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Abstract

RNA aptamers are relatively short nucleic acid sequences that bind targets with high affinity,

and when combined with a riboswitch that initiates translation of a fluorescent reporter pro-

tein, can be used as a biosensor for chemical detection in various types of media. These

processes span target binding at the molecular scale to fluorescence detection at the mac-

roscale, which involves a number of intermediate rate-limiting physical (e.g., molecular con-

formation change) and biochemical changes (e.g., reaction velocity), which together

complicate assay design. Here we describe a mathematical model developed to aid environ-

mental detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using the DsRed fluores-

cent reporter protein, but is general enough to potentially predict fluorescence from a broad

range of water-soluble chemicals given the values of just a few kinetic rate constants as

input. If we expose a riboswitch test population of Escherichia coli bacteria to a chemical dis-

solved in media, then the model predicts an empirically distinct, power-law relationship

between the exposure concentration and the elapsed time of exposure. This relationship

can be used to deduce an exposure time that meets or exceeds the optical threshold of a

fluorescence detection device and inform new biosensor designs.

Introduction

The machinery of cellular biology excels at reliably sensing weak chemical signals, which are

more difficult for traditional electronic detectors to measure because of the low signal-to-noise

ratio (SNR). Perhaps unsurprisingly, a long-standing goal of synthetic and molecular biology

has been to leverage living matter to improve the fidelity of this low SNR regime. RNA apta-

mers are a class of promising candidates for this sensing challenge, which are relatively short

nucleic acid sequences that typically consist of 15-75 bases flanked by conserved primer

binding sites [1]. They bind to targets with high specificity through a combination of their

3D structure, electrostatic interactions, and stacking interactions between aromatic moieties

[2]. In addition, they have been used before to bind proteins, metals, antibiotics, dyes,
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fluorophores, hormones, mycotoxins, and many other small organic molecules [3–6]. Apta-

mers have several advantages over protein and antibody-based biosensors: they are less com-

plex, and therefore easier and cheaper to synthesize; are more stable across varied thermal and

pH environments; possess a more versatile chemistry; display lower immunogenicity; and

often exhibit a higher affinity and specificity to the target [1, 5, 7].

One challenge facing aptamer-based sensors is to effectively translate the target-aptamer

binding interaction into a detectable signal. This need has led to the development of a variety

of signal transducing platforms including biological, electrochemical, and optical sensors [6, 8,

9]. Magnifying such a signal while also maintaining the sensitivity and dynamic range inherent

to the aptamer remains a challenging problem. One approach for macroscopic detection of an

aptamer-target molecular binding event is to leverage a riboswitch, which consists of an apta-

mer domain that is capable of interacting with a target, in addition to a regulatory domain that

controls expression of an associated gene [10–12]. Substrate binding to the aptamer domain

causes a conformational change to the structure of the RNA, which, in turn, controls the termi-

nation of transcription, the initiation of translation, or some other alternative splicing regula-

tion [12, 13]. Over 30 classes of riboswitches, representing a wide variety of regulatory

mechanisms, have been found to date spanning all three kingdoms of life [14].

Although naturally occurring riboswitches are of interest due to their regulatory roles in

cells, they are of limited benefit to applications such as “smart” nanoscale sensor technologies

or synthetic genetic circuits [15, 16], which demand a flexible sensing platform that can be

tuned toward chemicals or materials of interest. Therefore, a better mechanistic understanding

between riboswitch form and function is needed for them to be more widely employed toward

an engineering purpose. We assume that kinetics of the riboswitch response are generally rate-

limited by the folded conformation of the bound aptamer due to rapid folding/unfolding

kinetics [17]; resolving the details of this structural change is one of the most significant chal-

lenges to understanding riboswitch function [14]. To accurately predict these functions

requires a model that equally describes the statistical equilibrium of stable riboswitch confor-

mations across the free energy landscape, in addition to the non-equilibrium processes that

regulate transport of the signal into the cell, aptamer-ligand interactions, and the rates of tran-

scription and translation of the signal [15].

Computational approaches to predicting riboswitch function have focused on identifying

riboswitch genes, modeling the folding landscape, and predicting conformational changes [13,

14], and other efforts have leveraged in vitro systems to illuminate riboswitch dynamics at the

level of single molecules [12]. In contrast, fewer investigations have focused on modeling in

vivo riboswitch mediated signaling in response to ligand binding, wherein complexity in the

multiscale dynamics of ligand transport in the cell, aptamer-ligand binding, kinetics of tran-

scription and translation, and the metabolic state of the cell is nontrivial. We aim to help fill

this capability gap by developing a holistic modeling framework that is flexible enough to

describe the out-of-equilibrium processes needed to translate a bound aptamer state into an

observable fluorescent response indicative of activated riboswitch function. Although our

model is developed for a specific test chemical (hexahydro-1,3,5-trinitro-1,3,5-triazine), we

expect that it can be rapidly “reparameterized” to describe riboswitch activity for a broad set of

chemicals and aptamers.

Materials and methods

DsRed expression dataset from bacterial culture

We previously described detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with

Escherichia coli (E. coli) containing a novel RNA riboswitch [18] developed for an aqueous
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environment by means of expression of the fluorescent DsRed protein [19]. The expression

system consisted of an aptamer domain, linker sequence, and the DsRed Express2 gene. Assays

were performed in 48-well plates with 1 ml of LB media and 50 ng/ml ampicillin. A culture of

Escherichia coli was grown overnight in LB medium supplemented with 50 ng/ml ampicillin.

This culture was used to inoculate 48-well plates with an initial optical density at 600 nm

(OD600) of 0.05. Expression was induced by addition of 0, 0.44, 4.4, and 44 μM RDX followed

by incubation at 37 C with constant shaking at 150 rpm for 24 hours. Fluorescence was mea-

sured every 10 minutes using a BioTek Synergy HT plate reader (BioTek Instruments, Inc.,

Winooski, VT) with an excitation wavelength of 530 nm and an emission wavelength of 590

nm. Fluorescence expression data was modeled (see below), and this model was then used to

characterize the RDX detection efficacy of the riboswitch, and to provide insight into ribos-

witch characteristics and assay design constraints for efficient RDX detection. We generated a

standard curve using purified DsRed protein (BioVision, Milpitas, CA), and measured fluores-

cence of the DsRed protein using a BioTek Synergy HT plate reader (BioTek Instruments,

Inc., Winooski, VT) as previously described [18], with an excitation wavelength of 530 nm, an

emission wavelength of 590 nm, and a PMT sensitivity rating of 35. These data establish a

quantitative relationship between protein concentration and fluorescence (S1 Fig).

Mathematical model of riboswitch activation and response

At time t = 0, we add an aliquot of RDX to a culture of E. coli bacteria in the exponential

growth phase, and refer to the period of elapsed time, t, as the exposure time. Influx mecha-

nisms permit RDX transport across the lipid membranes and into intracellular cytosol, after

which we considered only three options for the fate of each molecule: it either binds to an

RNA aptamer, is removed from the cytosol via efflux mechanisms, or freely diffuses in an

unbound state. Binding of RDX to the aptamer results in a conformational change that permits

ribosome binding to the mRNA, which leads to expression of the DsRed gene from which

DsRed protein production and degradation follow. The accumulation of DsRed is quantified

in terms of a bulk measurement made across the bacterial population via fluorescence imaging,

which, according to the DsRed standard curve (S1 Fig), can be directly related to DsRed pro-

tein concentrations. Fig 1 illustrates our abstraction of the riboswitch sensing process.

Several assumptions are made about the aptamer-riboswitch-DsRed expression system that

reduces its overall complexity and makes it mathematically tractable, but at a cost of deempha-

sizing the influence of statistical fluctuations that might be important in some experiments

with fewer replicates. First, we assume that fluorescence of the DsRed expression system can

be explained by using a reaction-limited chemical kinetics formalism applied to biochemical

processes within bacterial cells. The implications of this assumption are that correlations

between biochemical fluxes extend to at least the size of the cell (i.e., the “well-stirred” hypoth-

esis); reversible transport of RDX across the lipid membranes rapidly establishes a chemical

equilibrium quantified by a partitioning constant; aptamer conformation time-scales are short

enough that folding dynamics can be neglected in favor of only the presence or absence of the

folded state; and that yield of the DsRed protein can be described entirely in terms of the acti-

vated riboswitch concentration.

Our second primary assumption is that mean total riboswitch concentrations, [r]tot, and

mean total RDX concentrations, [c]tot, are fixed, and that these molecules do not degrade sig-

nificantly over the course of the experiments. In particular, we split the mean riboswitch con-

centrations between those activated through aptamer binding, [r�](t), and those describing

aptamers not bound with RDX, [r](t): [r]tot = [r�](t) + [r](t). Mean RDX concentrations can be

similarly described, except that we make the distinction between mean RDX concentrations in

PLOS ONE Modeling a synthetic aptamer-based riboswitch biosensor

PLOS ONE | https://doi.org/10.1371/journal.pone.0241664 November 30, 2020 3 / 13

https://doi.org/10.1371/journal.pone.0241664


media outside of the cell, [cout](t), from those that are inside of the cell, [cin](t): [c]tot = [cout](t)
+ [cin](t) + [r�](t). Taken together, these assumptions lead to the ordinary differential equa-

tions shown in Table 1.

Finding an analytic model for the time-dependent, mean DsRed concentration, [p](t),
allows for a greater understanding of how each internal process contributes to the average

DsRed response, and would pave the way for rational designs of macroscale riboswitch sensor

systems. Unfortunately, the coupled system of ordinary differential equations described in

Table 1 has no general, closed-form solution. So we must yield to approximate methods to

Fig 1. Conceptual model for the aptamer based riboswitch reporter system, as described in Eberly et al. [18]. Here, a chemical of

interest accumulates within E. coli bacterial cells where it binds to the RNA aptamer, initiating translation of DsRed fluorescent protein via

the riboswitch system.

https://doi.org/10.1371/journal.pone.0241664.g001
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identify solutions that are of reasonable accuracy to provide mechanistic insight into the ribos-

witch system. One such method is the homotopy perturbation method [21], designed as a

method to solve nonlinear differential equations. It is a perturbative approach that, in many

cases, will converge sufficiently close to the exact solution upon calculation of only one or two

terms in the series. We applied this method to the model of Table 1, but it failed to converge

sufficiently close to the numerical solution by calculation of the 3rd term in the series, which

rendered it impractical for our purposes.

We resolved this problem by applying the method of time-scale decoupling to partition the

model system into distinct sets of either “fast” or “slow” biochemical transformations. The

advantage of this “quasi-steady-state hypothesis” approach [22] is that the assumed faster reac-

tions are, to good approximation, in chemical equilibrium when compared against the states

of the slower ones. This approximation is made in the spirit of the Briggs-Haldane steady-state

approach [22], and applied here to simplify the mathematical description of DsRed protein

production. When applied to the equations of Table 1, they yield

½p� tð Þ ¼
k5

k4

þ ½p�
0
�
k5

k4

� �

e� k4t þ

Z t

0

dsGðsÞe� k4ðt� sÞ; ð1Þ

wherein [p]0 is the DsRed protein concentration measured at t = 0, and the function G(s) is

Table 1. Rate equations and parameter values for the aptamer-based riboswitch sensor model.

Model Equations

Symbol Description Rate Equation

[cout] Mean free chemical concentration in aqueous media d
dt cout½ � ¼ k�

1
cin½ � � kþ

1
cout½ �

[cin] Mean free chemical concentration within cytosol of bacterial cells d
dt cin½ � ¼ kþ

1
cout½ � � k�

1
cin½ �

[r�] Mean chemical-riboswitch complex within cytosol of bacterial cells d
dt r

�½ � ¼ kþ
2
cin½ � r½ � � k�

2
r�½ �

[r] Mean free riboswitch concentration within cytosol of bacterial cells d
dt r½ � ¼ k�

2
r�½ � � kþ

2
cin½ � r½ �

[p] Mean DsRed peporter protein concentration within cytosol of bacterial cells d
dt p½ � ¼ k5 þ k3 r�½ � � k4 p½ �

Model Parameters

Symbol Description Value Unit

Computational Mathematical

kþ
1

Influx rate of chemical into cells 3.293 × 10−5 – s−1

k�
1

Efflux rate of chemical from cells 4.442 × 10−6 8.059 × 10−8 s−1

kþ
2

Association rate for riboswitch complex 6.962 × 10−6 – (μMs)−1

k�
2

Dissociation rate for riboswitch complex 2.239 × 10−6 – s−1

k3 DsRed production rate from riboswitch complex 1.209 × 10−4 1.244 × 10−4 s−1

k4 DsRed destruction rate 7.342 × 10−6 7.342 × 10−6 s−1

k5 De novo DsRed synthesis in absence of riboswitch complex 1.299 × 10−3 1.299 × 10−3 μM/s

P Partition ratio of cytoplasm to media concentrations at equilibrium – 7.413 –

KD Dissociation constant between chemical and riboswitch in cytoplasm – 0.3216 μM

[r]tot Total riboswitch concentration 3.481 3.512 μM

Some parameter values were identified through curve-fitting to either the shown rate equations or Eq (3) or to DsRed reporter fluorescence data (see Materials &

methods). Parameters fit to rate equations are referred to in this table as “computational” values, whereas those identified for Eq (3) are referred to as “mathematical”

values. The cytosol-media partition ratio, P, was approximated through equation with an experimentally derived RDX octanol-water partition ratio value [20].

https://doi.org/10.1371/journal.pone.0241664.t001
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defined as

G sð Þ≔
k3½r�tot

1þ
KD

½c�tot

1þ P
P
ð1 � eð1þPÞk�1 sÞ

� 1

:
ð2Þ

In these equations, k5/k4 is the steady-state DsRed concentration in absence of any chemical

(i.e., k3 = 0); P≔kþ
1
=k�

1
> 0 is the partition ratio of chemical measured in cytoplasm to that in

media and evaluated at long times (t!1); and KD ≔ k�
2
=kþ

2
is the dissociation constant for

chemical to riboswitch within cells.

Although the integrand of Eq (1) can be formally evaluated in terms of hypergeometric

functions, this approach is rather complicated and obscures contributions from the relevant

timescales to the DsRed dynamics. Alternatively, a reasonable and simple approximation to

the full expression for [p](t), valid at longer times and larger concentrations, can be obtained

by expanding Eq (2) in Taylor series to first order about t − s = 0. This choice of expansion

point represents the largest contribution to the integrand of Eq (1), and should therefore

encompass much of the contribution of G(s) to the integral of Eq (1). This leads to the follow-

ing equation:

½p� tð Þ ¼
k5

k4

þ ½p�
0
�
k5

k4

� �

e� k4t

þ
ð1 � e� k4tÞð1 � e� ð1þPÞk�1 tÞ

1þ
KD

½c�tot

1þ P
P
� e� ð1þPÞk�1 t

�

k�
1

k4

KD

½c�tot

ð1þ PÞ2

P
1 � 1þ k4tð Þe� k4t
� �

e� ð1þPÞk�1 t

1þ
KD

½c�tot

1þ P
P
� e� ð1þPÞk�1 t

� �2

2

6
6
6
4

3

7
7
7
5

k3

k4

½r�tot

ð3Þ

As illustrated in S2 Fig, Eq (3) is very close to results from the computational model of

Table 1: >84% and>96% agreement at, respectively, μM and mM concentrations, for all but

the shortest timescales. It also predicts accurate steady-state values:

lim
t!1
½p�ðtÞ ¼

k5

k4

þ
½c�tot

KD
1þP
P þ ½c�tot

� �
k3

k4

½r�tot: ð4Þ

As expected, the model predicts steady-state DsRed concentrations that exhibit sigmoid

concentration-response as a function of the chemical dose in media, [c]tot.

Model parameterization

Aptamer selection is achieved by screening an ensemble of aptamers with varying nucleic acid

sequences for their binding affinity to target chemical [23]. Although our model was developed

using data acquired for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), it could similarly

describe the sensor response to other chemicals. If chemical transport across lipid membranes

and binding with the riboswitch can be modeled with first-order chemical kinetics, then our

model is general enough that it could be applied to any number of water-soluble substances.

Although we produced a number of aptamer clones that exhibited similar affinity to RDX as

measured through binding assays [18], we fit our models to data acquired from the clone with

the highest binding affinity (i.e., Sequence 11 as reported in [18]). But, in principle, we could

reparameterize our models to any other such clone.

We can expect that values for our models’ parameters will generally be dependent on the

specifics of the aptamer-target interaction, strength of the riboswitch regulation, and the
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average chemical influx and efflux rates into and out the cytosol of the E. coli culture. If the cul-

ture has not been exposed to chemical, then any subsequently measured DsRed response can

be attributed to basal translational activity for DsRed within the cells. If we apply the condition

[c]tot = 0 to Eq (3), then we find that clone-specific control data can be used to identify the val-

ues for k4, k5, and [p]0 by using a curve-fitting methodology which minimizes an unweighted

least-squares objective functional.

Curve-fitting is carried out by applying Eq (3) to fluorescence measurements, which we

express as DsRed protein concentrations using a standard curve that empirically links DsRed

concentrations in media (S1 Fig, abscissa) with an associated fluorescence response (S1 Fig,

ordinate). All identified parameter values are collected into Table 1.

A value for the chemical-aptamer binding affinity (= 1/KD) can be found by using a cell-

free kinetic assay from which the riboswitch complex yield can be modeled with the reaction

mechanism: cþ rÐ
kþ

2

k�
2

r�. In this cell free assay, if we assume that riboswitch is not appreciably

degraded, destroyed, or otherwise removed from the system, so that the total concentration is

conserved, then [r](0) = [r]0. If we apply this condition in addition to an assumption that bind-

ing equilibrium is rapidly achieved, d[r�]/dt = 0, then we find:

½r�� ¼
½c�

KD þ ½c�
½r�

0
: ð5Þ

Although KD is formally the ratio of disassociation to association rate constants, a curve-fit-

ting methodology that operates on logarithmically scaled RDX concentration data can be used

to identify its value directly from the response of a binding assay (see S3 Fig): KD = 0.3216

[0.008968, 11.53] (95% confidence intervals in brackets).

The long-time limit for the ratio of chemical concentration in cells to media is given by the

equilibrium partition ratio, P, and can be reasonably estimated by the octanol-water partition

ratio [24]: P = 7.413 [20]. The remaining undetermined parameter values of Eq (3) are the

efflux rate constant, k�
1

, and total riboswitch concentration, [r]tot. These values were deter-

mined by fitting Eq (3) to the 45 μM RDX exposure data (black circles, Fig 2).

Results and discussion

Fidelity of the model to the riboswitch sensing system

We evaluate the performance of Eq (3), given parameter values identified for the ODE model

of Table 1 by curve-fitting the time-series data (Fig 2A), which permits a direct comparison

between models and helps to establish the validity of many of the simplifying assumptions

implicit in Eq (3). Specifically, if we put the “computational” parameter values listed in Table 1

into Eq (3), we generally find that the DsRed protein concentrations of both models closely

agree, with the best agreement for long times and high exposure concentrations. Although

model agreement varies with the RDX exposure (see S2 Fig), it is bounded between approxi-

mately 84% at the μM level of exposure to 96% at the μM level of exposure for incubation

times between approximately 102 and 107 seconds.

We find that if DsRed measurements are made on bacteria only briefly incubated in

exposed media, then Eq (3) is a poor substitute for the response of the full ODE model. (This

result does not hold if the mathematical model is independently fit to the experimental data, as

described below.) However, a riboswitch sensor that involves environmental placement and

continuous sampling will likely experience time scales long enough that steady-state condi-

tions can be reasonably assumed. In such circumstances, we can expect that Eq (3) will provide

a reasonable model from which to interpret the riboswitch response data.

PLOS ONE Modeling a synthetic aptamer-based riboswitch biosensor

PLOS ONE | https://doi.org/10.1371/journal.pone.0241664 November 30, 2020 7 / 13

https://doi.org/10.1371/journal.pone.0241664


However, both models fit the time-series data quite well, and, as expected, make identical

predictions of the steady-state response. Fig 2B shows the fidelity of Eq (3) if fit independently

to time-series experimental data acquired for the aptamer clone Sequence 11 employed by

Eberly et al. [18], for both control (R2 = 0.9903) and a 45 μM RDX exposure (R2 = 0.9841).

Both models capture dynamics of the DsRed response equally well, despite the moderate sim-

plifying approximations that led to Eq (3).

Linking exposure time to detection sensitivity

Exposure-response predictions of Eq (3), as fit to the experimental data, are illustrated in Fig 3

(bottom panel), and calculated from RDX exposures ranging from 10 nM to 1 mM after a sim-

ulated exposure time of t = 1 to 168 hours. Of note is that, while the magnitude of the DsRed

response increases with exposure time, making the overall response much more distinguish-

able from fluctuations in the surrounding environment, the difference between the initial and

final responses, as measured over the whole of the exposure range, also increases with the

Fig 2. Time series data for the riboswitch system generated from aptamer sequence 11, as described in Eberly

et al. [18]. Data represents both a control response (black circles) in addition to measurements from a 45 μM exposure

of RDX (blue circles). In this experiment, RDX concentrations are dissolved at time t = 0 in media populated with E.
coli bacterium bearing the DsRed riboswitch reporter system. DsRed concentrations are found by transforming

fluorescence data with a measured standard curve (S1 Fig). Panel (A) depicts these data fit to the ordinary differential

equation (ODE) model shown in Table 1, while panel (B) shows these data alternatively fit to Eq (3). All fits were

carried out by minimizing the value of a standard least-squares objective functional.

https://doi.org/10.1371/journal.pone.0241664.g002
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exposure time. This relationship can inform sensor design, because the exposure time is an

experimentally controllable parameter that can be chosen so as to exceed DsRed fluorescence

detection thresholds.

We quantify the sensor sensitivity of the riboswitch system, as the total RDX concentration

that elicits half of the maximal DsRed response, [c50], and can be found by solving the

Fig 3. Relationship between the elapsed time of an RDX dose dissolved in media populated with E. coli bacteria,

termed the exposure time, and the RDX concentrations associated with a half-maximal DsRed response (top panel,

circles). Response-response curves that link the magnitude of an RDX exposure with an associated DsRed response are

calculated using Eq (3) and shown for various exposure times (bottom panel, solid black lines).

https://doi.org/10.1371/journal.pone.0241664.g003
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equation:

½p� t; c50½ �ð Þ ¼
1

2
½p� t; 0ð Þ þ lim

½c�tot!1
½p�ðt; ½c�totÞ

� �

:

Fig 3 illustrates how this sensor sensitivity varies with exposure time (top panel, circles).

We find that [c50] decreases with longer RDX exposure times, meaning that the riboswitch sys-

tem is able to register substantial fluorescence for even relatively low RDX exposures, but at

the expense of a longer exposure time. We can fit a curve to this trend, which is found to follow

a power-law: [c50] = (τ/t)γ μM. The fitted parameters, with 95% confidence intervals, are found

to be τ = 219 [216, 224] hours, and γ = 1.0225 [1.0163, 1.0278]. Therefore, to very good approx-

imation, the sensor sensitivity and exposure time are inversely proportional:

½c50� �
219

t
mM; ð6Þ

for t in units of hours. As can be seen from Fig 3 (top panel), this equation implies that every

10-fold increase in the detection sensitivity requires an approximately 10 additional hours of

exposure. Thus, rapid measurements need to be constrained by the lower detection limit of the

fluorescence imager, because at these times the bacterial DsRed response is much less pro-

nounced, and therefore weaker and harder to detect. Finally, it’s worth noting that this rela-

tionship does not hold indefinitely, because eventually, an idealized system will reach a steady

state at an exposure time-scale on the order of t � maxf1=k�
1
; 1=k4g. After this time, we can

expect no further benefit from longer exposure times, because the riboswitch response should

be well modeled by the time-independent Eq (4).

Conclusion

Mathematical modeling of the riboswitch response indicated, somewhat counterintuitively,

that basal DsRed expression in no-exposure conditions may significantly contribute to the

overall magnitude of DsRed expression levels, which generally increases over moderate expo-

sure times. However, correlated with this increase is both a larger difference in the response

between the simulated lowest and highest RDX exposures, and an increase in the detection

sensitivity of the riboswitch system with longer exposure times (see Eq (6)).

At short exposure times, RDX detection is constrained not only by high levels of extrinsic

noise in the number of detected DsRed proteins (population heterogeneity), but also by the

intrinsic noise inherent to the biochemistry (chemical influx/efflux rates, DsRed translation

rates). As the number of DsRed proteins rise with longer exposure times, we can expect smaller

fluctuations, and, therefore, a greater consistency in the DsRed response. This follows from the

coefficient of variation in the number of proteins generated by a simple model of cellular pro-

tein abundance, in which a fixed probability for both protein creation and destruction of indi-

vidual proteins is assumed (see, e.g., the model of ref. [25]); the resulting probability

distribution is given by the Poisson distribution, which exhibits these properties. Additionally,

direct simulation of the chemical master equation also generates this distribution [26], and for

similar reasons. This is important, because the variance of a Poisson distribution is equal in

magnitude to its mean, which results in a coefficient of variation that varies inversely with the

square root of the mean number of molecules. Therefore, if protein production outweighs

destruction, leading to an increase in the average number of proteins, then the spread of the

distribution will decrease and becomes sharper, making our mean-field approach more rele-

vant for riboswitch sensor system. Given the stability of the DsREd Express2 protein (>48

hours) [27], it is anticipated that that this will be the case.
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With longer exposure times, overall DsRed fluorescence tends to increase (e.g., Fig 3), mak-

ing these near-equilibrium conditions more capable of eliciting the effects of lower RDX expo-

sure concentration, because the difference between the low and high RDX concentration

response also grows with time. Practically, this empirical relationship can be used to deduce

the minimum exposure time required to meet a minimum threshold for detection, which will,

in principle, vary with fidelity of the fluorescent detector.

Finally, our models have been developed to best describe a reporter response that is aver-

aged over bacterial populations, which have been assumed to persist in the exponential growth

phase. However, such growth is limited by, among other resources, the availability of a carbon

source. Realistically, E. coli remain in the exponential growth phase for <1 day, depending on

the substrate concentration of the prepared media. Therefore, growth rates (or lack thereof)

would be problematic for measuring and inferring reliable DsRed reporter response, as growth

and division manifests in the model via protein dilution. This fact remains a major challenge

for environmental detection via microorganisms, especially given that our results suggest that

longer exposure times are required for detection of more environmentally relevant chemical

concentrations. Therefore, complex soil and water matrices encountered in the environment

may pose additional challenges to reliable detection of RDX and other chemicals, which could

ultimately limit the environmental applicability of this biosensor to surface or ground water

sources.

Supporting information

S1 Fig. DsRed standard curve. Standard curve measured between DsRed protein concentra-

tion and fluorescence readout of a BioTek Synergy HT plate reader. Data were fit to a linear

model, [RFU] = slope × [DsRed], that quantitatively links DsRed protein concentration,

[DsRed], to a measured fluorescent response expressed in relative fluorescence units, [RFU].

In our curve fitting protocol for the DsRed standard curve, we first logarithmically scaled the

DsRed protein and associated fluorescent response data, because the DsRed protein concentra-

tion and fluorescence data both span multiple orders of magnitude in value. Taking the loga-

rithm of these data puts lower values on similar scales as the higher values, which avoids a

situation in which changes to the larger values in the least squares objective functional wash

out a change in the smaller values. This would otherwise erroneously produce a bias toward

the higher-valued elements of the dataset. The curve-fitted result is slope = 107.31[50.895,

226.24] (95% confidence intervals in brackets).

(TIF)

S2 Fig. Validity of mathematical approximations. Minimum agreement across all simulated

elapsed times between the ODE based model (Table 1) and Eq (3) of the main text, as plotted

against a range of total RDX concentration values. The approximate model, Eq (3), is quantita-

tively closer to predictions of the chemical kinetics model, Table 1, for larger total RDX con-

centrations.

(TIF)

S3 Fig. Aptamer clone binding assay. Cell free binding assay used to estimate binding affinity

of RDX to aptamer clone. These data correspond to the aptamer clone associated with the

highest binding affinity to RDX. Refer to Section IIC of the main text for further information.

A least squares objective functional was minimized using log-transformed data to result in KD

= 0.3216[0.008968, 11.53] (95% confidence intervals in brackets).

(TIF)
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