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Abstract

A joint analysis of location and scale can be a powerful tool in genome-wide association studies to uncover previously overlooked markers
that influence a quantitative trait through both mean and variance, as well as to prioritize candidates for gene–environment interactions.
This approach has recently been generalized to handle related samples, dosage data, and the analytically challenging X-chromosome. We
disseminate the latest advances in methodology through a user-friendly R software package with added functionalities to support genome-
wide analysis on individual-level or summary-level data. The implemented R package can be called from PLINK or directly in a scripting en-
vironment, to enable a streamlined genome-wide analysis for biobank-scale data. Application results on individual-level and summary-level
data highlight the advantage of the joint test to discover more genome-wide signals as compared to a location or scale test alone. We
hope the availability of gJLS2 software package will encourage more scale and/or joint analyses in large-scale datasets, and promote the
standardized reporting of their P-values to be shared with the scientific community.
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Introduction
Genetic association studies examine the relationship between

the genotypes of a single-nucleotide polymorphism (SNP;

denoted by G) and a quantitative phenotype (denoted by Y), by

testing the mean differences in Y according to the genotypes, oth-

erwise known as a location test. More recently, several reports

have investigated association with phenotypic variance of com-

plex quantitative traits (Par�e et al., 2010; Yang et al. 2012; Shungin

et al., 2017), by testing the variance differences in Y across the ge-

notype groups of a SNP, or known as a scale test, in hopes of find-

ing biologically meaningful markers. One possible explanation of

a significant scale effect is the presence of gene–gene (G�G) or

gene–environment (G�E) interactions; both referred to as G�E

hereinafter. Unlike a direct test of G�E interaction, a scale test

can be used to indirectly infer G�E without knowledge of the

interacting covariates, thus alleviates the multiple hypothesis

burden of testing all possible pairwise interactions, and the as-

sumption that all interacting environmental variables could be

(accurately) measured.
A more powerful approach to prioritize biologically relevant

candidates is to jointly evaluate location and scale effects

(Aschard et al., 2013; Cao et al. 2014; Soave et al. 2015). As

compared to other existing single-marker based joint tests, a joint
location-scale (JLS) association test (Soave et al. 2015) is easy to
implement on individual-level data or in a meta-analysis, requir-
ing only the location and scale P-values for each SNP, marking
the first generation of the JLS tool (https://github.com/dsoave/
JLS; accessed 2022 February 13). Since methods for genome-wide
association studies (GWAS) of location are well-established, the
main focus was on improving scale tests tailored for genetic data.
Soave and Sun (2017) generalized the well-known Levene’s test to
handle complex data structures often observed in genetic stud-
ies, such as correlated samples and dosage data, leading to the
next update, namely, generalized JLS (gJLS; https://github.com/
dsoave/gJLS; accessed 2022 February 13). Following the X-inclu-
sive trend to genome-wide analyses, robust and powerful loca-
tion (Chen et al. 2021) and scale tests (Deng et al. 2019) tailored for
X-chromosome are now available.

In this study, we describe a generalized joint location and
scale analysis tool (gJLS2) as an update to the JLS and gJLS meth-
odology for autosomes, with added functionalities that (1) sup-
port X-chromosome mean and variance association analyses, (2)
handle imputed data as genotypic probabilities or in dosage for-
mat, (3) allow the incorporation of summary statistics for loca-
tion and/or scale tests, (4) implement a flexible framework that
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can accommodate additional covariates in both the location and

scale association models, and (5) improve the computational

time required for large-scale genetic data such as the UK biobank

(Bycroft et al. 2018). We hope the availability of this unifying soft-

ware package will encourage more X-inclusive, genome-wide,

gJLS2 association analysis for complex continuous traits, particu-

larly for those believed to be enriched for genetic interactions.

Materials and methods
The software can be installed in an R environment from CRAN:

or github for the most recent version:

via the “devtools” package (Wickham et al. 2018). An accompany-
ing guide that documents each of the analytical options and sce-
narios is available at https://weiakanedeng.github.io/gJLS2/. Any
feedbacks/bugs can be reported under github’s issues tab
(https://github.com/WeiAkaneDeng/gJLS2/issues).

Data preparation
The gJLS2 software package requires the minimal inputs of a
quantitative trait and genotype data, which can be discrete geno-
type counts, continuous dosage genotype values or imputed ge-
notype probabilities. The genotype data can be supplied in PLINK
format via the R plug-in option using PLINK 1.9 (Chang et al. 2015)
or any other format that can be read in R with packages “BGData”
and “BEDMatrix” (Grueneberg and de los Campos 2019). The phe-
notype and covariate should be supplied in the same file, and if
sex is required for X-chromosome analysis, then it needs to be
the first column after individual IDs.

For smaller analyses or testing purpose, it is possible to use
the package in R GUI directly. However, for genome-wide analy-
ses on larger datasets, we recommend either Rscript commands
or as an R-plugin within PLINK combined with a high-performing
computing cluster environment. We will demonstrate all 3
approaches using the example datasets provided.

Example datasets
The package included 2 example datasets: one comprises of sim-
ulated phenotype, covariate data and real X-chromosome geno-
types from the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015), denoted by “chrXdat”; and another is based on
summary statistics from the Genetic Investigation of
ANthropometric Traits (GIANT) consortium for body mass index
(BMI) and human standing height (Yang et al. 2012; Yengo et al.
2018).

The dataset “chrXdat” consists of 5 hand-picked SNPs
rs5983012 (A/G), rs986810 (C/T), rs180495 (G/A), rs5911042 (T/C),
and rs4119090 (G/A) that are outside of the pseudo-autosomal re-
gion, to cover observed minor allele frequency (MAF; calculated
in females and rounded to the nearest digit) of 0.1, 0.2, 0.3, 0.4,
and 0.45, respectively. See Supplementary Material Section 2 for
more details on the simulated dataset. The summary statistics
data comprised of association P-values of SNPs with the mean of

BMI and height, under the column name “gL” for location, and
those with the variance, under the column name “gS.” The exam-
ple data only included chromosome 16 SNPs to keep the size of
example datasets manageable.

Location association
For autosomal SNPs, a linear regression fitted using the ordinary
least square (OLS) is flexible to accommodate additional covari-
ates and the default option. To account for related samples, the
generalized least square (GLS) method is used by specifying a co-
variance structure for error terms in smaller samples. Users can
either provide the covariance matrix or specify a structure for the
covariance matrix according to predefined subgroups. However,
for large population studies (n> 5,000), it is recommended to run
the location association analysis using the state-of-art linear
mixed models, such as LMM-BOLT (Loh et al. 2015) or SAIGE
(Zhou et al. 2018) and supply the results as location summary sta-
tistics for the joint analysis.

The novel contribution of gJLS2 is the addition of our rec-
ommended X-chromosome location association strategy
(Chen et al. 2021), which has good type I error control, is robust
to sex confounding, arbitrary baseline allele choice, uncer-
tainty of X-Chromosome Inactivation (XCI), and skewed XCI.
Our chosen X-chromosome association model achieves these
by simultaneously including the sex information, its interac-
tion with both the additive genetic effect and dominance ef-
fect. The default location test P-value is obtained by testing
the null hypothesis Ho : bG ¼ bGS ¼ bD ¼ 0 under the linear
model:

yi � b0 þ Cicþ bSSi þ bAGAdditive; i þ bDGDominance; i þ bGSGAdditive; i
� Si;

(1)

where GA is the additively coded genotype variable, GD is an indi-
cator variable for the female heterozygotes, the sex variable S is
coded with males as the baseline taking value 0 and females tak-
ing value 1, and C is a vector of covariates to be adjusted for. The
regression coefficients b0; c; bS are for the nongenetic covariates
in the model and bG; bGS; bD denote the regression coefficients of
interest, for the additive, GxSex, and dominance effects, respec-
tively. The function “locReg” can be called with the X-chromo-
some option and returns the default 3-degree of freedom (df) test
P-value:

Although the resulting 3-df test is robust to the choice of baseline

allele and status of XCI, a recent report (Pazokitoroudi et al. 2021)

has found “limited contribution of dominance heritability to

install.packages(“gJLS2”)

#install.packages(“devtools”)

devtools::install_github(“WeiAkaneDeng/gJLS2”)

data(“chrXdat”)

head(chrXdat)

> locReg(GENO¼chrXdat[, 7:11], SEX¼chrXdat$SEX,
Y¼chrXdat$PHENOTYPE, Xchr¼TRUE);

CHR SNP gL

1 X rs5983012_A 0.9877674

2 X rs4119090_G 0.9201569

3 X rs5911042_T 0.3898029

4 X rs986810_C 0.4619165

5 X rs180495_G 0.8767590
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complex trait variation” and the recommended 3-df test can only
be applied to discrete genotypes. Thus, an alternative 2-df test

without the dominance term is recommended and is the default

option for imputed SNPs.

Scale association
The scale component builds on 2 recent works that generalized
to dosage genotype, related samples (Soave and Sun 2017), and

the X-chromosome (Deng et al. 2019). Both are extensions of the

generalized Levene’s test via a regression framework. Besides a

more flexible characterization of sample dependence structure,
the generalization also allows analysis of imputed genotype data,

which would otherwise be challenging with a group-based vari-

ance heterogeneity test, such as the Levene’s test or the Brown-

Forsythe test.
The variance test P-value is obtained using a 2-stage general-

ized Levene’s test assuming additive variance effects. Briefly, the
residuals d was computed under Equation (1) using the Least

Absolute Deviation (LAD) algorithm, which gives the residuals in

terms of each observation’s distance with respect to the median

(rather than the mean as in OLS) and is the default option. The
absolute residuals were then fitted under the 3-df recommended

model for discrete genotype:

dieb0 þ Cicþ bSSexþ bAGAdditive þ bDGDominance þ bGSGAdditive; i
� Si:

(2)

The following examples show results from LAD and OLS algo-

rithms are very similar when the simulated phenotype is roughly

symmetric:

The imputed data are analyzed either by computing the dosage
value and used in place of G additively (2 df) without the domi-
nance term, or by replacing the genotype indicators for each ob-
servation, with the corresponding group probabilities (3 df).
Similar to the location association, sample relatedness is dealt
with using GLS for autosomal markers at the second stage of lin-
ear regression via the correlation matrix. Additional models, such
as a sex-stratified variance test, can also be specified for X-chro-
mosome. In this case, the scale test result is given by the Fisher’s

method that combines female and male-specific variance test
results.

Note that a “Flagged” column is appended for these results, indi-

cating the minimum genotype count in either females/males is

less than 30 (indicated by a value of 1) or not (indicated by 0).

This is based on the quality control that SNPs with a minimum

count below 30 should be removed to avoid inflated type I errors

(Soave et al. 2015; Deng et al. 2019).

Joint location-and-scale analysis
The joint analyses can be performed automatically as part of the

gJLS2 pipeline after running location and scale tests, where the

default option applies a quantile transformation to the quantita-

tive trait such that the location and scale test can be combined

without inflating the type I error rates.

Alternatively, summary statistics, i.e. P-values from location and
scale tests are allowed and can be combined via Fisher’s method to
give the corresponding test statistic for the joint analysis:

W ¼ � 2 log gLð Þ þ log gSð Þ
� �

� v2 4ð Þ; (3)

where gL denotes the location P-value and gS the scale P-value.
An important assumption underlying this simple method to

combine evidence is the normality of the quantitative trait, which
leads to gL and gS being independent under the null hypothesis.
Though empirically the analyses remain valid for approximated
normal distributions (Soave and Sun 2017), we strongly recom-
mend the user to follow the default option and quantile trans-
form the quantitative trait for location and scale association. We
expect the independence between gL and gS to hold for X-chro-
mosomal SNPs under appropriate location and scale models that
account for the confounding effect of sex, XCI uncertainty and
skewed XCI (Chen et al. 2021). The simulation study in Section 2
of the Supplementary Material was conducted to help readers
gauge the effect of non-normality on the gJLS P-values for X-chro-
mosome markers.

> scaleReg(GENO¼chrXdat[, 7:11], SEX¼chrXdat$SEX,
Y¼chrXdat$PHENOTYPE, Xchr¼TRUE)

CHR SNP gS

1 X rs5983012_A 0.1391909

2 X rs4119090_G 0.9828430

3 X rs5911042_T 0.1487017

4 X rs986810_C 0.9563390

5 X rs180495_G 0.3476929

> scaleReg(GENO¼chrXdat[, 7:11], SEX¼chrXdat$SEX,
Y¼chrXdat$PHENOTYPE, Xchr¼TRUE, loc_alg¼“OLS”)

CHR SNP gS
1 X rs5983012_A 0.1739062

2 X rs4119090_G 0.9999999

3 X rs5911042_T 0.1163023

4 X rs986810_C 0.9581589

5 X rs180495_G 0.3619056

> gJLS2(GENO¼chrXdat[ , 7:11],

Y¼chrXdat$PHENOTYPE, SEX¼chrXdat$SEX, Xchr¼TRUE)
CHR SNP gL gS gJLS

1 X rs5983012_A 0.9943538 0.1198837 0.3727472

2 X rs4119090_G 0.8881506 0.9794193 0.9911401

3 X rs5911042_T 0.3488576 0.1514217 0.2081701

4 X rs986810_C 0.4898597 0.9244773 0.8116064

5 X rs180495_G 0.8702304 0.3619588 0.67886814

> scaleReg(GENO¼chrXdat[ , 7:11], SEX¼chrXdat$SEX,
Y¼chrXdat$PHENOTYPE, Xchr¼TRUE, origLev¼T)

CHR SNP gS LevFemale LevMale Fisher Flagged

1 X rs5983012_A 0.1391909 0.5296098 0.08223648 0.1800391 1

2 X rs4119090_G 0.9828430 0.9143432 0.97557661 0.9939473 0

3 X rs5911042_T 0.1487017 0.1625983 0.40384172 0.2444805 0

4 X rs986810_C 0.9563390 0.5349616 0.78109151 0.7824831 1

5 X rs180495_G 0.3476929 0.9717918 0.14364539 0.4144558 1
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Scalability and using gJLS2 in non-GUI settings
The main contribution of the software is the ability to handle X-
chromosome (location and scale) analysis and it is not our aim to
compete with existing autosomal association tools that are
geared toward whole-genome computations. As a result, for both
location and scale association, data splitting remain our primary
strategy to deal with biobank scale data. We also implemented
the summary statistics option to encourage the inclusion of
genome-wide results (autosome) computed using existing soft-
ware as inputs for the location portion. For X-chromosome asso-
ciations, we recommend using gJLS2 in non-GUI settings and
provide 2 practical options for biobank-scale data.

For larger datasets, it is more convenient to run the joint anal-
yses using the PLINK R plug-in following the a typical GWAS pipe-
line. The R plug-in relies on the Rserve package to establish
communication between R and PLINK 1.9. The following script
demonstrates the joint analyses for X-chromosome SNPs that in-
cluded additional covariates.

Another option is to use the Rscript provided that allows addi-
tional arguments to change how frequently the results are writ-
ten to the output (–write) and to increase the number of cores
used (–nTasks). A core is an independent processing unit on a
central processing unit (CPU). Though a modern computer, usu-
ally containing 4–8 cores, is capable of handling parallel comput-
ing, we recommend the “split-apply-combine” strategy and
employing high-performance computing for large-scale analyses.
Scripts for both options are available from github (https://github.
com/WeiAkaneDeng/gJLS2/tree/main/inst/extdata).

To help assess the computational requirement at different data
sizes, we sampled with replacement from the UKB X-chromosome
data (restricted to 100 SNPs) to achieve sample sizes of: 1,000, 5,000,
10,000, 50,000, 100,000, 200,000, 300,000, 400,000, and repeated the
joint-location-scale analysis using a single core with 10GB memory
via (1) PLINK R plug-in and (2) Rscript. The reason for keeping the
100 SNPs to estimate the performance metric is because the analysis

can be easily divided to chunks and combined after. Figure 1 shows
the computational time and memory usage as a function of increas-
ing sample size. These results suggest that the gJLS analysis on data
with sample size up to 10,000 on less than 100 SNPs can be suitably
handled in R GUI such as Rstudio, which might be the preferred op-
tion for confirmatory analyses.

For an X-chromosome wide analyses on UKB (n¼ 488,377,
m¼ 15,179), the gJLS analysis took �16 h for PLINK (using 3.5GB
memory) and � 21 h (using 1.2GB) for Rscript. The memory effi-
ciency of Rscript is expected as the “BEDmatrix” only maps the re-
quired portion of genotype files into memory. However, the Rscript
can be parallelized, when using 4 cores with 20GB allocated mem-
ory, the wall clock run time was reduced to �13 h (using 14.0 GB).

Results and Discussion
The gJLS2 software supports the joint analysis on both individual-
level data as well as summary statistics. To highlight the func-
tions in our package, we present (1) an X-chromosome gJLS
analysis on UK Biobank (UKB) data (Bycroft et al. 2018) on 4 com-
plex traits previously studied in Deng et al. (2019); (2) a
chromosome-wide gJLS analysis on summary statistics of loca-
tion and scale from the GIANT consortium for BMI and height.

Application to UK Biobank data
The sex-stratified means and variances for these quantitative
traits are summarized graphically in Supplementary Figs. 1–4. A
quick visual inspection suggests that quantile normalization
should be applied, which is also the default options in gJLS2. We
restricted analyses to white British samples (n¼ 276,694), and for
BMI, we further excluded those with diagnosed type 2 diabetes
(n¼ 262,837). We included only bi-allelic SNPs and filtered based
on MAF< 0.01, HWE P-value <1E-5. A further check on sex-
stratified MAFs (Supplementary Fig. 5) confirmed that the
remaining 15,179 X-chromosomal SNPs are of good quality.

The genotype data can be supplied in PLINK binary format via
the R plug-in option using PLINK 1.9 (Chang et al. 2015) or any
other format that can be read in R with packages “BGData” and
“BEDMatrix” (Grueneberg and de los Campos 2019). The pheno-
type and covariate should ideally be supplied in the same file,
and if not, should have a common column to match samples. For
genome-wide analyses on larger datasets, we recommend the
use of a high-performing computing cluster and taking advan-
tage of multiple cores whenever available.

For the location and scale regression, we included age, genetic
sex, and the first 10 genetic principal components. Since there
are no additional arguments needed, such as dosage or related
samples, the analysis can be done using either a PLINK R-plugin
running on PLINK 1.9:

plink --bfile UKbiobank_ChrX_SNP_CLEANED \

--R gJLS2PLINK_Xchr.R \

--R-port 8221 \

--pheno bmi_pheno.txt \

--pheno-name BMI \

--covar bmi_pheno.txt \

--covar-name genetic_sex age PC1 PC2 PC3 PC4, PC5,

PC6, PC7, PC8, PC9, PC10 \

--out UKbiobank_ChrX_SNP_bmi

R CMD Rserve --RS-port 8221

plink --bfile ./input/chrX_5_snp \

--R run_gJLS2PLINK_ Xchr.R \

--pheno ./input/Pheno.txt \

--pheno-name pheno1 \

--R-port 8221 \

--covar ./input/Pheno.txt \

--covar-name SEX, covar1, covar2, covar3 \

--out ./output/testRun

Rscript run_gJLS2.R --bfile ./input/chrX_5_snp \

--pfile ./input/Pheno.txt \

--pheno pheno1 \

--Xchr TRUE \

--write 10 \

--nTasks 2 \

--covar SEX, covar1, covar2, covar3 \

--out ./output/testRun.results.txt
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or the Rscript option:

The base scripts for PLINK (gJLS2PLINK_Xchr.R) and Rscript
(run_gJLS2.R) are provided in the inst/extdata folder of the R
package along with the input files. It is worth noting the main
advantages of the Rscript option beyond its flexibility: (1) the
gJLS2 R package supports multi-core computing via the parallel
base package and the argument “nTasks” can be used to specify
the number of cores; (2) another useful feature is the “write” op-
tion that specifies the chunk size for the results to be written
while the analysis is running and thus minimizes loss in case an
interruption occurred.

Since the PLINK plug-in option only supports single-thread
computation, we fixed the number of cores to be 1. There is no
drastic difference between the 2 options, both took �20 h with
20G allocated memory (computing node specs 2xIntel E5-2683 v4
Broadwell @ 2.1 GHz), to complete the analysis for 276,694 unre-
lated European samples and 15,179 X-chromosome variants per
trait. The gL, gS, and gJLS2 P-values are presented using a
Manhattan plot, quantile–quantile plot, and a histogram
(Supplementary Figs. 6–9) for each of the complex traits. We also
tabulated a list of SNPs that did not pass the genome-wide signifi-
cance threshold of 5E-8 for gL, but did pass for gJLS in Table 1,
demonstrating the benefit of gJLS for additional genome-wide
discoveries.

Application to summary statistics
The Rscript is more flexible than the PLINK plug-in solution as it
can also handle analysis of summary statistics. The input file
should contain at least 3 columns with headers “SNP,” “gL,” and

“gS,” while the output file has an additional column “gJLS.” We
re-formatted the subset of chromosome 16 summary statistics of
location and scale obtained from the GIANT consortium for BMI
and height as inputs.

The gL, gS, and gJLS2 P-values are presented using a

Manhattan plot, quantile-quantile plot, and a histogram

(Supplementary Figs. 10 and 11). For chromosome 16, we gained

2 SNPs in DNAH3 gene that passed the genome-wide significance

using gJLS for BMI and an additional 23 SNPs for height

(Supplementary Table 1).

Concluding remarks
The gJLS2 software package is a versatile tool for genome-wide

discovery that is X-chromosome inclusive. As compared to previ-

ous versions, namely, JLS and gJLS, it has improved remarkably

in terms of methodology, flexibility, computational improve-

ments and most importantly, usability for large-scale data.

Meanwhile, we expect many new features to be added with ongo-

ing work. Naturally, the analysis of rare variants is a possible fu-

ture direction for scale association test under the regression

framework of a generalized Levene’s test. With the available

summary statistics, a systematic approach to prioritize SNPs that

takes into account the joint-location, scale effects, and functional

annotation is needed to produce relevant candidates for gene–en-

vironment interactions. Finally, apart from the improved signal

detection, the unbiased estimation of location effects for X-chro-

mosome and scale effects in general remain open questions, but

are expected to yield improved performance of polygenic predic-

tion.

Fig. 1. Computational usage of gJLS X-chromosome association analyses. The bars represent the memory in (Gigabyte) and wall clock time (seconds)
used to perform a gJLS X-chromosome association for 100 markers at various sample sizes (x-axis, per a thousand samples).

Rscript run_gJLS2.R --sumfile ./input/

GIANT_BMI_chr16_gJLS_summary.txt \

--out ./output/GIANT_BMI_Sum.chr16_results.txt

Rscript run_gJLS2.R --sumfile ./input/

GIANT_Height_chr16_gJLS_summary.txt \

--out ./output/

GIANT_Height_Sum.chr16_results.txt

Rscript run_gJLS2.R --bfile

UKbiobank_ChrX_SNP_CLEANED \

--pfile hip_pheno.txt \

--pheno HIP \

--Xchr TRUE \

--write 100 \

--covar age, genetic_sex, PC1, PC2, PC3, PC4, PC5,

PC6, PC7, PC8, PC9, PC10 \

--out UKbiobank_ChrX_SNP_HIP.results.txt
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Data availability
The gJLS2 package and the example datasets are available from
https://github.com/WeiAkaneDeng/gJLS2, an accompanying
guide for gJLS2 is available at https://weiakanedeng.github.io/
gJLS2/. The simulations in this paper were based on X-chromo-
some genotypes from the 1000 Genomes Project (http://www.
1000genomes.org), which can be freely accessed from the online
data portal. The genotype and phenotype data used to demon-
strate the X-chromosome analysis are available from UK Biobank
(https://www.ukbiobank.ac.uk/) release in March 2018 and under
project identification number 64875. Data access can be
requested with information provided here: http://www.ukbio
bank.ac.uk/using-the-resource/. The genome-wide summary sta-
tistics are made available from the GIANT data portal (https://por
tals.broadinstitute.org/collaboration/giant/index.php/GIANT_con
sortium_data_files).

Supplemental material is available at G3 online.
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Analytical strategies to include the X-chromosome in variance

heterogeneity analyses: evidence for trait-specific polygenic vari-

ance structure. Genet Epidemiol. 2019;43(7):815–830. doi:

10.1002/gepi.22247.

Grueneberg A, de los Campos G. “BGData - A suite of R packages for

genomic analysis with Big Data”. G3 (Bethesda). 2019;9(5):

1377–1383. doi:10.1534/g3.119.400018.

Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK,
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