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The four complexes of the mitochondrial respiratory chain are critical for ATP production in
most eukaryotic cells. Structural characterisation of these complexes has been critical for
understanding the mechanisms underpinning their function. The three proton-pumping
complexes, Complexes I, III and IV associate to form stable supercomplexes or respira-
somes, the most abundant form containing 80 subunits in mammals. Multiple functions
have been proposed for the supercomplexes, including enhancing the diffusion of electron
carriers, providing stability for the complexes and protection against reactive oxygen
species. Although high-resolution structures for Complexes III and IV were determined by
X-ray crystallography in the 1990s, the size of Complex I and the supercomplexes necessi-
tated advances in sample preparation and the development of cryo-electron microscopy
techniques. We now enjoy structures for these beautiful complexes isolated from multiple
organisms and in multiple states and together they provide important insights into respira-
tory chain function and the role of the supercomplex. While we as non-structural biologists
use these structures for interpreting our own functional data, we need to remind ourselves
that they stand on the shoulders of a large body of previous structural studies, many of
which are still appropriate for use in understanding our results. In this mini-review, we
discuss the history of respiratory chain structural biology studies leading to the structures
of the mammalian supercomplexes and beyond.

Introduction
Mitochondria produce the vast majority of the ATP used by eukaryotic life and as such have been fre-
quently labelled the ‘powerhouse of the cell’ by popular culture and academics alike [1]. Production of
ATP occurs on the FoF1-ATP synthase, a molecular motor that draws its power from a proton gradient
created across the inner mitochondrial membrane by the electron transport chain (also known as the
respiratory chain) [2]. The coupling of ATP production to respiration in this way is known as oxidative
phosphorylation (OXPHOS). The electron transport chain consists of four multi-protein membrane
complexes; Complex I (CI, NADH:ubiquinone oxidoreductase), Complex II (CII, succinate:ubiquinone
oxidoreductase), Complex III (CIII, cytochrome bc1 complex) and Complex IV (CIV, cytochrome c
oxidase). Acetyl coenzyme A derived from the metabolism of sugars, fats and amino acids is oxidised by
enzymes in the tricarboxylic acid (TCA) cycle, and electrons transferred to carriers such as nicotinamide
adenine dinucleotide (NADH) and succinate. In turn, NADH and succinate are oxidised by Complexes
I and II to reduce ubiquinone (Coenzyme Q; CoQ), which is, in turn, oxidised by Complex III to reduce
cytochrome c. The electron transport chain concludes with cytochrome c being oxidised by Complex IV
to reduce O2 to water [3]. Electron transport through Complexes I, III and IV drives the pumping of
protons out of the mitochondrial matrix and generates an electrochemical gradient, which is used by the
FoF1-ATP synthase to power ATP synthesis. Although Complex II does not contribute to the generation
of the proton gradient directly, it oxidises succinate to fumarate thereby reducing ubiquinone to ubiqui-
nol and therefore increasing the electrons available to Complexes III and IV [4]. Mitochondria contain
their own DNA, known as mitochondrial DNA (mtDNA), which in mammals encodes 13 proteins, all
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of which are membrane-spanning subunits found in the OXPHOS complexes — 7 in CI, one in CIII, three in
CIV and two in the FoF1-ATP synthase. During the biogenesis of the individual complexes, these coalesce with
more than 70 other subunits encoded by nuclear DNA (nDNA) to form the mature complexes [5]. Highlighting
the importance of this system, mutations in all 13 mtDNA encoded genes and many of the nuclear genes encod-
ing subunits and critical assembly factors cause mitochondrial disease, a group of inherited disorders of the
OXPHOS system with a birth prevalence of 1 : 5000 [6,7].
The structural integrity of the individual complexes as well as their interaction is of vital importance for effi-

cient OXPHOS. This is elegantly highlighted in the many studies of mitochondrial disease patients who harbour
mutations in the genes encoding OXPHOS subunits (catalogued in [6]). Of recent interest is the stable interaction
of Complexes I, III and IV which was originally observed during the development of native electrophoresis tech-
niques [8]. Although the association of these complexes into stable assemblies known as respiratory chain super-
complexes (or respirasomes) was initially controversial, the phenomenon has since been observed in multiple
organisms using a multitude of approaches. The function of these enormous membrane protein complexes
(1.7 MDa consisting of 80 different subunits [9,10]), remains a subject of ongoing debate (for excellent reviews on
this topic see [11,12–14]). The major roles proposed for the supercomplexes include the stabilisation of individual
complexes [15] and the channelling of substrates [16], both of which would provide a level of protection against
the production of reactive oxygen species (ROS), by-products of inefficient OXPHOS.
High-resolution structures of the OXPHOS complexes have been critical to our understanding of their func-

tion in respiration, however, these structures also proved a valuable resource for researchers interested in the
mechanisms of OXPHOS complex assembly and how defective OXPHOS might lead to disease. Our laboratory
has benefitted immensely from the work of structural biologists, as we have found the mapping of mass-
spectrometry derived data onto the 3D structures of OXPHOS complexes helpful for understanding the roles of
specific subunits and assembly factors [17–23]. Complete high-resolution structures now exist for four of the
five OXPHOS complexes, as well as multiple variations of the respiratory chain supercomplex. Although X-ray
crystallography structures for the intact Complexes III and IV were published in the 1990s [24–28], the com-
plete structures of Complex I and the respiratory chain supercomplex necessitated the development of
Cryo-EM technology. Many structures solved by Cryo-EM utilise existing high-resolution structural data of
individual subunits, fragments or subcomplexes to build starting models [29,30] and Complex I and the
respiratory chain supercomplexes have been no exception to this rule. As a result, the impressive Cryo-EM
structures of recent years stand on the shoulders of many other structural studies. This mini-review highlights
the structural discoveries made on the road to the recent structures of the mammalian respiratory chain super-
complex (Figure 1). We also hope that this mini-review can act as a guide for other non-structural biologists in
choosing the appropriate structure to use in interpreting their data.

Complex IV: cytochrome c oxidase
Complex IV consists of 14 subunits [25,31] including three subunits encoded by mtDNA, all of which have
direct homologues in yeast and bacteria. Mammalian Complex IV contains 11 subunits encoded by nDNA,
some of which are present as multiple isoforms with varying tissue expression [5,32–34]. Complex IV is the
only OXPHOS complex known to harbour tissue-specific subunits, which are suspected to tailor the enzyme
activity of the complex to the needs of a specific tissue [32]. Complex IV was the first OXPHOS complex to
yield a low-resolution structure, and was an early beneficiary of electron microscopy, with the technique paired
with 2D membrane crystals to reveal a monomeric bovine Complex IV, highlighting its basic topological fea-
tures [35]. The first high-resolution structure was of the bovine Complex IV, the first for any of the mammalian
OXPHOS complexes, published in 1996 at 2.8 Å (PDB: 1OCC; Figure 1) using X-ray crystallography [25]. In
their structure, Yoshikawa and co-workers [25] described a dimer with each monomer containing 13 different
subunits. Although many structures of mammalian Complex IV have been solved since [36,37], the overall
state of the structure remained relatively unchanged until 2018. In 2018, Yang and co-workers [38] combined
structural and biochemical approaches to propose that the dimerisation of Complex IV observed in most previ-
ous structural studies occurred during purification of the complex. Their 3.3 Å structure of human Complex IV
(PDB: 5Z62; Figure 1) was isolated from the commonly used human embryonic kidney (HEK293) cell line and
solved by Cryo-EM. The human Complex IV structure was modelled from a recent 1.5 Å bovine Complex IV
structure solved by X-ray crystallography [39], revealing a monomeric complex consisting of 14 unique subu-
nits. Importantly, this is the first structure of Complex IV to contain NDUFA4, initially assigned as a Complex
I subunit [40] but reassigned to Complex IV in 2012 based on biochemical studies [31]. In their structure,
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Yang and co-workers found NDUFA4 to be located at the site of Complex IV dimerisation and suggest it and
a cardiolipin molecule also present in their structure is displaced by the cholic acid salt used in crystallisation
buffers. This conclusion is supported by the work of Shinzawa-Itohet al. [41], who recently solved the X-ray
structure of both oxidised and reduced forms of bovine Complex IV monomers (at 1.85 Å and 1.95 Å respect-
ively; PDB: 6JY3 and 6JY4) using novel synthetic detergents. Although NDUFA4 is absent from their struc-
tures, they found that the activity of Complex IV is lower for the dimer than for the monomer, suggesting the
latter to be the active form of the complex [41]. Other arguments against dimeric Complex IV being function-
ally relevant include the presence of monomeric Complex IV in all structures of the supercomplex (discussed
below), the lack of dimeric Complex IV in prokaryotes [42], and early detergent studies demonstrating the
influence of different detergents on Complex IV dimerisation [43]. Moreover, it has recently been proposed
that there is a continuous transition between the monomer and dimer of Complex IV via reversible phosphor-
ylation, with the dimeric form induced by high ATP/ADP ratios, thereby inhibiting respiration and preventing
ROS [44]. Since many conclusions as to the molecular mechanism of Complex IV activity have been drawn
from X-ray structures of the dimeric complex [25,45,46], the physiological relevance of the dimer is an import-
ant aspect to explore in future work.

Complex III: cytochrome bc1 complex
Complex III is the central component of the respiratory chain, coupling the transfer of electrons from coen-
zyme Q (passed from Complexes I and II) to cytochrome c in Complex IV and contributing to the generation
of the proton gradient across the mitochondrial membrane. Of the three proton-pumping complexes, Complex
III has the least number of subunits, one encoded by mtDNA and 10 encoded on nDNA [5,47]. An interesting
quirk of Complex III is the post-translational cleavage of the protein product of the UQCRFS1 gene into
mature UQCRFS1 (also known as the Rieske iron–sulfur protein) and an N-terminal fragment known as

Figure 1. Timeline for the identification of key structures for each of the three respiratory chain complexes present in the supercomplex.

Structures solved using X-ray crystallography are coloured by yellow nodes, with Cryo-EM structures coloured by orange nodes. Structures which

had low-quality density maps (PDB:1QCR and 5XTI) or only existing as an alpha-helical model (membrane region of PDB:3M9S) are depicted using

the surface representation, whereas high-resolution structures are shown using the ribbon representation. Note: the CI2/CIII2/CIV2 megacomplex

structure is a top view, whereas other structures are shown as side views.
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UQCRFS1N (or subunit 9), both of which are present in the mature complex. In mammals, cleavage is thought
to occur after insertion of the full-length protein into the complex through matrix processing peptidase activity
present in the Complex III subunits UQCRC1 and UQCRC2 [47]. Like for Complex IV, 2D crystals and elec-
tron microscopy combined with biochemical analysis gave early insights into the structure and topology of
Complex III [26–28], however, atomic resolution structures did not emerge until the 1990s. A partial structure
of the complex isolated from bovine heart mitochondria was determined in 1997 by Deisenhofer and
co-workers [27] using X-ray crystallography (PDB: 1QCR; Figure 1), revealing 5 of the 11 subunits in full, and
small regions of two other subunits. The structure described a symmetric dimer, consistent with previous bio-
chemical studies [28,48,49]. The complete bovine Complex III was revealed in 1998, with Iwata et al. [28]
describing a dimer of 11-subunit monomers at 3.0 Å (PDB: 1BGY; Figure 1). Like the other complexes, there
have been a multitude of subsequent structures isolated from various organisms under different conditions
designed to investigate the molecular mechanism underpinning the enzymes function [49,50]. Most recently,
researchers have focused on the central role of Complex III in the supercomplex (discussed below) although it
is worthwhile here to note the recent proposal of Yang and co-workers, who suggest based on re-analysis of
high-resolution X-ray structures [51,52] that the Complex III dimer contains only a single UQCRFS1N frag-
ment [53]. This would make it an asymmetric dimer of 11 and 10 individual subunits, with implications for
Complex III function [53] that need to be clarified in future structural studies. Moreover, this finding is in line
with recent data concerning the role of Complex III assembly factor TTC19 in proteolytic removal of the
UQCRFS1N fragment, which the authors found was necessary to maintain enzyme function [54].

NADH:ubiquinone oxidoreductase — Complex I
Complex I (mitochondrial NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes
within mammalian cells. It is responsible for oxidising NADH in the mitochondrial matrix, regenerating NAD+ to
sustain the TCA cycle and fatty acid oxidation, as well as contributing to the proton gradient across the inner
membrane. Mammalian Complex I consists of 45 subunits including 7 encoded by mtDNA and 37 by nDNA, one
of which is present twice in the complex [31,55,56]. While the high-resolution structures of the complete or near-
complete Complexes III and IV were determined by X-ray crystallography in the 1990s, the sheer scale of Complex
I necessitated a combination of X-ray crystallography, Cryo-EM and improved sample preparation techniques to
reveal its high-resolution structure. More than any other complex, structural determination of mammalian
Complex I relied on knowledge gleaned from the ‘minimal’ fungal and bacterial structures [57]. Of the 45 subunits
in the mammalian complex, homologues for all 7 mtDNA encoded subunits and 7 nDNA encoded ‘core’ subunits
are found in bacterial Complex I [57,58]. All active centres are located in these 14 subunits, thus the remaining 30
subunits, most of which are unique to multicellular eukaryotic life, are known as supernumerary or accessory subu-
nits [17,59,60]. Like for the other proton-pumping complexes, 2D crystals (isolated from the fungus Neurospora
crassa) and electron microscopy contributed to our understanding of Complex I topology, specifically its orienta-
tion in the membrane [61,62] and its characteristic ‘L’ shape — a membrane-embedded domain with a matrix
exposed hydrophilic domain. With the development and rise of Cryo-EM, low-resolution 3D structures of bovine,
N. crassa, Yarrowia lipolytica and bacterial complexes were produced [63–66]. There were many notable X-ray crys-
tallography studies that were instrumental in aiding our high-resolution understanding of Complex I, many of
these benefitting from methods developed in the previous decades for biochemical purification of specific subdo-
mains. Berrisford and Sazanov [29] were first to solve the structure of the hydrophilic domain of the bacterial
(Thermus thermophilus) complex (PDB: 3I9 V; Figure 1), and used this as a pathway to the 4.5 Å structure of the
entire complex in 2010 (PDB: 3M9S; Figure 1) [30]. This was shortly followed by Brandt and co-workers [67], who
were first to solve the structure of a complete eukaryotic Complex I, presenting the fungal Y. lipolytica structure at
6.3 Å (subsequently improved to 3.6 Å in 2015 [68]). While these structures undoubtedly yielded important
insights into the molecular mechanisms underpinning Complex I function, a high-resolution structure of the mam-
malian complex necessitated the development of more advanced techniques, in particular improvements in sample
preparation and the advent of direct electron detectors for Cryo-EM [69]. On the back of these developments, in
2014 Hirst and co-workers [55] unveiled a 4.95 Å resolution structure of the bovine Complex I (PDB: 4UQ8;
Figure 1), the first respiratory chain complex solved using Cryo-EM techniques using current instrumentation and
methodology. This structure was responsible for many notable advances in our understanding of Complex I struc-
ture and function, in particular, the locations of 18 of the 30 accessory subunits found in mammals, and the pres-
ence of two copies of the NDUFAB1 subunit. Improvements in purification strategies and continual development
of Cryo-EM techniques saw in 2016 the Hirst and Sazanov groups producing structures for entire bovine [70]
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(PDB: class 1: 5LDW at 4.27 Å; Figure 1) and ovine [71] (PDB: 5LNK at 3.9 Å) complexes, revealing all 45 subu-
nits at atomic resolution. Computational sorting of particles gathered from the bovine data revealed three different
structural classes, giving the first insights into how the conformation of the enzyme changes as it switches from
active to inactive states [70]. With the structure of the entire complex now resolved, the focus has turned to deter-
mining structures of specific states for understanding the mechanisms underpinning Complex I function, as well as
the roles of specific subunits and assembly factors. In the case of the former, structures for both an active and
inactive form of the Mus musculus Complex I were solved at 3.3 Å resolution [72] and the inactive form of the
bovine enzyme at 4.1 Å [73] revealing conformational variations in the membrane domain and allowing for the
development of further models describing the proton-pumping mechanism, and improving our understanding of
how Complex I function recovers following deactivation during hypoxia. For the latter, the functions of the acces-
sory subunits are not yet clear. While the lack of homologues for these proteins in bacteria suggest they possess no
catalytic roles, most seem to be critical for assembly and or stability of the complex [17]. This was elegantly shown
by Zickermann and co-workers [74], who in 2019 solved the structures of Complex I isolated from yeast (Y. lipoly-
tica) mutants lacking accessory subunits NDUFS4 and NDUFS6. Mutations in the genes encoding these subunits
are known to lead to the turnover of these proteins leading to mitochondrial disease [6,17], thus the structures give
important pathological insights. Notably, this study is also the first to present a structure of an assembly intermedi-
ate for Complex I, with the authors revealing a homologue of the assembly factor NDUFAF2 bound to an incom-
plete Complex I isolated from cells lacking NDUFS6. The authors conclude that assembly factor NDUFAF2 binds
to the position eventually occupied by the subunit NDUFA12, preventing the binding of NDUFS6, preventing
reverse electron flow and production of ROS from a partially assembled complex. We eagerly await further struc-
tures of assembly intermediates for Complex I and the other OXPHOS complexes over the coming years.

The respiratory chain supercomplexes
The development of native gel electrophoresis (primarily blue native polyacrylamide gel electrophoresis;
BN-PAGE) in the 1990s [8] led to the identification of many enormous (1.5–2 MDa) structures containing
various configurations of Complexes I, III and IV known as supercomplexes. The supercomplex containing a
single unit of Complex I, the Complex III dimer and a single unit of Complex IV (CI/III2/IV) is typically the
most abundant assembly observed using native electrophoresis techniques, and therefore is considered the base
functional unit of the supercomplex or ‘respirasome’. The critical roles speculated for the respirasome include
improved channelling of CoQ and cytochrome c between the complexes, increased complex stability and pro-
tection from ROS [12,13]. Though the bioenergetic advantage conferred by substrate channelling [75–77], is
arguably the most often cited of proposed functions, the concept is disputed based on both structural and bio-
chemical evidence [9,10,15,78–81]. Indeed, the supercomplexes themselves were initially criticised for being
artefacts of analysis in the presence of ionic detergents, however, evidence for the existence of the supercom-
plexes increased with their identification without detergents [15], the advances in Cryo-EM techniques, which
in the 2010s led to the emergence of multiple supercomplex structures, and recent observations of the super-
complexes in situ using cryo-electron tomography (Cryo-ET) [82].
The first supercomplex structure revealed in atomic detail was the ovine CI/III2/IV respirasome in 2016.

Sazanov and co-workers [9] presented structures for two forms of the respirasome — ‘loose’ and ‘tight’, as well as
the CI/III2 supercomplex at high resolution (PDBs: 5J4Z, 5J7Y and 5J8K respectively; Figure 1). These were
closely followed by structures of the porcine respirasome [10,80] (PDBs: 5GPN and 5GUP) from the Yang group
and bovine [77] (PDB: 5LUF) respirasome from Kühlbrandt and co-workers. While the porcine structures have
higher resolutions (4 Å for 5GUP vs 5.8 Å and 9 Å for the ovine and bovine structures) it is important to note
that they contain problems in the assignment of subunits and cofactors (discussed in [11,13]). While none of the
structures revealed new subunits specific to the supercomplex, they led to many interesting observations. All
respirasomes show the membrane arm of Complex I curving around the Complex III dimer, with a monomer of
Complex IV located between Complexes I and III at the ‘toes’ of Complex I. The positions of Complex IV varies
substantially in the porcine and ‘tight’ and ‘loose’ ovine structures, likewise Complex III is found to be rotated in
the bovine and second porcine structure, which may indicate the capture of different functional states. Indeed, the
ability to differentiate different ‘classes’ within a single sample preparation is a major feature of Cryo-EM — for
example, it is evident in the first ovine structure that Complex IV subunit COX7A switches between Complex IV
and Complex I in the ‘tight’ and loose’ forms of the respirasome [9]. Using an improved isolation strategy,
Sazanov and co-workers [83] continued this approach, identifying four distinct forms of the ovine CI/III2 super-
complex structure at high resolution (3.8 Å) (see Letts et al. [83] for relevant PDB accession numbers). These
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structures describe striking differences in the conformations of subunits describing how one complex might be
able to affect change on another within the same respirasome. Moreover, the authors show that CoQ is not
equally able to access its sites in Complex III, suggesting its oxidation is a major rate-limiting step. While these
structures have led to other important mechanistic and structural insights, the structures also provide strong evi-
dence against the concept of substrate channelling, since they show the CoQ binding sites of Complexes I and III
to be separated by ∼100 Å, and reveal no steric hinderance for the diffusion of cytochrome c between Complexes
III and IV [9,10,80,83].
Finally, in 2017 Yang and co-workers [79] were able to isolate a higher-order assembly of the respirasome

(CI2III2IV2) which they term megacomplex. To resolve this structure, the authors first solved the structure of
the major CI/III2/IV respirasome purified from human embryonic kidney cells (HEK293), making this both
the first structure of a human supercomplex and the highest resolution (3.9 Å; PDB: 5XTH) and most complete
for any mammalian supercomplex. The megacomplex itself is of significantly lower resolution (17.4 Å; PDB:
5XTI; Figure 1) and built from the human CI/III2/IV respirasome structure, however, it reveals a circular archi-
tecture with the Complex III dimer in the centre and each monomer contacting a single unit of Complexes I
and IV. While their human origin will for many researchers make them useful structural models, like for the
porcine respirasome structures these contain some problems with the assignment of features (discussed in
[11]). Moreover, the authors also suggest that two units of Complex II could be modelled into the megacom-
plex structure between the distal ends of Complexes I and IV. Although they provided no evidence for this in
terms of unassigned density, they justified this speculative model based on previous biochemical studies
[75,84]. While a complex containing all the complexes of the electron transport chain is a tantalising idea,
further experimental work will be needed to clarify if this is reflective of the reality inside the cell.

Perspectives
• Structural characterisation of the mitochondrial respiratory chain complexes has been import-

ant for understanding their function. High-resolution structures for Complexes III and IV were
determined by X-ray crystallography, however, the size of Complex I and the supercomplexes
necessitated advances underpinning modern Cryo-EM. As a result of this, a flurry of structures
emerged in the 2010s culminating with five separate publications in the space of a year
describing the mammalian supercomplex in high-resolution and showing the complexes in
multiple states. This led to important insights into respiratory chain function.

• Cryo-EM typically uses data gathered under more physiological conditions than for X-ray crys-
tallography and reveals multiple structural forms, leading to a deeper understanding of con-
formational changes. For the supercomplex, this has led to hypotheses concerning cross-talk
between its components.

• Combining this with mammalian gene-editing techniques and the recent ability to purify the
respiratory chain complexes from human cell lines opens the door for a new era of structure–
function studies, particularly the elucidation of assembly intermediates and disease states.
Future development of single-particle analysis and Cryo-ET techniques will further open the
door to a new era of structure-function studies.
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