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A B S T R A C T   

Active learning is a critical component of human development, however, the mechanisms supporting it are not 
fully understood. Given that early learning experiences may affect both infants’ immediate learning success, as 
well as their motivation to learn, it is particularly important to investigate the mechanisms of active learning in 
this period, when the foundations of learning habits and curiosity are built. Traditional behavioural approaches 
of studying infant learning face challenges that emerging tools from neuroscience may help relieve. We introduce 
one such tool, EEG theta oscillations, and propose this neural marker has great potential for offering novel in
sights into active learning. Theta activity, recorded prior to or during learning, has been shown to be predictive 
of learning success. We argue that this involvement in memory formation, combined with theta activity’s tight 
association with reward processing, makes theta oscillations a uniquely suited tool for the investigation of 
motivational mechanisms underlying active learning. We outline research questions as well as methodological 
approaches pertinent to infant learning and suggest how and why theta oscillations may offer complementary 
insights. As such, we aim to bridge the gap between cognitive and neural approaches, and advance our 
knowledge of active learning in development more broadly.   

1. Introduction 

People learn better when the learning is active and self-directed; 
however, the reasons for why these benefits occur are only starting to 
be uncovered. Active learning and its benefits have been a topic of 
discussion and research across multiple disciplines including educa
tional, cognitive, computational, neural, and machine learning sciences. 
The factors hypothesised to drive the differences between active and 
passive learning vary across these disciplines. For example, studies in 
education have long advocated for improving learner engagement 
through inquiry-based learning (a learner-led question-focused active 
learning; Herron, 1971). Cognitive scientists have found that allowing 
learners to adjust the pace of information flow to their processing speed 
(Metcalfe, 2002), and adapt the content of learning to their prior 
knowledge (Markant and Gureckis, 2010), leads to enhanced memory 
for actively engaged content (Gureckis and Markant, 2012; Markant 
et al., 2016). In computational psychology and machine learning fields, 
recent work has explored how active learning may be interpreted under 
the same mathematical principles as inference from, and demonstration 
of, taught data, providing a computational level explanation for some of 

the success of self-directed learning (Yang et al., 2019). Another aspect 
of active learning, namely the role of the learner’s own motivation to 
learn, has been explored in recent research studying the neural un
derpinnings of self-directed and intrinsically-motivated learning 
(Gruber et al., 2014; Voss et al., 2011). Evidence from these studies 
suggests that the human brain may be hardwired to experience curiosity 
and information consumption as rewarding (Gruber et al., 2014; Kang 
et al., 2009). Moreover, heightened curiosity and active exploration can 
directly facilitate the neural processes of information encoding and 
retention (Gruber et al., 2014; Jepma et al., 2012; Kang et al., 2009; Voss 
et al., 2011). These findings thus offer a plausible mechanistic expla
nation for the benefits of active learning. Furthermore, some have pro
posed that allowing individuals to self direct their learning can in turn 
have a positive effect on the desire to learn, or curiosity, itself (Berlyne, 
1966). 

However, there is significantly less work examining the process and 
mechanisms for active learning in early childhood. Given that infants’ 
early learning experiences may influence both their learning success at 
this critical age, as well as their overall motivation to learn, a scientific 
focus on these developing processes could have broad implications. It is 
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therefore of particular importance to investigate the principles and 
mechanisms of active learning in early childhood, when the foundations 
of learning habits and curiosity are built. 

Although explanatory models of active learning in childhood are still 
emerging, much evidence suggests that even infants are indeed active 
learners. Behavioural studies of infant learning have shown infants 
allocate their attention to stimuli with optimal levels of predictability 
(Kidd et al., 2012), tailor their exploration to investigate surprising 
properties of objects (Stahl and Feigenson, 2015), and selectively seek 
information from informative social partners (Bazhydai et al., 2020; 
Begus and Southgate, 2012; Kov�acs et al., 2014). These behaviours 
appear geared towards optimising infants’ information gain, are 
consistent with models of intrinsically-motivated, interest-driven 
learning (Bonawitz et al., 2018; Gottlieb et al., 2013; Lowenstein, 1994), 
and have been associated with superior learning outcomes (Begus et al., 
2014; Lucca and Wilbourn, 2016; Stahl and Feigenson, 2015). While 
methods such as measuring infants’ looking-time, object exploration, or 
communicative gestures are irreplaceable tools in investigation of infant 
active learning, behavioural measures alone are subject to interpreta
tion, can fall short of explaining the mechanisms, and cannot offer 
definitive answers as to what motivates infants’ behaviour. For example, 
an infant shifting their gaze away from a stimulus might indicate they 
have successfully encoded it (Houston-Price and Nakai, 2004), however 
longer visual attention can reflect both familiarity as well as unfamil
iarity with a stimulus, and does not necessarily predict better learning 
(Colombo et al., 2001). Similarly, even when responding to infant 
behaviour leads to better learning (Begus et al., 2014; Goldstein et al., 
2010; Lucca and Wilbourn, 2016), what mediates this relationship and 
what mechanisms support infant learning, can only be speculated. 

In line with adult research, and in order to pursue a more direct 
approach to investigating the mechanisms of active infant learning, we 
turn to neural markers made available by the relatively recent advent of 
non-invasive neuroimaging techniques, appropriate for use with wake 
infants. We review research on one such neural marker, EEG theta os
cillations, and hope to demonstrate that this measure can complement 
the existing behavioural methods, bring us closer to understanding the 
underlying mechanisms of infant learning, bridge the gap between 
cognitive and neural approaches to studying active learning in devel
opment, and perhaps even help inform broader disciplines such as 
computational psychology, education, and machine learning. 

2. Theta oscillations and learning in the brain 

The brain is continuously active, and the spontaneous activity 
generated by the neurons is organised in a complex system of rhythmic 
activity. The brain’s rhythms determine whether and how external input 
will be processed, and modulate all mental experience (Buzs�aki, 2006). 
Rhythmic or oscillatory activity in the brain is formed by populations of 
neurons firing together and being inhibited together, and the speed of 
oscillations, or the wavelength of the rhythm, determines the temporal 
windows of processing and the size of neuronal pools activated (Buzs�aki, 
2006). As such, oscillatory activity enables neuronal populations to 
work in unison, and multiple brain areas to coordinate activity into 
large-scale brain networks through phase synchrony (Klimesch et al., 
2008). In general, fast oscillators, like gamma rhythm, facilitate local 
integration, whereas slow oscillators, such as theta activity, connect 
many neurons in large brain areas, thus facilitating information transfer 
between different structures of the brain (Buzs�aki, 2006). 

The relation of different rhythms to cognition has been much stud
ied. One of the first rhythms that has been related to cognitive processes 
is theta rhythm, defined as the oscillatory activity spanning roughly 
between 4 and 8 Hz in human adults (Rutishauser et al., 2010), and 3� 6 
Hz in infants (Orekhova et al., 1999) (note that the frequency ranges 
differ between the two populations due to developmental changes, but 
both denote what has functionally been identified as theta oscillations in 
each population). The cognitive function most extensively related to 

theta rhythms, and evidenced both on the level of single cell recordings 
as well as measured by behavioural performance on various cognitive 
tasks, is the process of information encoding and memory formation. 
That is, theta rhythms are associated with learning. 

How might theta rhythms be involved in memory formation and 
learning? Memory formation is thought to result from the modification 
of synapses and neuronal circuits through long-term potentiation (LTP), 
a lasting enhancement of synaptic potentials resulting from repetitive 
stimulation. While LTP has been demonstrated in several brain regions, 
it is most robust and most documented in studies investigating the 
hippocampus (Klimesch, 1996). Critically, the induction of this plas
ticity is favoured by coordinated action-potential timing across pop
ulations of neurons (Rutishauser et al., 2010). In particular, in the rodent 
hippocampus, trains of stimuli delivered at intervals equal to theta fre
quencies were found to more readily induce LTP than similar stimula
tion at other frequencies (Greenstein et al., 1988). Thus, inducing theta 
oscillations during encoding can directly affect the changes in synaptic 
plasticity; in other words, theta activity can directly modulate memory 
formation. 

In addition to the effects on the single-cell level, animal research has 
provided numerous studies showing hippocampal theta also affects 
learning as measured by behavioural performance on various memory 
tasks. Hippocampal theta activity positively correlated with perfor
mance of rodents in a maze task (Olvera-Cort�es et al., 2002) and 
differentiated between correctly and incorrectly remembered odours in 
a recognition memory task (Wiebe and Staubli, 2001). Critically, like on 
single-cell level, a causal role for theta activity in learning has also been 
demonstrated on the behavioural level, using interventions. Adminis
tering lesions to the septum (which disrupts the pacemaker for hippo
campal theta rhythm), or pharmacologically blocking the cholinergic 
system (thereby decreasing theta oscillations in the hippocampus), both 
result in impaired or retarded acquisition rate on classical conditioning 
paradigms, such as the spatial maze task (reviewed in Nyhus and Curran, 
2010; Seager et al., 2002). In contrast, pharmacologically enhancing 
theta rhythms, by blocking serotonin, resulted in better performance on 
similar tasks (St€aubli and Xu, 1995). The same effect on learning was 
achieved when hippocampal theta activity was artificially enhanced by 
electrical stimulation (e.g. Landfield, 1977). When measuring sponta
neous theta activity online and administering training contingent on 
either episodes of hippocampal theta or hippocampal non-theta states 
(Seager et al., 2002), theta oscillations during training were found to 
boost the learning outcome whereas their absence had a detrimental 
effect. Furthermore, differences in theta activity can differentiate not 
only successful from unsuccessful encoding within individuals, but the 
theta activity recorded in the hippocampus prior to conditioning can 
also predict differences between individual animals in how fast they will 
learn a new activity (Berry and Thompson, 1978). 

In humans, studies investigating the role of theta activity in processes 
of encoding have relied largely on EEG measurements recorded on the 
scalp. The relationship between scalp-recorded theta oscillations and 
encoding success was first demonstrated in a series of studies by Kli
mesch and colleagues (e.g. Klimesch, 1999, 1996; Klimesch et al., 2008). 
For example, in a study of ‘incidental’ learning, the authors found that 
the items, which were later remembered, were associated with larger 
theta synchronisation during encoding than items that were not 
remembered. Similarly, Weiss and Rappelsberger (2000) found that 
increased oscillatory coherence between frontal and posterior scalp 
electrode sites, and significant increases in theta power, predicted sub
sequent recall of items (Weiss and Rappelsberger, 2000). Furthermore, 
in a study by Guderian et al. (2009), using MEG recordings of theta 
activity in the medial temporal lobe, demonstrated a strong predictive 
relationship between theta power, shortly preceding the onset of stimuli, 
and later recall of that stimuli (Guderian et al., 2009). 

Research has also provided evidence on the origin of scalp-recorded 
theta oscillations in humans, by recording the encoding-predictive theta 
activity intracranially. Rutishauser et al. (2010) recorded from single 
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neurons in hippocampus and amygdala while participants were learning 
new stimuli, and demonstrated that, as in animals, the accuracy of 
phase-locking of the neurons to the theta rhythm during encoding pre
dicted both whether the stimuli will be remembered or forgotten as well 
as the subjective strength of the memory (as reported by the partici
pants). Further evidence comes from Fell et al. (2011), who found that 
the power enhancement of rhinal and hippocampal theta activity, 
recorded before word presentation, predicted successful encoding in 
human adults (Fell et al., 2011). Similarly, Lega, Jacobs and Kahana 
(2012), recording from electrodes implanted in the hippocampus of 
adult patients, report an increase in power of slow theta to predict 
successful episodic-memory encoding. Importantly, they also found 
evidence of phase synchrony between the cortex and hippocampus 
within the theta frequency band, suggesting cortical-hippocampal 
communication (Lega et al., 2012). 

Although non-conclusive, human research investigating the effect of 
theta activity on encoding, registered via scalp and intracranial EEG, 
parallels the well-established findings in animal research, and supports 
the hypothesis that theta rhythms may induce synaptic plasticity in the 
human brain. Therefore, the link between cortically recorded theta 
power and the encoding of new information in humans, demonstrated in 
studies reviewed above, can be assumed to result from theta activity that 
is induced into the cortex via cortical-hippocampal feedback loops 
(Klimesch, 1999; Lega et al., 2012). 

3. Theta oscillations, rewards, and active learning 

We have suggested that theta oscillations can be used in the inves
tigation of mechanisms of active learning. However, to support this 
claim, evidence is needed that implicates this rhythm in learning beyond 
single-cell recordings and incidental learning. As outlined above, aspects 
considered crucial in active learning are the learners’ intrinsic motiva
tion (Gruber and Ranganath, 2019), self-directed attention and control 
over the information flow (Metcalfe, 2002), and active engagement with 
the content (Markant et al., 2016). In contrast, the research on the 
relationship between theta oscillations and learning, reviewed so far, 
aimed to control for the effects of attentional processes or cognitive 
effort (Klimesch, 1996). We now turn to the research suggesting (1) that 
theta oscillations may reflect active cognitive engagement during learning, 
and (2) that this rhythm seems tightly connected to the reward system of 
the brain, relevant for intrinsically-motivated active learning. 

Are theta oscillations associated with cognitive effort or active con
trol of attention? Several studies, in which human adults were tasked 
with remembering a list of items and were able to predict when items 
would be presented, an increase in theta activity was observed in 
anticipation of the stimulus presentation. Furthermore, similarly to theta 
activity during encoding, anticipatory theta rhythms likewise predicted 
successful encoding (e.g. Fell et al., 2011; Guderian et al., 2009; 
Rutishauser et al., 2010). This anticipatory activation of theta oscilla
tions led several authors to interpret theta activity as indexing active 
control of attention and cognitive effort (Bosseler et al., 2013), top-down 
control for selective encoding of information (Nyhus and Curran, 2010), 
and intentional activation of a mnemonic context, in which the subse
quently presented item can be embedded (Guderian et al., 2009). Thus, 
observing an increase in theta activity prior to learning itself strongly 
suggests that theta activity is not only involved in incidental learning, 
but appears to reflect active cognitive engagement. 

In addition to active cognitive engagement, active learning is pro
posed to be beneficial because it is intrinsically-motivated, that is 
learning itself is experienced as rewarding. To address whether theta 
activity could index intrinsically-motivated active learning, we first re
view studies implicating theta in reward expectancy more broadly. A 
study recording theta oscillations in rats’ orbitofrontal cortex, a part of 
the brain network coding the expectancy of a rewarding outcome, 
revealed expectancy of a reward modulated the power of theta activa
tion, predictive of learning success (van Wingerden et al., 2010). 

Similarly, when adults were promised high or low monetary rewards for 
remembering the items on a list of words, a strong predictive relation
ship was found between the power of prestimulus theta activity over the 
frontal lobe and subsequent memory performance (Gruber et al., 2013). 
Importantly, the theta-driven memory enhancement was only observed 
when learning took place in the prospect of a high reward. The authors 
conclude that reward anticipation facilitates memory encoding by 
inducing theta oscillatory activity before an event is perceived, 
providing a link between theta effects on memory formation and theta in 
response to reward expectation found in animal research (Gruber et al., 
2013). These results converge nicely with a study by Kawasaki and 
Yamaguchi (2013), who found that frontal scalp-recorded theta activity 
predicted the capacity of visual working memory and, coupled with 
frontal beta activity, was affected by the expected reward (Kawasaki and 
Yamaguchi, 2013). Even more direct evidence for the idea that theta 
oscillations are modulated by reward expectancy and therefore a 
promising neural marker for investigation of active learning, comes 
from a study by Cohen et al. (2012). In this study, scalp EEG over the 
medial frontal cortex and intracranial EEG from nucleus accumbens 
were recorded simultaneously, while adult patients took part in a simple 
reward motivation task (Cohen et al., 2012). The analysis revealed a 
top-down directed synchrony, whereby (scalp-recorded) frontal theta 
activity directly influenced the theta activity of nucleus accumbens, and, 
importantly, this modulation was strongest in anticipation of high re
wards. Together, these studies suggest that increased scalp-recorded 
theta activity, predominantly over the frontal lobe recording sites, is 
tightly linked to reward anticipation and the subsequent memory for
mation (Cohen et al., 2012; Gruber et al., 2013). 

As opposed to experimental situations, in which clear-cut, immediate 
rewards can be offered to participants to induce their motivation to 
encode the presented stimuli, most real-life situations do not offer such a 
straightforward, external reward for learning. Arguably, it is the in
dividuals’ intrinsic motivation to learn, namely their curiosity, that is 
likely to be the main driver for learning new information in everyday life 
(Ryan and Deci, 2000). How, then, do theta oscillations relate to 
intrinsically motivated learning in more ecological or participant-lead 
situations? In a free, subject-led visual exploration task, Jutras et al. 
(2013) studied eye-movements and their relation to oscillatory activity 
in the monkey hippocampus. As monkeys freely explored images, their 
saccades produced a phase-reset of oscillations in the theta frequency 
range. This phase-reset, as well as enhanced power of theta oscillations 
prior to stimulus onset, resulted in superior memory of the visually 
explored images (Jutras et al., 2013). Similarly, in human adults, theta 
oscillations, specifically midfrontal theta power, was shown to guide 
exploration in a dynamic reward-learning task (Cavanagh et al., 2012). 
These studies demonstrate that, even during a naturalistic task of 
participant-led exploration, which could be understood as intrinsically 
motivated sampling of information, theta oscillations are enhanced in 
primates and humans, possibly serving to establish the optimal condi
tions for stimulus encoding. 

Theta activity has also been shown to be sensitive to stable individual 
differences in epistemic motivation, defined as the motivation to engage 
in cognitively demanding tasks (Mussel et al., 2016). The power of theta 
activity in this study reflected the amount of cognitive resources 
invested in response to differently demanding tasks; distinguished be
tween individuals’ level of epistemic motivation as assessed by a per
sonality test; and predicted participants performance on the tasks 
(Mussel et al., 2016). Relatedly, states (instead of traits) of epistemic 
motivation, namely curiosity states, have been shown to enhance 
learning through increased dopaminergic modulation of activity in the 
hippocampus (Gruber et al., 2014). These findings show a striking 
resemblance to studies of theta oscillations and their modulatory effect 
on learning. Like the neural activation measured in states of curiosity 
using fMRI (Gruber et al., 2014), theta oscillations, induced by an 
external or internal reward, were partly localised to the reward circuitry 
of the brain (e.g. Cohen et al., 2012). Like the curiosity-induced neural 
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activity identified by Gruber et al. (2014), theta activity was proposed to 
modulate the effects of the dopaminergic system on hippocampal ac
tivity, thereby influencing memory formation (Cohen et al., 2012; Jutras 
et al., 2013; Orzeł-Gryglewska et al., 2006). 

Combined, this evidence strongly supports the idea that theta 
rhythms can be used as a neural marker in the investigation of active 
learning. Not only has theta activity, recorded prior or during encoding, 
been shown to be predictive of learning, theta oscillations appear tightly 
linked with reward-processing, thereby enabling the investigation of 
motivational mechanisms underlying active learning. 

4. Theta oscillations and infant active learning 

The benefits of identifying a neural marker that could elucidate the 
mechanisms and motivational aspects of learning, without relying on 
behavioural expressions or self-report, are arguably most obvious when 
studying nonverbal populations, such as human infants. If theta activity 
plays a role in infant active learning, as it does in adults, we may expect 
it to be associated with cognitive processes such as attention, response to 
error detection, and expectation of information; and crucially, we would 
expect it to be predictive of learning outcomes. 

4.1. Attention 

Sustained attention and its neural underpinnings in infants was first 
systematically investigated by Orekhova and colleagues (Orekhova 
et al., 1999). In their study, EEG activity was recorded in infants (aged 
8–11 months) under three experimental conditions, which the authors 
defined as: externally-controlled attention; internally-controlled atten
tion; and a baseline condition. They found higher power of theta oscil
lations (spanning between 3� 6 Hz) during internally controlled 
attention compared to other conditions, predominantly over frontal and 
temporal recording sites (Orekhova et al., 1999). Importantly, the power 
of frontal theta activity was shown to correlate with 8-month-olds’ 
ability to maintain internally controlled attention (Orekhova et al., 
1999). Although this relationship was not observed in older infants in 
their study, a recent study has demonstrated a predictive relationship 
between theta activity and sustained attention also in 12-month-old 
infants. In a detailed analysis of infants’ neural activity and visual 
attention during free play with objects, theta power preceding each vi
sual fixation was shown to positively predict the duration of that fixation 
(Wass et al., 2018). Similarly, another recent study defined infant sus
tained attention (and its termination) by a combination of changes in 
infant visual orientation and changes in their heart rate. The simulta
neous recording of EEG activity and heart rate in 10 and 12-month-olds 
revealed sustained attention was accompanied by theta activity over the 
frontal, temporal, and parietal poles, thus cross-validating these 
different physiological and behavioural indices of attention in infants 
(Xie et al., 2018). Given that both internally-controlled visual attention 
and self-guided object exploration could be considered crucial aspects of 
infant active learning, these findings lend further support to the proposal 
that theta oscillations may be a good candidate for a neural measure that 
could elucidate the processes of active learning in infants. 

Beyond mere duration of attention, a crucial aspect of active learning 
is directing attention to the relevant information in the environment. 
Can theta activity be informative in studying how infants guide their 
learning according to available information and their prior knowledge? 
A study by Bosseler et al. (2013), investigating the neural correlates of 
perceptual narrowing in speech processing, suggests exactly this. They 
found that before the narrowing of infants’ speech perception abilities, 
6-month-olds discriminate stimuli (syllables) only based on frequency of 
presentation, showing increased power of theta activity for frequent 
syllables, irrespective of language (native/foreign). By 12-months, in
fants’ experience with language leads them to prioritise attending to, 
and showing greatest theta activity, for information that is most relevant 
for their language acquisition – syllables of their native language. In 

contrast, adults, who are already proficient at their native language, 
need not invest cognitive effort in processing the already acquired lan
guage and therefore show most theta activity during processing of the 
unknown, foreign syllables (Bosseler et al., 2013). The authors thus 
concluded that theta oscillations in infants (and adults) reflect the in
dividuals’ allocation of attention and investment of cognitive effort in 
what is most relevant for their learning at different developmental 
stages. 

4.2. Response to error detection (surprise) 

Another important aspect of active learning is error detection and 
subsequent adjustment of learning strategies. Numerous behavioural 
studies that investigate infants’ knowledge and expectations, by 
exposing them to surprising events, have shown that infants indeed 
allocate more (visual) attention and direct their exploration towards 
gaining more information about the unexpected events (e.g. Stahl and 
Feigenson, 2015; Wynn, 1992). Investigating the neural underpinnings 
of these learning opportunities that follow unexpected events, Berger 
et al. (2006) recorded the brain activity of 6� 9-month-olds, during 
presentation of correct and incorrect solutions to simple arithmetic 
equations. In addition to the previously demonstrated increased looking 
time after a violation of expectation (e.g. Wynn, 1992), their findings 
also revealed an increased power of theta oscillations over the frontal 
central recording site of the infants’ brain, following the incorrect 
compared to the correct solution. In another study, using rhythmic vi
sual brain stimulation, 9-month-old infants observed expected and un
expected outcomes of familiar actions, while visual entrainment was 
stimulated in theta (4 Hz) and alpha (6 Hz) rhythms (K€oster et al., 2019). 
Results showed a sharp increase in visually entrained theta (but not 
alpha) activity following unexpected compared to expected outcomes. 
Both of these studies suggest that theta rhythm,in response to unex
pected events, may reflect a learning process, such as updating existing 
representations or models of the world. 

These findings can be related to those of Stahl and Feigenson (2015), 
in which infants showed superior learning following a violation of 
expectation, suggested to be mediated by infants’ increased interest in 
the objects behaving in a surprising way (see also Bonawitz et al., 2012). 
Combined with the increase in theta activity following a violation of 
expectations regarding arithmetic solutions in the study by Berger et al. 
(2006) and action outcomes in the study by K€oster et al. (2019), this 
evidence therefore lends further support for theta oscillations reflecting 
heightened attention or increased interest and cognitive processing, all 
crucial elements of active learning. 

4.3. Expectation of information 

While surprising events are by definition unexpected, much of in
fants’ everyday information input is likely to be more predictable. For 
example, one of infants’ most important sources of information is other 
people, who directly communicate information to infants. Prominent 
developmental theories suggest infants are sensitive to communicative 
signals such as direct eye-gaze and infant-directed speech, which are 
proposed to signal to infants that they are being addressed and lead them 
to expect transmission of information (Csibra and Gergely, 2009). 
Indeed, a comparison of infants’ neural activity when observing natu
ralistic social vs. non-stimuli, revealed that 6 and 12-month-olds exhibit 
more theta activity during social stimuli (Jones et al., 2015), possibly 
reflecting heightened attention due to the information-rich context that 
social interactions typically present for infants. Crucially, increased 
theta activity has not been investigated only during social stimulation, 
where infants may already be learning new information, but also in 
anticipation of information from social partners. In a study in which in
fants were exposed to adults providing information about novel objects, 
11-month-olds exhibited increased theta activity when they could 
expect to receive information, but before any information was in fact 
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given (Begus et al., 2016). Moreover, this anticipatory activity was 
modulated by the informative potential of the adult. That is, infants 
exhibited higher theta activity in anticipation of a communicative ut
terance from an informative than from an uninformative adult. These 
results suggest that infant anticipatory theta activity, like that of adults, 
may indicate an active preparatory state for learning (Begus et al., 
2016), possibly serving to establish the optimal conditions for stimulus 
encoding on a neural level. 

4.4. Learning outcome 

As opposed to findings in adult studies, evidence implicating theta 
oscillations in infant learning is thus far mostly circumstantial and in
direct. While the studies reporting infant theta activity, reviewed so far, 
did not measure infant learning on task, they can be related to other 
infant and adult studies reporting learning in similar contexts. For 
example, as mentioned above, violation of expectations, associated with 
an increase in theta activity (Berger et al., 2006; K€oster et al., 2019), has 
been suggested to result in a state of heightened interest or surprise, and 
to offer infants a special opportunity to seek and learn new information 
(Stahl and Feigenson, 2015). Similarly, sustained attention (Orekhova 
et al., 1999; Wass et al., 2018), selective attention (Begus et al., 2016), 
exploration of novel objects (Orekhova et al., 2006) and infant directed 
speech (Orekhova et al., 2006; Zhang et al., 2011), are all situations 
associated with infant learning. The presence of increased theta rhythms 
in all these situations may mean that theta activity, shown to facilitate 
transmission of information between hippocampus and cortical struc
tures and enhancing the effect of long-term potentiation in the hippo
campus in adults and animals (Nyhus and Curran, 2010; Seager et al., 
2002), is possibly what underlies and facilitates learning in infants as 
well. 

Indeed, a recent study tested and confirmed a predictive relationship 
between theta activity and learning in infants (Begus et al., 2015). 
Modulations of frontal theta-band oscillations, recorded with scalp EEG 
during infants’ object exploration, were found to predict infants’ 
encoding of the objects’ features, as measured by their subsequent 
recognition of these objects. Specifically, the larger the difference in 
power of theta activity recorded during exploration of two objects, the 
larger the difference in infants’ subsequent recognition of these objects. 
The relationship found was specific to the theta-band oscillations (3� 5 
Hz) recorded over the frontal cortex and was not present in any other 
frequency band or scalp area (Begus et al., 2015). The location where the 
learning-predictive theta modulation was recorded in this study is 
consistent with adult studies, which showed increased frontal theta 
power for later recalled compared to later forgotten items in adults 
(Cavanagh et al., 2012; Sederberg et al., 2003; Weiss and Rappelsberger, 
2000). Importantly, the predictive relationship between theta oscilla
tions during exploration and subsequent memory was not mediated by 
the amount of time infants spent looking at or manually manipulating 
the objects (Begus et al., 2015). These findings further support the use of 
theta oscillations in the study of active learning in infancy, having been 
identified not only as a marker of expectation of information, but also as 
predictive of encoding information. 

5. Future directions and limitations for the use of theta 
oscillations 

Thus far, we have argued that measuring theta oscillations can 
provide a novel method to complement existing behavioural approaches 
in studying active learning in infancy, and reviewed relevant literature 
in support of this proposal. In the final section, we first outline a number 
of lines of inquiry in which theta oscillations could provide useful 
additional insights; secondly, we propose ways in which different ap
proaches to studying infant active learning could benefit from, and be 
integrated with, measuring neural oscillations; and lastly, we discuss the 
limitations of this novel measure. 

5.1. Social learning 

Several infant behaviours, such as social referencing, babbling, and 
pointing have been proposed to serve the function of infants actively 
eliciting and modulating the information they receive from others in 
social interactions (Bazhydai et al., 2020; Begus and Southgate, 2018, 
2012; Goldstein et al., 2010; Stenberg, 2009). While, for example, 
babbling and pointing have indeed been shown to have an effect on 
infant knowledge acquisition in various correlational studies (Kim
brough Oller et al., 1999; Stoel-Gammon, 1992), this relationship has 
been predominantly explained as mediated by a quantitative mecha
nism, whereby infants’ learning is facilitated due to the increased 
amount of information they receive in response to their behaviours 
(Hoff, 2003; Petitto, 1988). However, it is plausible that in addition to 
modulating the amount of information infants receive, responding to 
infant behaviours may facilitate their learning because these behaviours 
signal when infants are interested or motivated to learn, and what they 
desire to learn about (Begus et al., 2014; Begus and Southgate, 2018). 
Measuring theta oscillations preceding or during these behaviours may 
play an important role in revealing which behaviours infants use to 
solicit information from others. Furthermore, considering that infants’ 
continued production of information-seeking behaviours has been 
shown to depend on receiving the desired response (e.g., Begus and 
Southgate, 2012; Kov�acs et al., 2014), identifying such behaviours and 
responding to them appropriately might have a dramatic effect not only 
on infants’ immediate learning, but also on the extent to which infants 
continue to request information. 

5.2. Exploration 

If free exploration is considered as intrinsically motivated informa
tion seeking (Nguyen et al., 2013; Schulz, 2012), the finding that theta 
activity during free object exploration predicted infants’ recognition of 
object features (Begus et al., 2015), can be related to theories of 
curiosity-driven or intrinsically motivated learning (Gottlieb et al., 
2013; Kidd and Hayden, 2015; Lowenstein, 1994). It can be speculated 
that infants may have shown more theta activation for objects, which 
they found more interesting, plausibly because they afforded better 
learning progress (Gottlieb et al., 2013), or matched an optimal level of 
discrepancy from infants’ current knowledge state (Lowenstein, 1994). 
Therefore, it could be hypothesised that, in addition to theta activation 
predicting length of exploration, infants’ choices of objects to explore or 
request information about (for example by social referencing or point
ing) could potentially be predicted by measuring theta oscillations. This 
could have practical applications for development of educational toys as 
well as other media that infants may interact with, by utilising theta 
activity to predict what kind of materials may best foster infant learning. 
Moreover, it may help scientists refine their theories of motivation and 
exploration, by providing an additional tool to measure physiological 
individual and trial-by-trial differences and predictors. 

5.3. Individual differences 

None of the above reviewed studies in infants or adults tested for 
stable individual differences in theta oscillations and whether this 
measure could differentiate faster or more efficient learners from ones 
who are less so. Studies in animals (e.g. Berry and Thompson, 1978) 
have shown a strong predictive relationship between hippocampal 
theta, recorded prior to the beginning of a conditioning paradigm, and 
the speed of subsequent learning, such that rabbits whose most promi
nent oscillatory activity was in the theta frequency range, learned at a 
faster rate than those who exhibited higher frequency ranges. While 
pre-training activity may not be a permanent feature distinguishing in
dividuals, it suggests that a promising line of research may be investi
gating individual differences in theta activity and their relation to other 
cognitive functions or environmental factors. The limited research on 
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this topic in children has so far produced a mixed picture. Higher levels 
of posterior theta activity has been found in institutionalised children 
compared to home-raised children (Marshall and Fox, 2004), as well as 
in children from families with low compared to high socio-economic 
status (Maguire and Schneider, 2019), both suggesting that higher 
(baseline or resting-state) theta activity might reflect a maturational lag 
in the nervous system development. While the latter study also related 
lower resting-state theta power to better performance on a working 
memory task (Maguire and Schneider, 2019), it remains unclear how the 
resting state theta activity compares to theta activity during cognitive 
tasks, whether the found differences are stable, and whether these 
measures have any predictive power for learning over development. A 
recent study partly addressed these questions by relating individual in
fants’ changes in theta activity, over the course of video watching at 6 
months of age, to their non-verbal cognitive abilities at 9 months of age 
(Braithwaite et al., 2019). They found a significant predictive relation
ship, suggesting that individual differences in frontal theta power in
creases at 6 months could be used as an early indicator of later cognitive 
abilities (Braithwaite et al., 2019). Further questions remain as to how 
stable these individual differences in theta activity (and its relation to 
cognitive abilities) are and, importantly, whether they can be modu
lated. Studies in adults have, for example, shown that using audio-visual 
stimulation to externally enhance theta activity during a retention 
period can enhance subsequent memory performance (Roberts et al., 
2018). Thus, further uncovering the origin, stability, and malleability of 
individual differences in theta activity could potentially open the doors 
to research and interventions in cognitive development, directly tar
geting the neural mechanisms of learning. 

5.4. Communication 

The use of ostensive cues, communicative cues that signal to a 
recipient that they are being addressed, has been shown to modulate 
infants’ attention (Farroni et al., 2002), interpretation (Yoon et al., 
2008), and subsequent imitation of adults’ behaviour (Csibra and 
Gergely, 2006). Ostensive communication is proposed to lead infants to 
interpret the communication as conveying (culturally) relevant infor
mation (Csibra and Gergely, 2009). It is therefore not surprising that 
when infants faced two adults ostensively addressing them, significant 
theta oscillations were found in response to both an informative and an 
uninformative communicative adult (Begus et al., 2016). Thus, despite 
discriminating between two informants, infants appeared to have ex
pected information transfer and showed some level of engagement with 
both adults. An open question that theta oscillations might inform is 
whether infants would also expect information transfer in third-party 
communication, whether this would likewise depend on ostensive 
cues, and whether these expectations are context sensitive (e.g. would 
the need for information transfer, as in the case of a naïve and a 
knowledgeable agent, elicit relatively more information expectation 
than its counterpart). 

5.5. Language and entrainment 

In addition to the evidence that theta activity, averaged over periods 
of time, may reflect selective attention to relevant linguistic stimuli 
(Bosseler et al., 2013), much evidence suggests an important link be
tween the moment-to-moment rhythm of theta oscillations and the 
rhythm of speech, and how this link may be instrumental in language 
comprehension. Speech is an inherently rhythmic phenomenon, with 
the rate of syllable production universally exhibiting a 3- to 8-Hz 
rhythm, which has been shown to be mirrored by phase-locked theta 
oscillations in the brain of the listener (Ghitza et al., 2013; Peelle and 
Davis, 2012). This entrainment, or synchronisation, by which neural 
oscillations adjust to match the phase of the rhythm of external stimuli, 
has been suggested to facilitate the parsing of speech into meaningful 
units, suitable for subsequent decoding, thereby enhancing the 

perception and intelligibility of speech (Doelling et al., 2014). Evidence 
of such entrainment to, or cortical tracking of, continuous speech input 
was recently found also in 7-month-old infants and was shown to be 
facilitated when infants listened to infant- as compared to adult-directed 
speech (Kalashnikova et al., 2018). Investigating the differences in how 
well infants’ neural oscillations track on-going speech can offer new 
insights into characteristics of speech that facilitate or hinder its intel
ligibility for infants, might distinguish better and worse language 
learners, and potentially help inform interventions in case of language 
delays. Importantly, although entrained theta oscillations are not 
spontaneous and endogenously generated to the same extent as, for 
example, theta in anticipation of receiving information, entrained theta 
activity has likewise been shown to be modulated by the content of the 
stimuli, beyond the frequencies at which the stimuli was delivered (e.g. 
in K€oster et al., 2019), and can therefore likewise reflect an active 
process of allocating attention or cognitive resources. 

5.6. Attention 

Typically, predicting learning success in infants has largely relied on 
behavioural measures, such as looking time, with the assumption that 
ceasing to look at a stimulus indicates that infants had successfully 
encoded the said stimuli (Houston-Price and Nakai, 2004). However, 
attending to a stimulus for a longer time, does not necessarily predict 
better encoding or recognition at test (Colombo et al., 2001). Indeed, 
one infant study demonstrated that the predictive relationship between 
frontal theta power and learning in infants was not mediated by the 
length of infants’ visual or manual exploration (Begus et al., 2015). 
These findings suggest that theta activity may be a more sensitive 
measure of infants’ attention or cognitive engagement than behavioural 
measures alone. Another study reported theta activity to predict the 
length of infants’ subsequent visual attention (Wass et al., 2018), but it 
only did so when the infants were playing with objects on their own, and 
not when their (visual) attention was guided by an adult partner. Thus, 
measuring theta activity can offer us insights into infants’ 
intrinsically-guided attention beyond its behavioural manifestations, as 
well as enable us to study how infants’ attention is affected by external 
factors such as social interactions. 

5.7. Causal reasoning 

Another area where measuring theta oscillations may be able to 
provide a unique insight into infants’ active learning is causal reasoning. 
Identifying a cause of any phenomenon, by distinguishing spurious 
correlations from unconfounded evidence, is a challenge in everyday 
reasoning as well as fundamental to learning. Children have been shown 
to distinguish genuine causes from spurious correlations (e.g. Gopnik 
et al., 2001) and, when given ambiguous evidence, pre-schoolers 
spontaneously select and design informative interventions to reveal 
the causal relationships between the objects they are engaged with 
(Cook et al., 2011). While several studies have shown that children are 
sensitive to whether the evidence they observe is confounded (e.g. 
Schulz and Bonawitz, 2007), that they can integrate disambiguating 
evidence across trials (Bonawitz et al., 2019), and that they can even 
actively seek and generate their own disambiguating information 
(Lapidow and Walker, 2019), less is known about these processes in 
infants. Before the age of 2 years, infants have limited means of acting on 
the world themselves and much of their causal learning depends on 
observing others’ interventions and drawing the correct inferences. 
Whether or not infants distinguish confounded from unconfounded data 
about a causal structure is a research question that could be informed by 
measuring theta oscillations. If infants distinguish situations in which 
they will receive disambiguating information from those in which in
formation remains confounded, an increase in theta oscillations would 
be expected in anticipation of disambiguating information. Further
more, the extent to which infants exhibit selective theta activity, in 
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scenarios where they can expect disambiguating information, might also 
predict whether or not infants will successfully learn new causal struc
tures. Thus, measuring theta oscillations, as a marker of information 
expectation, might provide new insights into the learning mechanisms 
of, and individual differences in, early causal reasoning. 

5.8. Integrating theta oscillations with other approaches studying infant 
learning 

As already outlined above, theta oscillations can complement and 
enrich the insights we can gain from studying infant behaviour. For 
example, measures of visual attention can be predicted by preceding 
neural activity (Wass et al., 2018), and in some cases better predict the 
learning outcomes than visual attention alone (Begus et al., 2015). In 
other cases, measuring neural underpinnings of behaviour can also 
distinguish between different interpretations of the same behaviour. By 
demonstrating, for example, that certain contexts or characteristics of 
social partners elicit an expectation of information, as indexed by 
increased theta oscillations, the motivation that drives differences in 
infants’ behaviour toward these different social partners can be 
re-interpreted. Reconsidering infant behaviour in light of the underlying 
neural activation can thus directly advance our theories on cognitive 
development. Moreover, neural measures provide rich data that enable 
analyses going beyond mere group comparisons or investigating dif
ferences between experimental conditions. As already exemplified in 
existing infant studies measuring theta oscillations, this approach al
lows: examining moment-by-moment changes in infant cognitive pro
cessing (Wass et al., 2018); externally enhancing oscillatory activity 
(K€oster et al., 2019) and thereby potentially manipulating the process
ing itself; and exploring individual differences in neural activity and 
how they relate to developing cognitive abilities (Braithwaite et al., 
2019). 

Although collecting EEG data from infants can be challenging (see 
limitations section), theta oscillations can be approached through 
various experimental designs, offering a flexible range of measurements. 
For example, while time-frequency analysis allows for investigation of 
activity unfolding over time and is suitable for studying time-locked 
stimulus processing, frequency analysis ignores the time component 
and could therefore be used in less time-constraint experimental designs, 
such active learning during free play (as in Begus et al., 2015). A com
bination of frequency analysis (e.g. in a free play learning session) and 
time-frequency analysis (during a test when a learning outcome is 
assessed) could allow for greater freedom and construction of innovative 
paradigms that are more ecologically valid and suitable for studying 
active learning. On a finer scale, precise time-locking of measures such 
as eye-movements and the co-occurring neural oscillations can provide 
previously unavailable insights into learning. It has been proposed that 
the timings of eye-movements during visual exploration and theta os
cillations synchronise in order to coordinate neuronal activity with the 
incoming sensory input (Jutras et al., 2013), much like the theta 
entrainment to speech stimuli. Such synchrony can be thought of as 
encoding a neural expectation about when critical information is likely 
to arrive (Peelle and Davis, 2012), is believed to provide optimal con
ditions for stimulus encoding, and may be important for gating infor
mation flow and guiding memory formation (Siapas et al., 2005). Thus, 
concurrently recording, for example, infant eye-movements and theta 
oscillations, using time-synchronised eye-tracking and EEG recordings, 
could lead to a richer understanding of the mechanisms and cognitive 
neuroscience of infant learning. 

Indeed, measuring theta oscillations during active learning tasks may 
also provide critical data to inform computational theories of attention, 
surprise, exploration, and learning in early development. Computational 
models are often used as a tool to improve the transparency and pre
dictive specificity of psychological theories. These models have great 
potential explanatory power, but are often limited by the richness of the 
to-be-explained data set. A common challenge for modelling 

developmental data lies with impoverished datasets. Infants are a costly 
population to recruit for studies, can only sit through a limited number 
of trials, and behavioural assays are often limited to a few responses 
(such as measuring a single grasp or the length of a single look). This 
leads to a lack of quantitative data that would be necessary for dis
tinguishing between models that produce otherwise qualitatively 
similar predictions. 

Theta oscillations provide a rich, and continuous measure of infor
mation that can help inform quantitative differences in computational 
models of psychology that similarly depend on continuous, probabilistic 
content. Some computational models predict the degree to which a 
system responds following evidence, such as models of surprise, which 
measure the degree to which information is unlikely given a currently 
held belief or prediction (Shannon, 1948). These models could be linked 
with both theta activity and other physiological measures (like pupillary 
dilation) to provide more precise tests of a model’s predictive accuracy 
of surprisal. Surprisal can also be linked to learning, such as KL diver
gence or Bayesian surprise models that measure the degree to which the 
probability of the distribution of beliefs shifts after observing data 
(Kullback, 1968). If theta activation also captures the system “gearing 
up” to learn new information following a sudden shift in information, 
this can provide another means to assess models that predict the mea
sure of shifting beliefs following evidence. 

Other models provide rational accounts of how an “optimal” agent 
should behave to gather information, and treat information as a type of 
reward. For example, models that employ Information Gain provide a 
mechanism to capture decision making in active learning, by producing 
predictions about the degree to which particular interventions will be 
informative for discerning between competing hypotheses, following KL 
divergence (e.g. Nelson, 2008, 2005). If our proposal that theta activa
tion measures expectation of information is correct, then such measures 
can tell us whether infants are sensitive to differences in informative
ness. Furthermore, coupling theta measures with eye-tracking or pref
erential looking measures allows us to compare these behavioural 
responses to predictions of optimal decision making in active learning 
tasks, and thus informs our understanding of early developing learning 
mechanisms. 

Finally, theta oscillations not only provide a continuous metric with 
which to evaluate probabilistic models of cognition, but it may also play 
an important role in how we think about building models of learning 
under physically constrained, resource rational systems (Lieder and 
Griffiths, 2020). Bayesian models of belief updating provide theoreti
cally compelling principles of learning, but there is a growing demand 
for models that integrate these principles of learning with affective 
states (e.g. Bonawitz, 2018; Li et al., 2019; Persaud et al., 2020). Such 
integration requires information about the physiological components 
that might constrain or moderate learning. To illustrate, the degree to 
which an otherwise “Bayesian learner” updates their individual beliefs 
given the likelihood of the observed evidence and their prior beliefs, 
may also be moderated by the degree of physiological response that is 
produced. For example, inducing physiological surprise may lead to 
increased learning (Brod et al., 2018). Measuring this affective response 
may thus inform resource rational models. Physiological responses like 
theta activity can temporarily stand-in for the latent variables that lead 
to these differently-effective affective states and influence learning. 
Measuring theta oscillations could thus help us predict when to expect 
differential learning across individuals, or differences within the same 
individual at different times, despite matched evidence and prior beliefs. 
Theta activation may therefore not only inform our models of children’s 
learning, but also provide an additional component that describes and 
predicts individual differences in learning operating over otherwise 
rational models. Combining the power of theta activity’s continuous 
data with probabilistic models of cognitive development provides a 
unique opportunity to test, refine, and expand our psychological the
ories of attention, surprise, decision making, and learning. 

K. Begus and E. Bonawitz                                                                                                                                                                                                                     



Developmental Cognitive Neuroscience 45 (2020) 100810

8

5.9. Limitations of measuring theta oscillations 

While much research suggests theta oscillations are associated with 
various aspects of active learning, it is important to emphasise that all 
neural correlates, including theta oscillations, are informative and 
interpretable only when the experimental paradigm itself provides a 
strong, specific answer to a well-formulated experimental question. 
Moreover, our knowledge of the function of theta rhythms, both on the 
neural as well as cognitive level, is still developing. This is particularly 
true of infant research, where the interpretation of the results largely 
hinges on findings in animal and adult research. For example, no study 
to our knowledge has yet reported intracranial recordings of theta 
rhythms in infants, or related the oscillatory activity to the hemody
namic activation of the structures assumed to be involved. Such studies 
would be necessary to determine whether the scalp-recorded theta os
cillations in infants are involved in modulating the effects of the dopa
minergic system on hippocampal activity, thereby influencing memory 
formation, as has been suggested in adult literature (Cohen et al., 2012; 
Jutras et al., 2013; Orzeł-Gryglewska et al., 2006). Furthermore, 
although at least one study has performed source localisation analysis on 
infant EEG data and located the source of scalp-recorded theta activity to 
the orbital frontal, temporal pole, and ventral temporal areas (Xie et al., 
2018), the majority of infant studies do not produce sufficient data for 
such analysis. Furthermore, due to variation in EEG systems available 
for studying infants, as well as in how different scalp areas are reported, 
it is challenging and potentially problematic to discuss commonalities or 
differences in exact topography of recorded theta activity across studies, 
which could otherwise offer important insights. Relatedly, while find
ings from infants tend to parallel those in adults, the exact relationship 
and the direction of influence between reward expectation, memory 
formation, and theta oscillations in infants is as of yet unclear. 

Last but not least, measuring neural activity in infants comes with 
several practical challenges. Besides the considerable expense of the 
equipment and the necessity of bringing families into the lab (rather 
than e.g. online participation), infant EEG studies typically involve 
restricting infants’ movement, lengthy studies due to the need for 
repeated measures, and therefore higher attrition rates. Such challenges 
limit the degree to which this technique may currently be able to broadly 
inform other disciplines, such as education or machine learning. None
theless, we believe this is a promising approach and that its contribu
tions, especially when integrated with other methodological 
approaches, outweigh such costs. 

6. Conclusions 

Across many disciplines, it is agreed that active learning is a critical 
component of human development. However, the mechanisms sup
porting active learning are not fully understood, thus highlighting the 
need for the integration of traditional behavioural approaches with tools 
offered by neuroscience. EEG techniques, and the measurement of theta 
oscillations specifically, may provide insights into infants’ attention, 
surprise, information seeking, and learning, due to the rich body of 
literature implicating this rhythm in learning and reward processing on 
the neural level. Coupling theta measurements with other methods, like 
eye-tracking or computational modelling, provides unique opportunities 
to explore open questions in development and to further refine our 
theories of learning. Through its unique rhythm, theta oscillations may 
foster coordinated brain activity that supports memory formation and 
learning; and on a broader scale, its methodological application may 
foster coordinated research activity that supports theory building across 
disciplines. 
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