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Abstract: As new drugs for the treatment of malignant tumors, transforming growth factor-beta
receptor 1 (TGFβR1) antagonists have attracted wide attention. Based on the crystal structure of
TGFβR1-BMS22 complex, the pharmacophore model A02 with two hydrogen bond acceptors (HBAs)
and four hydrophobic (HYD) properties was constructed. From the common features of active
ligands reported in the literature, pharmacophore model B10 was also generated, which has two
aromatic ring centers (RAs) and two HYD properties. The two models have high sensitivity and
specificity to the training set, and they are highly consistent in spatial structure. Combining the
two pharmacophore models, two novel skeleton structures with potential activity were selected
by virtual screening from the DruglikeDiverse, MiniMaybridge, and ZINC Drug-Like databases.
Four compounds (YXY01–YXY04) with potential anti-TGFβR1 activity were designed based on the
new skeleton structures. In combination with Lipinski’s rules; absorption, distribution, metabolism,
excretion, and toxicity (ADMET); and, toxicological properties predicted in the study, YXY01-03 with
the novel skeleton, good drug-like properties, and potential activity were finally discovered and may
have higher safety relative to BMS22, which may be valuable for further research.
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1. Introduction

Transforming growth factor-beta (TGFβ) plays a crucial role in regulating cell proliferation,
differentiation, and migration in all tissues of the human body [1]. Mature TGFβ is a homodimer
consisting of two polypeptide chains that are connected by a disulphide bond and forming a complex
with a total molecular weight of 25 kDa. TGFβ induces regulation effects by activating specific
receptors on the surface of the cell membrane. Currently, specific receptors for TGFβ include three
types, TGFβR1, TGFβR2, and TGFβR3. After the binding of TGFβ to two TGFβR2 subunits, the
ligand-receptor complex is recognized by two TGFβR1 subunits and undergoes phosphorylation to
form a heterotetrameric receptor complex. The heterotetramer is able to transmit the signal further into
the cell and it then activates the Smad signaling pathway [2]. The TGFβ signaling pathway inhibits
tumor growth in early-stage tumors. However, in advanced-stage tumors, the high activity state of the
pathway changes the cytoskeleton, remodels the matrix, adheres the cell, and migrates gene expression,
leading to metastasis of tumor cells [3]. At the same time, the TGFβ signaling pathway mediates
primary changes of the tumor microenvironment and induces an epithelial-to-mesenchymal transition,
which contributes to cell migration and invasion. The recognition of TGFβR1 by the TGFβ–TGFβR2
complex is the key node of the TGFβ signaling pathway. TGFβR1 signaling is initiated when TGFβ
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binds to TGFβR2, with the subsequent phosphorylation of Smad2/Smad3 proteins. Blocking its
phosphorylation to Smad2/Smad3 can effectively inhibit TGFβ signal transduction to the nucleus [4].
Therefore, TGFβR1 antagonists as new drugs for the treatment of myelodysplastic syndrome, primary
hepatocellular carcinoma, glioma, metastatic pancreatic cancer, and other malignant tumors have
attracted much attention [5,6]. International pharmaceutical companies, such as GlaxoSmithKline
(GSK), Eli Lilly and Company (LLY), and Bristol-Myers Squibb (BMS), have been developing TGFβR1
antagonists in recent years. Among them, a small molecule antagonist of TGFβR1, galunisertib, has
entered phase III clinical study, developed by LLY as a new drug mainly for myelodysplastic syndrome,
primary hepatocellular carcinoma, glioma, and metastatic pancreatic cancer [7]. In addition, the new
TGFβRI antagonists developed by BMS have good clinical application prospects and economic value.
BMS has submitted two patent applications for invention in China, numbers 201680055202.3 and
201680049890.2, which have entered substantive examination [8,9]. BMS22 (Figure 1C), one compound
of the two patents, has very good selectivity and high activity (half maximal inhibitory concentration
(IC50) is about 0.55 nM) [10].
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Figure 1. (A) Crystal structure of complex (Protein Data Bank (PDB) ID: 6B8Y), (B) receptor surface
of H-bond, and (C) structure of BMS22, of which four rings are labeled A, B, C and D, and four key
nitrogen atoms are specified as 1, 2, 3, and 4.

Traditional drug research and development techniques are time-consuming and
resource-demanding processes. With the development of computer technology, it is very
useful to discover and optimize lead compounds by molecular simulation technology to reduce
the cycle and cost of drug research and development. Pharmacophore is an abstract description
of molecular characteristics, an ensemble of steric and electronic features, which plays a crucial
role between the active molecule and the receptor. Based on these features, many diverse chemical
compounds can then be virtually screened to find the potent drugs in a fast and convenient way that
was impossible for experiments until now. Thus, the pharmacophore-based virtual screening approach
has become a powerful and efficient tool in drug research and development [11]. Establishing
the pharmacophore model generally includes two methods. One is ligand-based pharmacophore
modeling: Based on a series of active ligand structures, conformational analysis and molecular
superimposition are performed to obtain an abstract representation that includes key pharmacophore
elements and is critical to the active ligands. The other is structure-based pharmacophore modeling,
by which a pharmacophore model is constructed according to the steric and chemical features of
receptor active sites. If the receptor-ligand complex is obtained, the crystal structure can produce a
very accurate pharmacophore model. The pharmacophore modeling strategy has been successfully
applied to drug development, such as virtual screening and structural modification [12–14].

In this study, pharmacophore models of TGFβR1 antagonists were constructed by the two
above-mentioned methods in an attempt to explore a more rapid, comprehensive, and accurate
virtual screening approach. Novel skeleton structures with potential activity were selected through
pharmacophore-based virtual screening. Following the modification of skeleton structures, novel
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TGFβR1 antagonists with potentially high activity were designed. This study can provide theoretical
guidance for the design of subsequent active anti-TGFβR1 compounds.

2. Materials and Methods

2.1. Structure-Based Pharmacophore Model Construction

With the development of X-ray diffraction in crystals, cryogenic scanning electron microscopy
(Cryo-SEM), and nuclear magnetic resonance (NMR), functional genomics and structural biology
have developed rapidly. More and more structures of target receptors and ligand-receptor complexes
have been elucidated. Pharmacophore model construction based on the structure of ligand-receptor
complex has become an active field.

The crystal structure of TGFβR1 protein was first reported in 1999 (Protein Data Bank (PDB)
ID:1B6C) [15]. The core region of TGFβR1 catalytic domain adopts a canonical protein kinase fold, and
it consists of a C-terminal with an α-helix and an N-terminal with a β-fold. The deep groove between
them is involved an adenosine triphosphate (ATP) binding site to substrate (Figure 1A). Up to now, the
PDB database has been loaded with a number of small molecular antagonists and the crystal structures
of receptor-ligand complexes (http://www.rcsb.orgdatabase), including 1PY5, 1VJY, 2WOT, 2X7O,
3FAA, 3GXL, 3KCF, 3TZM, 6B8Y, and so on. BMS22, which was developed by BMS, is a greatly potent
TGFβR1 antagonist with high selectivity and activity [16]. The crystal structure of ligand-receptor
complex (PDB ID: 6B8Y) well explains the interaction site and mode between the antagonist and
the receptor. The steric and chemical structures of the receptor provide good information for the
construction of a pharmacophore model.

The crystal structure of ligand-receptor complex retrieved from the PDB database was used to
construct the structure-based pharmacophore model after supplementing amino acid residues, adding
hydrogen atoms, and performing other protein preparation processes. The complex crystal structure,
receptor surface of H-bond surface, and BMS22 molecular structure are shown in Figure 1. The
Receptor–Ligand Pharmacophore Generation module [17] of BIOVIA Discovery Studio 2017R2 (DS
2017R2) was used to generate a three-dimensional (3D) pharmacophore model with default parameters.
According to the model scoring value, by combining the sensitivity and specificity of the model to
the test set molecule with the receiver operating characteristic (ROC) curve, the best pharmacophore
model will be selected.

2.2. Ligand-Based Pharmacophore Model Construction

The characteristic structures of a series of active compounds with similar activities but different
structures can generate ligand-based pharmacophore models by comparison and superposition. Thus,
the best pharmacophore model can be used for virtual screening of a small compounds database to
search for potential drugs.

Based on the principle of the diversity of active molecular structures of a training set, 17 TGFβR1
antagonists with high activity reported in the literature were selected to construct the training set. The
activity against TGFβR1 ranges from 0.55 nM to 180 nM (IC50). Six conformations of these compounds,
BMS22, 1VJY, 2WOT, 3GXL, 3KCF, and 3FAA, were extracted directly from the crystal structures of
the ligand-protein complexes of the PDB database. The other active conformations of the training set
cannot be downloaded from the PDB database. Therefore, molecular docking of the 11 compounds
was performed by using the DS docking module. According to the docking results, the most active
conformations were selected for the construction of the pharmacophore. The molecular structures of
the training set are shown in Figure 2. The series of molecules that were named at the beginning of
6B8Y came from the study of Harikrishnan et al. [10]; the series of molecules named at the beginning
ZLSSL and ZL2SSL came from patent documents 201680049890.2 and 201680055202.3, respectively; the
rest of the molecules came from the PDB database and were named after the database ID. In light of the
IC50 values of active molecules, we defined the Principal and MaxOmitFeat properties. For molecules

http://www.rcsb.org database
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with IC50 ≤ 10 nM, Principal is defined as 2 for active, in which a reference molecule ensures that all
of the chemical features in the molecule are considered in building the pharmacophore space, and
Max OmitFeat is defined as 0, i.e., all of the characteristic elements in the pharmacophore model need
to be matched with the compounds. For molecules with IC50 between 10 and 100 nM, Principal is
defined as 1 for moderately active, in which conformations of this molecule are considered, and Max
OmitFeat is defined as 1, i.e., one characteristic element in the pharmacophore model can be omitted
from the compound.
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Figure 2. A set of 17 compounds made up the training set used in common feature
pharmacophore generation.

In the study, the hydrophobic (HYD) characteristics, hydrogen bond acceptor (HBA), hydrogen
bond donor (HBD), and aromatic ring center (RA) were selected as the characteristic pharmacophore
elements. Using the Common Feature Pharmacophore Generation module of DS 2017R2, the models
were constructed based on the active conformations of the training set molecules. When considering
the coincidence degree between training set molecule and model combined with ROC curve, a suitable
pharmacophore model was selected.

2.3. Evaluation and Validation of Pharmacophore Models

Pharmacophore model validation was performed to evaluate the models’ reliability and quality.
In this paper, three paths were used to evaluate and verify the pharmacophore models. (1) The models
were validated using the group of test set compounds. Accurate test data prediction is an important
attribute of pharmacophore model reliability. The group of test set compounds should include both
active and inactive molecules, so it can select the best pharmacophore model with high distinguishing
ability between known active and inactive compounds. In total, 87 compounds showing experimental
anti-TGFβR1 activity were selected from the literature to validate the sensitivity (SE) of models. SE
is defined as the ratio of true positive (TP) to the sum of TP and false negative (FN): [TP/(TP + FN)].
Inactive molecules were downloaded from the DUD-E database (http://dude.docking.org/), which
includes 102 drug action targets [18]. The specificity (SP) of the TGFβR1 was verified by using 8677
inactive molecular models that are provided in the DUD-E database. SP is defined as the ratio of true
negative (TN) to the sum of TN and false positive (FP): [TN/(TN + FP)]. SE and SP values represent
the ability of the model to recognize both active and inactive molecules. The closer the value is to
1, the stronger the recognition ability. (2) The pharmacophore models would have higher reliability,
which was more consistent with the characteristics of structure-activity relationships obtained from
the experiments. (3) The key amino acids in the active sites of TGFβR1 were obtained. The chemical
characteristics that were necessary for both the pharmacophore model and these key amino acids were
comprehensively analyzed.

2.4. Virtual Screening of Databases

Pharmacophore models were used as 3D queries to screen the compounds from two database
sources. One source was the DruglikeDiverse and MiniMaybridge databases, including 5384 and
2000 compounds, respectively. The other was the ZINC Drug-Like database, which contains 147,808
compounds based on druglike data.

According to the results of virtual screening and the experimental structure-activity relationship,
combined with the reality and rationality of synthesis, novel TGFβR1 antagonists were designed.
Finally, absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters were
computed for all screened compounds with maximum fit values and minimum IC50 values. We
identified the novel structure of TGFβR1 antagonists while considering the results of ADMET as well
as Lipinski’s rules. This study lays a foundation for the following chemical synthesis and evaluation
of pharmacodynamics.

http://dude.docking.org/
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3. Results and Discussion

3.1. Characteristics and Reliability Verification of Ligand–Receptor Complex Pharmacophore Model

Ten pharmacophore models were constructed, and the related data are shown in Table 1.
Combining selectivity scoring value, SE value, and SP value with the area under the ROC curve,
model A02 was selected as the finest model (shown in Figure 3A). The pharmacophore model was
characterized by AAHHHH, containing two HBAs and four HYDs (Figure 3B). Model A02 had
high sensitivity (SE = 0.81176) and high specificity (SP = 0.78754) to the group compounds of the
training set. The area under the ROC curve was characterized by quality value, which was 0.879. The
structure-activity relationship obtained from the experimental study confirmed that the presence of
-CF3 on the pyridine ring B (Figure 1, Ring B) of BMS22 would significantly enhance the selectivity of
the compound to TGFβR1, which could be an important pharmacodynamic feature, but the addition
of polar groups (such as carbonyl group) to pyridine ring A (Figure 1, Ring A) would significantly
decrease the activity of BMS22. Thus, the hydrophobicity of ring A of BMS22 is also an important
pharmacodynamic characteristic. Two hydrogen bond characteristics existed in the crystal complex,
which showed a crucial interaction of the active site. In general, model A02 well reflected the important
characteristics that were found in the study of structure-activity relationship, and it was more reliable.

Table 1. Features, selectivity scores, and validation results of the receptor-ligand-based pharmacophore
models. TP, true positive; TN, true negative; FP, false positive; FN, false negative; SE, sensitivity;
SP, specificity.

Model Features Selectivity
Score

Total
Actives

Total
Inactives TP TN FP FN SE SP

A01 AADHHH 10.516 85 8397 13 7820 577 72 0.15294 0.93128
A02 AAHHHH 9.6023 85 8397 69 6613 1784 16 0.81176 0.78754
A03 AADHH 9.0011 85 8397 30 6542 1855 55 0.35294 0.77909
A04 ADHHH 9.0011 85 8397 60 5688 2709 25 0.70588 0.67738
A05 AADHH 9.0011 85 8397 18 6984 1413 67 0.21176 0.83173
A06 ADHHH 9.0011 85 8397 20 7275 1122 65 0.23529 0.86638
A07 AADHH 9.0011 85 8397 24 7059 1338 61 0.28235 0.84066
A08 AAHHH 8.0875 85 8397 72 3865 4532 13 0.84706 0.46028
A09 AAHHH 8.0875 85 8397 80 4677 3720 5 0.94118 0.55698
A10 AAHHH 8.0875 85 8397 69 3497 4900 16 0.81176 0.41646

Based on above analysis, we selected model A02 as the final ligand-receptor complex
pharmacophore model for further study.

In the crystal structure of ligand-receptor complex, N3 and N4 atoms of BMS22 are far away from
the receptor and do not form an intermolecular hydrogen bond. In the case of drug design, structural
modification can be considered at this site.



Molecules 2018, 23, 2824 7 of 12

Molecules 2018, 23, x FOR PEER REVIEW  6 of 11 

 

3. Results and Discussion  

3.1. Characteristics and Reliability Verification of Ligand–Receptor Complex Pharmacophore Model 

Ten pharmacophore models were constructed, and the related data are shown in Table 1. 
Combining selectivity scoring value, SE value, and SP value with the area under the ROC curve, 
model A02 was selected as the finest model (shown in Figure 3A). The pharmacophore model was 
characterized by AAHHHH, containing two HBAs and four HYDs (Figure 3B). Model A02 had high 
sensitivity (SE = 0.81176) and high specificity (SP = 0.78754) to the group compounds of the training 
set. The area under the ROC curve was characterized by quality value, which was 0.879. The 
structure-activity relationship obtained from the experimental study confirmed that the presence of 
-CF3 on the pyridine ring B (Figure 1, Ring B) of BMS22 would significantly enhance the selectivity of 
the compound to TGFβR1, which could be an important pharmacodynamic feature, but the addition 
of polar groups (such as carbonyl group) to pyridine ring A (Figure 1, Ring A) would significantly 
decrease the activity of BMS22. Thus, the hydrophobicity of ring A of BMS22 is also an important 
pharmacodynamic characteristic. Two hydrogen bond characteristics existed in the crystal complex, 
which showed a crucial interaction of the active site. In general, model A02 well reflected the 
important characteristics that were found in the study of structure-activity relationship, and it was 
more reliable. 

Based on above analysis, we selected model A02 as the final ligand-receptor complex 
pharmacophore model for further study. 

Table 1. Features, selectivity scores, and validation results of the receptor-ligand-based 
pharmacophore models. TP, true positive; TN, true negative; FP, false positive; FN, false negative; SE, 
sensitivity; SP, specificity. 

Model Features 
Selectivity 

Score 
Total 

Actives 
Total 

Inactives 
TP TN FP FN SE SP 

A01 AADHHH 10.516 85 8397 13 7820 577 72 0.15294 0.93128 
A02 AAHHHH 9.6023 85 8397 69 6613 1784 16 0.81176 0.78754 
A03 AADHH 9.0011 85 8397 30 6542 1855 55 0.35294 0.77909 
A04 ADHHH 9.0011 85 8397 60 5688 2709 25 0.70588 0.67738 
A05 AADHH 9.0011 85 8397 18 6984 1413 67 0.21176 0.83173 
A06 ADHHH 9.0011 85 8397 20 7275 1122 65 0.23529 0.86638 
A07 AADHH 9.0011 85 8397 24 7059 1338 61 0.28235 0.84066 
A08 AAHHH 8.0875 85 8397 72 3865 4532 13 0.84706 0.46028 
A09 AAHHH 8.0875 85 8397 80 4677 3720 5 0.94118 0.55698 
A10 AAHHH 8.0875 85 8397 69 3497 4900 16 0.81176 0.41646 

 
Figure 3. (A) Pharmacophore model A02 (hydrogen bond acceptors in green balls; hydrophobic
properties in blue balls; the exclude volumes in gray balls) and (B) superposition with compound
BMS22 (gray balls were hidden).

3.2. Characteristics and Reliability Verification of Ligand-Based Pharmacophore Model

Ten ligand-based pharmacophore models were also constructed, and the related parameters are
shown in Table 2. When combining rank value, SE value, and SP value with the area under the ROC
curve, model B10 was selected as the final model.

Table 2. Feature set, selectivity score, and validation results of the ligand-based pharmacophore models.

Model Features Rank Total
Actives

Total
Inactives TP TN FP FN SE SP

B01 ARHH 135.897 85 8397 81 2315 6082 4 0.95294 0.27569
B02 AHHH 134.118 85 8397 83 4554 3843 2 0.97647 0.54243
B03 RRHH 133.760 85 8397 79 6427 1970 6 0.92941 0.76539
B04 RRHH 133.760 85 8397 79 6456 1941 6 0.92941 0.76885
B05 ARHH 132.197 85 8397 80 2325 6072 5 0.94118 0.27688
B06 RHHH 132.169 85 8397 79 6121 2276 6 0.92941 0.72895
B07 RHHH 130.718 85 8397 82 4558 3839 3 0.96471 0.54281
B08 RHHH 129.478 85 8397 79 5872 2525 6 0.92941 0.69930
B09 RRHH 129.283 85 8397 79 6370 2027 6 0.92941 0.75860
B10 RRHH 128.545 85 8397 79 6149 2248 6 0.92941 0.73229

Model B10 was characterized by RRYY, containing two RAs and two HYDs (shown in Figure 4).
Model B10 had high sensitivity (SE = 0.92941) and high specificity (SP = 0.73299) to the group
compounds of the training set, and the quality value of the model was 0.950. The pharmacophore
model and the training set molecule matched well, so the reliability of the model was high.
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Thus, model B10 was selected as the final ligand-based pharmacophore model for further study.
When compared to model A02, model B10 had fewer pharmacodynamic characteristics and was

generally more sensitive to active molecules. In order to compare the differences between them, model
A02 and model B10 were superimposed, as shown in Figure 5. According to the spatial distribution of
the pharmacodynamic characteristics of the two models, two hydrophobic characteristics of model
B10 overlapped with two hydrophobic characteristics of model A02, and two aromatic rings of model
B10 coincided with the other two hydrophobic characteristics of model A02. It can be seen that the
two models had high similarity. Model A02 was inconsistent, with two hydrogen bond receptor
characteristics. From the point of view of pharmacodynamic activity, the three most active molecules,
BMS22, ZLSSL5, and 6B8Y9, all had two hydrogen bond receptor characteristics. Therefore, in the
virtual screening, model B10 was used for primary screening, and then model A02 was used for fine
screening to screen antagonists with higher activity.Molecules 2018, 23, x FOR PEER REVIEW  8 of 11 
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3.3. Virtual Screening and Structural Transformation of Lead Compounds

Model B10 was used to screen the DruglikeDiverse, MiniMaybridge, and ZINC Drug-Like
databases, and 950, 350, and 8824 compounds were obtained, respectively. Based on the virtual
screening results, the above compounds were matched with model A02 by using the Ligand Profiler
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module. Two compounds with great structural difference from BMS22 were obtained according to
the Fitvalue value, and the structures of which are shown in Figure 6. On the basis of the structural
characteristics of the selected compounds and their matching with the pharmacophore model, a series
of compounds were designed combining the experimental results of structure-activity relationship.
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DruglikeDiverse database).

The self-designed series of compounds were matched with model A02 again. Finally, four
potentially active compounds (YXY01–YXY04) were obtained according to the Fitvalue. These
molecules are depicted in Figure 7. YXY01 and YXY02 have the same skeleton structure, and
YXY03 and YXY04 have the same skeleton structure. All four compounds have distinct molecular
skeleton structures as compared with the related patents of BMS, which can break through the relevant
patent protection.

The four compounds were evaluated by Lipinski’s rule, and all were in accordance with the
relevant rules. Lipinski’s rule states that compounds are likely to have good absorption and permeation
in biological systems and are thus likely to be successful drug candidates if they meet the following
criteria: (1) molecular weight (MW) is less than 500 Dalton; (2) the number of hydrogen bond acceptors
(HBAs) is fewer than 10; (3) the number of hydrogen bond donors (HBDs) is fewer than 5; (4) the
number of rotatable bonds (ROTBs) does not exceed 10; and, (5) calculated LogP (oil-water partition
coefficient) is less than 5. The properties of ADMET of the four designed compounds and BMS22
were predicted using DS 2017R2. The results show that the water solubility of the four compounds
was in the order of YXY01 ≈ YXY02 ≈ YXY04 > BMS22 ≈ YXY03. YXY03, YXY04, and BMS22 had
moderate blood-brain barrier transmittance, while YXY01 and YXY02 had higher blood-brain barrier
permeability; neither YXY01–04 nor BMS22 had cytochrome P450 2D6 inhibition; and, both YXY01–04
and BMS22 had very good intestinal absorption.

The parameters of Lipinski’s rule and the predicted results of important toxicological properties
are listed in Table 3. The data indicate that none of the compounds had mutagenicity except YXY04;
YXY01–04 and BMS22 had no potential developmental toxicity; YXY01–04 and BMS22 had no potential
carcinogenicity in female mice, but all of the compounds had carcinogenicity in male mice, which
needs further evaluation in a future study; the calculation of lowest observed adverse effect level
(LOAEL) showed that YXY03 and YXY04 had higher doses than BMS22; YXY03 had similar maximum
tolerated doses (MTDs) to BMS22, while other candidates had a little lower MTD value than BMS22;
the prediction results reveal drug median lethal dose (LD50) of YXY01–04 are one to two orders
of magnitude higher than that of BMS22, which shows that the designed compounds may have
higher safety.
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Table 3. Parameters of Lipinski’s rule and toxicity prediction of compounds YXY01–04 and BMS22
calculated by DS TOPKAT. MW, molecular weight; ROTB, rotatable bond; HBA, hydrogen bond
acceptor; HBD, hydrogen bond donor; DTP, developmental toxicity potential; LOAEL, lowest observed
adverse effect level; MTD, maximum tolerated dose; LD50, median lethal dose.

MW LogP ROTB HBA HBD Mutagenicity DTP Carcinogenicity
(Female)

LOAEL
(g/kg)

MTD
(Feed,
g/kg)

LD50
(Oral,
g/kg)

BMS22 374 3.956 4 5 2 NonmutagenNontoxic Noncarcinogen 0.0064 0.137 0.0413
YXY01 389 4.309 5 2 1 NonmutagenNontoxic Noncarcinogen 0.0037 0.069 0.863
YXY02 390 4.126 5 3 1 NonmutagenNontoxic Noncarcinogen 0.0027 0.075 0.274
YXY03 416 3.687 5 5 2 NonmutagenNontoxic Noncarcinogen 0.0101 0.143 0.42
YXY04 377 2.911 5 5 2 Mutagen Nontoxic Noncarcinogen 0.0185 0.104 1.02

In conclusion, the structures of the designed compounds were novel and the skeleton structures
were significantly different from those of TGFβR1 antagonists that are reported at present. The
predicted results of Lipinski’s rule, ADMET, and toxicological properties indicate that YXY01–03 are
worthy of further study because of their potentially higher safety than BMS22.

4. Conclusions

In this study, reliable pharmacophore models A02 and B10 were constructed by two modeling
methods that are based on the crystal structure of BMS22-TGFβR1 complex and a group of compounds
with anti-TGFβR1 activity reported in the literature, respectively. The latter was used for primary
screening and the former for fine screening. The combination of the two pharmacophore construction
methods is conducive to rapid, comprehensive, and accurate screening of highly active candidate
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compounds. Two new skeleton structures were found by searching the databases, and subsequently
three compounds (YXY01–03) with certain activity and high safety were designed. The activity of the
compounds could be further predicted by molecular docking, and the potentially active compounds
could be synthesized and evaluated.
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