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Abstract: Concerns regarding the overconsumption of natural resources has provoked the recovery
of biopolymers from food processing biomass. Furthermore, the current market opportunity for
pectin in other areas has increased, necessitating the search for alternative pectin resources. This
is also a step towards the sustainable and circular green economy. Mango peel is the byproduct
of agro-processing and has been used for high value-added components such as polysaccharide
biopolymers. Pectin derived from the peel is yet to be exploited to its greatest extent, particularly
in terms of its separation and physiochemical properties, which limit its applicability to dietary
fiber in culinary applications. The functionality of the mango peel pectin (MPP) strongly depends
on the molecular size and degree of esterification which highlight the importance of isolation and
characterisation of pectin from this novel resource. This article therefore provides a useful overview
of mango peel as a potential biomaterial for the recovery of MPP. Different extraction techniques and
the integrated recovery were also discussed. The utilisation of MPP in different industrial schemes
are also detailed out from different perspectives such as the pharmaceutical and biotechnology
industries. This review convincingly expresses the significance of MPP, providing a sustainable
opportunity for food and pharmaceutical development.

Keywords: extraction technique; fruit characteristic; mango peel biorefinery; pectic polysaccharide;
pectin source

1. Introduction

Fruits are widely used in agri-food industry in which large quantity of by-products in-
cluding pomace, peel, rind and seeds are generated [1,2]. This biomass is a potential source
for valuable bioactive compound recovery such as dietary fibres, carotenoids, polyphenols,
oils, vitamins and many other compounds [3]. Mango is one of the most consumed tropical
fruits, known for its high nutritive values and extensively cultivated in the tropical and
sub-tropical regions. Several preserved products of mango are commercially needed such
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as can, dried mango, frozen slices, purée, juices and nectar [4–6]. It is estimated that around
200,000 tons of biomass are generated during these processing and peels account for as
high as 25% of the volume [7]. So far, attempts have been made in trying to value-add such
the biomass from mango processing using integrated refinery approaches [8–13]. Besides
its high contents of carbohydrates, proteins, fats and various classes antioxidants such
as polyphenols, carotenoids and vitamins [14–17], this high-volume biomass is known as
a potential source of dietary fibre [10,18–20]. The soluble dietary fibre is a carbohydrate
polymer with more than 10 monomeric units that makes it is difficult to be hydrolysed
by endogenous enzymes in the human small intestine [21,22]. They include pectin, galac-
tomannan, inulin, gum while pectin is of high commercial need for functional foods and
pharmaceutical applications [23–26]. Besides, mango peel contains high cellulose con-
tent (30%) and lignin (16%) [27,28]. As a result, it was employed as a novel source for
biopolymer recovery. Additionally, it comprises of 5–20% of pectin with variable contents
of galacturonic acid, dependent upon the extraction methods and the cultivars [10,18–20].
To extract such the value-added biopolymers, the integrated isolation approach can be
used [29].

The global need for pectin as biopolymer amounted to $1 billion in 2019 and is
expected to rise to $1.5 billion in 2025 [26]. Commercial pectin is mainly recovered from
either apple pomace or citrus peel which are of different physicochemical functionalities
based up on the presence of pectin esterase of the raw materials [30]. Apple pomace
pectin forms a gel of high viscosity which is suitable as a medicinal polymer, while the
lighter colour of citrus pectin is preferable in the confectionery industry. Biopolymer pectin
for industry requires a minimum of 65% of galacturonic acid on ash and moisture-free
substances which limit other potential new resources for pectin recovery. In recent years,
the recovery of non-starch polysaccharides from fruit by-products has become a promising
strategy for the development of natural biopolymers [31]. Besides these, the information
on mango peel pectin (MPP) as a potential biopolymer for industrial applications is not
collective. In this study, the characteristics, value adding components and biorefinery
process of mango peel are discussed. Featuring the most-sought after pectin biopolymer, its
chemical structures and different extraction processes are highlighted along with possible
applications in different industries are collectively presented. This review provides a useful
baseline for substantial production of MPP as well as a guidance for the global policy of
zero-waste processing and sustainable used of natural resource.

2. Mango Peel as the Novel Source for Pectin Biopolymer
2.1. Mango Variety

A wide range of mango varieties are cultivated including those of native and new
bred cultivars. Therefore, the yield and the physiological attributes are diverse, depending
on their gene pools and further interaction with environmental conditions [32,33]. Physical
characteristics such as fruit weight, size and peel colour have been used to describe mango
varieties. These physical attributes also play a crucial role in consumption and industrial
processing. The commercial attributes of mango physiology are illustrated in Table 1. The
CIE colour space (L*, a*, b*) has been used to determine maturity index and the ripening
process of mangoes [34,35]. The information of length, width and breadth of mango
fruits are used for arithmetic mean diameter (Da) and geometric mean diameter [36] data
calculation. These values are regarded as physical parameters during fruit grading [37].
Likewise, the ratio of width-to-length or aspect ratio (Ra) indicates an ellipsoid shape
during the process of fruit development [38]. The greater value of Ra signifies more
advanced ripening stages of the fruits [39]. In addition, specific gravity as defined as fruit
soluble matters of the sugar contents along with firmness alteration can be typical used to
define the stage of maturity [5]. It is worth highlighting that both parameters intercorrelate
with each other, and greater values of Ra and sphericity denote an advanced stages of fruit
ripening [39]. Moreover, a higher fruit ripeness leads to a greater content of pectin from
fruit peel [40]. Wongkaew et al. [6] reported that the physical properties of fruit physical
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properties (Colour, Da, Dg, Ra, sphericity, surface area and percentage yield of fruit parts)
can be used to distinguish mango varieties.

The morphology of mango fruit comprises of three parts, namely pulp (mesocarp),
peel (epicarp) and seed kernel (endocarp), as illustrated in Figure 1. Mango pulp is a source
of a variety of phytochemical components including those of reducing sugars, amino acids,
aromatic compounds as well as functionally active ingredients, such as pectin, vitamins,
anthocyanins and polyphenols [41]. In processing, pulp is the most-consumed parts of
the fruit, while the peel and seed are usually discarded (accounted for 35–60% of the total
fruit weight) as biomass [7]. Peel (~5–17%) and seed (~7–17%) are known as byproducts
of mango processing and the amount depends on mango varieties. These are, indeed, the
potential resource for natural product biorefinery.
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References 
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** unpublished data by the first author; n/a = not available. 
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Table 1. Physical characteristics of different ripe mango varieties.

Mango
Varieties

Colour Length
(mm)

Width
(mm)

Breadth
(mm)

Volume
(mL)

Flesh
Weight

(%)

Peel
Weight

(%)

Seed
Weight

(%)
References

L* a* b*

Mahachanok 68.83 3.28 40.66 165.05 ** 66.42 ** 58.30 ** 313.89 ** 66.69 16.64 16.66

[6]
Chok Anan 69.98 5.55 43.09 111.77 ** 74.80 ** 63.1 ** 217.49 ** 67.32 14.32 18.29

Nam Dok Mai 72.26 6.74 36.63 140.14 ** 70.61 ** 62.10 ** 271.47 ** 73.15 14.42 12.43

Kaew 67.68 3.41 39.70 112.16 ** 70.66 ** 62.45 ** 209.54 ** 70.32 15.60 14.08

Rad 47.19 0.26 17.03 98.47 51.67 45.89 n/a n/a 5.40 n/a

[13]Ta Labnak 33.09 −6.01 9.51 87.26 81.47 69.17 n/a n/a 6.00 n/a

Sampee 47.43 3.28 20.36 93.62 55.69 47.65 n/a n/a 7.60 n/a

Nyala n/a n/a n/a 83.00 83.00 n/a 150.00 82.10 10.70 7.20

[42]Edelfursan n/a n/a n/a 92.00 92.00 n/a 250.00 81.57 10.53 7.90

Kaboom n/a n/a n/a 95.00 95.00 n/a 300.00 82.40 10.60 7.00

Alphonso n/a n/a n/a 94.60 73.40 60.60 214.40 74.58 14.19 11.22

[43]Kesar n/a n/a n/a 95.70 65.70 58.00 188.80 71.28 13.06 15.66

Totapuri n/a n/a n/a 123.60 70.80 66.60 261.50 71.33 16.42 12.25

** unpublished data by the first author; n/a = not available.

2.2. Value-Added Components from Mango Peel

As mentioned, peel and seed are the major by-products of the mango processing
industry. These biomasses are usually buried in landfill or used as animal feed that; the
fermentation process is generally toxic to the soil [44]. Previous reports claimed that
mango peel consists of various valuable phytochemicals, including pectin, carotenoids,
polyphenols and other bioactive compounds that can be used in the pharmaceutical in-
dustry [8,17,22,45]. However, these compositions are variable depending on the maturity
stage, locality, variety and climatic conditions where mangoes are produced.

As presented in Table 2, mango peel contains a variety of macronutrients viz., carbo-
hydrates, protein, lipid and crude fibre. Crude fibre is an important element to determine
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the significance of the by-products as sources of pectin recovery. In mango peel, the fibre
content ranges between 2–20% of the total mass. While citrus peels contain as high as
(>50%) dietary fibre and different varieties are currently used as raw material for citrus peel
pectin including those from Valencia orange [46], Persia lime [46], lemon [47] and sweet
orange [47]. Owing to its high fibre content, the peel can be used as an additive ingredient
to enhance the functional properties of food and feed [48,49]. Calcium is the largest mineral
constituent in the peel followed by magnesium, potassium and sodium, respectively [7].
The content of vitamin C ranges from 18–257 mg·g−1, depending again on the varieties.
The vitamin E of ripened mango peel is of a greater concentration than the green peel [41].

The polyphenol content in the peel varies from 55–110 mg·g−1 dry weight and higher
levels are found in the ripe fruit than they are in the unripe peel [16]. The peel is also the ma-
jor source of polyphenols that are basically higher than the pulp at all growth stages [50,51].
Mangiferin (C-glucosyl xanthone), a heat-stable and pharmacologically active phytochem-
ical, is typically found in high content of mango peel. Mangiferin illustrates various
bioactivities such as antiinflammation, anti-diabetic, immunomodulatory, antitumor and
antioxidant [52]. The amount of mangiferin and its derivatives is greater in the peel than in
the pulp [53]. As a result of its functional properties, mangiferin is commercially used in
term of therapeutic and cosmetics products [54] and food supplements [55].

Anthocyanins, water-soluble pigments, add red, blue and purple colours to the peels
of mangoes. The compounds are known for their beneficial effects in the prevention of
various diseases such as cancer, diabetes and neuronal and cardiovascular diseases, thereby
promoting human health [56,57]. Total anthocyanin content ranges from 3600–5650 µg·g−1

in the fully ripe stage and from 2030–3260 µg·g−1 in the raw and unripe stages [16]. The
major anthocyanins detected in various varieties of mangoes, namely cyanidin, pelargoni-
din, delphinidin, malvidin, petunidin and peonidin [58]. Regarding to their biological
properties, anthocyanins are comprehensively used as a substitute for artificial colorants in
foods and beverages [59,60].

Carotenoids are fat-soluble pigments that give peels and flesh their yellow, orange
and red colours. Mango peel contains high concentrations of carotenoids in the form of
β-carotene, a precursor for vitamin A [61]. The content of carotenoids generally increases
during ripening and is the highest at the fully-ripe stage [58]. Consumption of carotenoids
reduces the risk of developing certain cancers (cervical, ovarian, colorectal, prostate, breast),
cardiovascular disease, bone, skin, or eye disorders, mental health, metabolic health, during
pregnancy and early life and even provide cosmetic benefits [62,63]. As a result, carotenoids
are also widely used in food as a colourant, antioxidant and additive [64].

Table 2. Nutritional and phytochemical compositions of mango peel [6,13,41,49,65–69].

Compounds Content

Macronutrients (%)
Water 31.30–76.70

Carbohydrate 10.53–30.80
Protein 2.10–8.06

Total lipid 1.40–2.48
Total sugar 25.00

Total dietary fibre 1.40–20.53
Minerals (mg·100 g−1)

Calcium 150
Iron 40.6

Magnesium 100
Potassium 75

Sodium 50
Copper 10.4
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Table 2. Cont.

Compounds Content

Vitamins
Vitamin C (total ascorbic acid, mg·100 g−1) 18–257

Vitamin A (retinol activity equivalent, µg·100 g−1) 100
Vitamin E (α-tocopherol, mg·100 g−1) 0.25–0.59

Polyphenols (mg·100 g−1)
Kaempferol 3.6
Mangiferin 169

Mangiferin gallate 321
Isomangiferin 13.4

Quercetin 6.5
Rhamnetin 3-0 galactoside/glucoside 9.4

Flavonoids (catechin equivalent·100 g−1)
Anthocyanins (µg) 3600–5650

Cyanidin 22.10
Pelargonidins 22.73
Delphinidins 18.02

Malvidins 5.26
Petunidins 21.60
Peonidins 24.42

Carotenoids (µg) 3092
β-carotene 1310

β-cryptoxanthin 600
Lutein and zeaxanthin 299

2.3. High Value-Added Components Biorefinery

Table 3 details out research studies on the phytochemical biorefinery of mango by-
product, mainly peel. The biorefinery not only value-adds the biomass but also reduces
the biomass volume from the industrial processing of mango. Owing to a disposal of
the loss, transportation costs and limited availability of landfills are questionable for
sustainable processing. Thereby, mango peel valorisation through different techniques
would undoubtedly eliminate the disposal problem.

Table 3. Current research studies on mango peel biorefinery of various value-add products.

Biorefinery Aspects Products References

Biotechnological aspects

Ethanol production [27,70]

Wine fermentation [71]

Enzyme production
• Carboxymethyl cellulase

• Cellulase
• Pectinase

[72–74]

Lactic acid production [75]

Single cell protein production [76]

Sugar source [77]

Sources for functional
ingredients

Pectin [6,10,12,13]

Phenolic compounds [78–80]

Carotenoid [16,71]

Functional food ingredient
• Noodles, bread, biscuits, sponge

cakes, other bakery products
and yogurt

[81,82]

Dietary fibre
• Macaroni
• Beef burger

[83]
[78]

Other application areas Removal of heavy metals [84]

Pharmaceutical excipient [20,85]
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3. Mango Peel Pectin
3.1. Mango Peel Pectin Recovery

General pectin recovery includes a raw material pre-treatment stage, an extraction
operation and a post-extraction stage [86,87]. Nevertheless, the issue on the conventional
process, particularly the extraction step, is whether or not it is worth the energy and
economic demands that are currently required in the practice [88]. Therefore, several
sustainable and quicker alternative approaches to extract pectin from biological materials
have been developed. The innovative techniques for pectin extraction include enzyme-
assisted extraction, ultrasounds, subcritical fluids and microwave heating. The benefits
and drawbacks of the techniques are compared as shown in Table 4.

3.1.1. Conventional Heating Extraction (CHE)

Pectin is traditionally extracted in water acidified with 0.05–2 M sulfuric, nitric, phos-
phoric, acetic or hydrochloric acid between 80–100 ◦C for 1 h with continuous stirring [89].
Conventional extraction (solid–liquid extraction) depends on a number of factors such
as temperature, pH, solvent properties, solid to solvent ratio, dry solids, particle size
and diffusion rate [90]. For pectin extraction, mango peel powder was initially treated
with the acidified solution. Subsequently, the obtained solvent was treated with ethanol
solution [91]. Through this method, an MPP yield as high as 30% can be achieved from the
residue with the degree of esterification (DE) varying from approximately 60 to 90% [10,91].

3.1.2. Novel Extraction Techniques

• Microwave-Assisted Extraction (MAE)

MAE involves dielectric heating of plant molecules through the exposure of mi-
crowaves. The microwave irradiation accelerates cell rupture by a sudden temperature
rise and internal pressure increase inside the cells of plant sample, which promotes the
destruction of sample surface and in turns the exudation of pectin within the plant cells
into the surrounding solvents and increase [92–94]. The conventional “on-off” microwave
operation, however, may lead to the overheating of the raw material, which may ultimately
result in a low quality of MPP. Consequently, a phase controller (PCMAE), which regulates
the electrical power input into the magnetron thereby generating smooth and adjustable
microwave power was installed additionally for a better extraction performance [10]. The
applications of the MAE for pectin extraction from mango peel were reported and the
obtained pectin had higher content when compared with the CHE [10,12]. The microwave
provides more efficient heat than the CHE approach due to the intense formation of vapour
in polar substances generated by the electromagnetic field [95].

• Enzyme-Assisted Extraction (EAE)

The enzymes are used to improve extraction process by hydrolyzing matrix of the
plant cell wall. Cell wall degrading enzymes with minimum pectinolytic activity are used to
hydrolyze non-pectin plant cell wall components in enzymatic extraction of pectin [96,97].
The EAE depends on reaction time, type and concentration of enzyme, temperature,
pH value and particle size of plant material [98,99]. The EAE technique was applied to
recover pectin from multiple bioresources such as lime [100], passion fruit [101] and apple
pomace [102]. The yields of pectin were achieved with the enzymatic extraction which
were greater than that obtained with the CHE method. However, the pectin extraction
from mango peel using this technology has not yet been implemented.

• Ultrasound-Assisted Extraction (UAE)

Sound waves consist of mechanical vibrations, which can be applied in treatments
to the solid, liquid or gas with frequencies higher than 20 kHz [99,103]. Adapted for
pectin extraction, the collapse of cavitation bubbles near cell walls induced by ultrasound
produces cell disruption, thus causing stronger and enhanced solvent entrance into the
cells and intensification of the mass transfer [104,105]. For pectin recovery, Guandalini



Polymers 2021, 13, 3898 7 of 16

et al. [106] found that the UAE provided an alternative choice for pectin extraction from
mango peel because through this technique an MPP yield as high as 50% can be achieved
without interfering the physicochemical properties (galacturonic acid content and degree
of esterification).

• Subcritical-Assisted Extraction (SWE)

Subcritical water is liquid water at elevated pressure which is able to attain tempera-
tures higher than its normal boiling point without a change in phase. When such water is
used as solvent in extraction, the process is known as subcritical water extraction (SWE)
also known as pressurized hot water extraction (PHWE) and superheated water extraction
(SHWE) [107]. The SWE is stated as a green route for the valorisation of mango peel in
form of pectin product. Xiaa and Matharu [108] reported that the MPP extracted by the
SWE with no mineral acid supplementation resulted in a great yield of 18.34%, while the
DE of the pectin was more than 70%.

Table 4. Benefits and drawbacks of the novel techniques.

Extraction Techniques Benefits Drawbacks

MAE

- Reduce extraction time
- Low solvent requirement
- Improve the quality and quantity of pectin than

conventional technique
- Considered as green technology

[109,110]

- Corrosion problem on equipment
from acidified water used

[111]

EAE

- No use of acidic pH levels and high temperature
- No corrosion problem on equipment
- Consider as green technology
- Reduce need for certain pre-treatment steps
- Decrease in overall extraction time and a faster

extraction process
- Improve the pectin quality due to the mild

condition of extraction

[112–114]

- High cost of enzyme
- Scale-up of EAE process can be

difficult because of the uniqueness
in response of different enzymes to
changing environmental conditions

[97]

UAE

- Reduce extraction time, reduced energy
consumption and a relatively lower use of solvent

- Enhance the yield and kinetics of pectin during
recovery is biomass-specific plant

[111,115]

- Does not greatly reduce solvent
requirement after all

[116]

SWE

- High quality extracts
- Quick extraction process
- Save in solvent use (water) and
- making this technique suitable for food and

pharmaceutical compounds

[107,117]

- High cost of technique
implementation

- Pectin degradation

[118]

3.2. MPP Functionality

Pectin is mostly extracted from various plant sources and is of great variation in term
of quality. Consequently, pectin is purified and restructured in order to achieve constant
and reproducible gel strength, for example HMP is improved its quality by dilution with
sucrose. MPP is typical of high methoxyl content which is unable to form gel by interaction
with calcium ions due to an insufficient number of carboxylic groups [8,119]. Thus, to
improve its functionality for a specific purpose, de-esterification using either acidic or basic
chemicals is necessary. The characteristic compositions of the extracted MPP are illustrated
in Table 5.
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Table 5. Typical characteristics of mango peel pectin compared with commercial pectin.

Characteristics Commercial Pectin
[120]

Mango Peel Pectin

CHE [106] UAE
[121]

MAE
[6]

Galacturonic acid (%) >65 (typically 75–80) 76 52–53 n/a
Degree of esterification (%) 30–75 61 56–93 57–93

Degree of acethylation <5 (except for e.g., sugar beet
pectin) n/a n/a n/a

Neutral sugars (%) <15% n/a n/a n/a
Protein (N × 6.25) (%) <5% n/a 4.7–5.9 n/a

Molecular weight (g mol−1) 100,000–200,000 n/a 378,400–
2,858,000 n/a

n/a = not available; CHE = conventional heating extraction; UAE = ultrasound-assisted extraction; MAE = microwave-assisted extraction.

The residues of galacturonic acid (GA) (Figure 2a) are generally recognised as the
backbone of the pectin structure. Its chemical structure composes of an aldehyde group at
C1 and a carboxylic acid group at C6 [25]. The GA can be partially methyl-esterified at C6
with methanol and acetylated at the O2 or O3 positions with acetic acid (Figure 2b,c) [122].
The GA content can be determined by either the colorimetry [106] or high performance
liquid chromatography [123]. The ratio of methyl-esterified galacturonic acid groups to the
total galacturonic acid groups is defined as the degree of esterification (DE) [124–126]. The
degree of esterification and acetylation of pectin affects the gelling properties of the pectin; a
higher DE increases the capacity to form gels, whereas a higher degree of acetylation inhibits
gelling [127]. The analytical quantification of DE include the titrimetric technique [106,128],
gas liquid chromatography and colorimetric uronic acid analyses [129]. Furthermore, the
content of GA in foods is very important because their presence can affect the chemical and
sensorial characteristics of the matrix such as pH, total acidity, microbial stability, sweetness,
consumer acceptability and therefore, provide precious information on the wholesome quality
of the food or on the optimisation needed to impart select technical features [130]. Meanwhile,
the molecular weight of pectin depends on the raw materials and the extraction techniques.
Bagherian et al. [109] reported that continued heating of pectin extraction may lead to pectin
networks disaggregation, thus decreasing the molecular weight.
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In case of pectin recovered from mango peel, the GalA contents varied depending on
the extraction techniques. Process optimization of extraction methods to obtain the minimal
GalA level of 65% in MPP has been highlighted in many research studies [121,131,132].
Geerkens et al. [133] claimed that the preparation processes of the peel (blanching, particle
size reduction) and fruit ripening stage reduced the GalA content, however the highest
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content obtained was 48%. Regarding the DE content, the values were in a range between
56% and 93%, which categorized it as high methoxyl pectin [134]. Both GalA and DE
of pectic polysaccharides are involved in the commercial uses of pectin as gelling and
thickening agents [135,136].

3.3. MPP Applications

Pectins are widely used as additive in foods and beverages such as a gelling agent,
thickener, texturiser, emulsifier and stabiliser [137]. In recent years, pectin has been applied
as a fat or sugar alternative in low-calorie foods [12], dietetic food [138], food packag-
ing [139] and drug carrier [119]. Selection of pectin for a particular food depends on
many factors, including the texture required, pH, processing temperature, presence of
ions, proteins and the expected shelf life of the product [140]. MPP was recovered from
peel of ‘Nam dok mai’ variety (Mox > 8%) and was found suitable as fat replacement in a
Chinese sausage formular in its original form and colour [12]. Additionally, MPP obtained
from ‘Chok anan’ variety was utilised as a substrate for pectic oligosaccharide hydrolysate
with pectinase. The digested monosaccharide compositions were mainly fructose and
glucose while arabinose had prominent influence on prebiotic potentials of Bifidobacterium
animalis [141]. Thin films have been used as food packaging polymer and many drug deliv-
ery systems of oral, buccal, and transdermal routes. In one study, thin film was fabricated
from a mixture of LMP and MPP at 1:2 ratio with 40% (w/w) glycerol. The film attained
the highest elongation at break (8.80%) and lowest Young’s modulus (83.19 MPa) with
an increasing hydrophobicity when the content of MPP increased [8]. For a topical drug
delivery, de-esterified MPP with NaOH was proposed for thin film development [119]. In
this same study, the DE decreased when a higher volume (~3.0 mL) of 1 N NaOH at 25 ◦C
was employed in the preparation.

Wongkaew et al. [6] explained the industrial value chain process of MPP as illustrated
in Figure 3. First, the biomass was dried and pectin extraction can be achieved with MAE
techniques. The dried peel powder was suspended in diluted acidic solution (distilled H2O
adjusted to pH 1.5 with 2 M HCl) and heated in a microwave oven followed by separating
the residue from the solution using filtration technique. The liquid is combined with a 1:1
ethanol-water mixture to precipitate the pectin, and then it is separated by filtration. The
pectin was dried at 40 ◦C until a consistent weight was attained. The final product can be
applied to food additives or sources of prebiotic or in pharmaceutical application.

3.4. Future Direction of MPP Utilisation

Plant polysaccharides are vital for the modulation of human gut microbiota which can
impact on health generally recognised as prebiotics [142]. Among the most common prebi-
otic candidates, pectin oligosaccharide (POS) is receiving attention in the functional food
industry [143]. MPP can possibly be hydrolysed into small molecules of pectic oligosac-
charide or MPOS, as shown in Figure 4 [144]. The MPOS obtained highly stimulated the
probiotic growth as well as the total short-chain fatty acids (SCFAs) production of Bifidobac-
terium animalis TISTR 2195 and Lactobacillus reuteri DSM 17938. It is also confirmed in our
previous study that the MPOS illustrates a high potential as a prebiotic property [141]. The
subsequently obtained SCFAs provide a great variety of health effects, including inhibition
of pathogenic bacteria, constipation relief, reduction in blood glucose levels, improve-
ment in mineral absorption, reduction of colonic cancer and modulation of the immune
system [145].
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4. Conclusions

Peels account for around a quarter of the entire mango fruit which is generated during
the large-scale processing. Mango peel pectin can be retrieved from this biomass and its
functionality depends upon the physiochemical characteristics which are largely influenced
by varieties and extraction techniques. The high methoxyl content of the recovered pectin
limits its use as food additive only. This biopolymer is structurally conversed by the
de-esterification with alkaline treatment, resulting in its extended use as packaging or
pharmaceutical-drug carrier. Future direction is heading toward the use of this potential
biopolymer as functional prebiotic ingredient. This review pulls together the landscape
picture of mango peel pectin biopolymer and highlights the use of the biomass as alternative
biorefinery material to encourage a global sustainable development approach.
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