mobilization of leukocytes, which in turn also
favors a proinflammatory state [83,97]. Endothelial dysfunction is a critical feature of type
2 diabetes and is considered a major cause of diabetic cardiovascular complications [98].
Koga et al. observed that significantly elevated levels of CD144+endoMVs were found in
patients suffering from diabetes mellitus compared to nondiabetic controls. In addition,
they described that the CD144+endoMVs levels in diabetes mellitus patients with coronary
artery disease (CAD) were significantly higher than in diabetic patients without CAD [98].

In addition, endothelial dysfunction can be associated with the development of
atherosclerosis [90]. EndoEVs carrying miR-155 were able to enhance the activation of
monocytes and shift the balance from an anti-inflammatory to a pro-inflammatory pheno-
type, causing these EVs to contribute to atherosclerosis [99]. Partially, endoEVs released
by inflammatory stimuli can be characterized by co-expression of tissue factor (TF) and
phosphatidylserine (PS) on their outer surface, which facilitates the binding of EVs and
provides them with procoagulant properties. Thus, the release of endoEVs seems to be
associated with the activation of coagulation cascades and the formation of thrombi, sug-
gesting that they might be also be linked to the development of stroke [86,90]. Simak et al.
showed higher PS+endoMVs levels in patients with acute ischemic stroke compared to
controls. A correlation between endo-EV level and lesion volume and clinical outcome was
observed [100]. Additionally, it was found that elevated plasma levels of endoMVs can be
linked to acute coronary syndrome, which includes myocardial infarction, angina pectoris,
and myocardial ischemia. [55].

5. Conclusions

Taken together, increasing evidence supports the potential roles of EVs derived from
blood and lymphatic endothelial cells in order to maintain physiological homeostasis as well
as their roles in pathological settings. Further studies specifically addressing the vascular
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bed-specific molecular cargos in endoEVs will be needed to clarify their various roles and
functions throughout biological processes. To achieve this goal, special attention must be
given to the isolation and characterization of EVs, which demands general standards in
EV research. As importantly corroborated by the International Society of Extracellular
Vesicles (ISEV), publishing guidelines to help researchers in this fast-growing field studies
on crucial issues, such as the comparability of EV, are of importance beyond any specificity
of EVs in the vascular system [101].
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