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Brown and brown-like adipocytes (BAs) are promising cell targets to counteract obesity

thanks to their potential to drain and oxidize circulating glucose and triglycerides.

However, the scarcity of BAs in human adults is a major limitation for energy

expenditure based therapies. Enhanced characterization of BA progenitor cells (BAPs)

and identification of critical pathways regulating their generation and differentiation into

mature BAs would be an effective way to increase the BA mass. The identification

of molecular mechanisms involved in the generation of thermogenic adipocytes is

progressing substantially in mice. Much less is known in humans, thus highlighting the

need for an in vitro model of human adipocyte development. Pluripotent stem cells

(PSCs), i.e., embryonic stem cells and induced pluripotent stem cells, help gain insight

into the different phases in the development of multiple cell types. We will discuss the

capacity of human PSCs to differentiate into BAs in this review. Several groups, including

ours, have reported low spontaneous adipocyte generation from PSCs. However, factors

governing the differentiation of induced pluripotent stem cell-derived BA progenitors

cells were recently identified, and the TGFβ signaling pathway has a pivotal role. The

development of new relevant methods, such as the differentiation of hPSC-BAPs into

3D adipospheres to better mimick the lobular structure of human adipose tissue, will

also be discussed. Differentiation of human PSCs into thermogenic adipocytes at high

frequency provides an opportunity to characterize new targets for anti-obesity therapy.

Keywords: human induced pluripotent stem cells, brown adipocytes, adipocyte progenitors, drug discovery,

cell-based therapy, obesity

INTRODUCTION

The development of obesity and associated metabolic disorders such as diabetes and heart diseases
is a major health issue. Obesity results from an imbalance between calorie intake and energy
expenditure. The scientific community is focusing attention on white adipose tissue (WAT) that
stores energy, and on means to fight its expansion. However, modern lifestyles are often not
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compatible with a reduction in energy intake. Current anti-
obesity drugs to reduce energy intake may have major
side effects for the patients. Bariatric surgery has proven
efficient for obesity, although long-term complications and
obesity relapse may occur. The identification of new anti-
obesity targets is thus urgently required. In contrast to WAT,
classical brown adipocytes and brown-like adipocytes (BAs)
dispersed in WATs, mainly in subcutaneous fat depots, are
specialized in energy expenditure thanks to their high content of
mitochondria expressing the uncoupling protein-1 (UCP1) (1).
Upon activation, BAs consume metabolic substrates and burn
fat and sugars via uncoupling of oxidative phosphorylation, in
turn inhibiting ATP synthesis (2). The ability of BAs to actively
drain circulating glucose and triglycerides to oxidize them can
prevent hyperglycemia and hypertriglyceridemia. BAs secrete
adipokines that may also contribute to metabolic effects (3).
BAs are therefore promising cell targets to counteract obesity
and type-2 diabetes. However, major obstacles hamper BA-
based treatment of obesity, including the scarcity of BAs in
adult humans.

HOW TO INCREASE THE MASS OF
BROWN-LIKE ADIPOCYTES IN OBESE
PATIENTS?

Brown adipocytes present at birth persist only around deep
organs in healthy adult humans. In addition, BA activity
is lower in overweight and obese individuals than in lean
ones (4). The proof-of-concept of the beneficial effects of
brown fat transplantation has been achieved in rodents, where
normoglycemia was restored in diabetic mice and obesity
reduced in Ob/Ob mice (5–7). This has given rise to the notion
of increasing the BA mass in obese patients as a therapeutic
approach to counteract obesity and its associated metabolic
complications. A challenge now is to identify an abundant
source of human BA progenitors (BAPs) for transplantation.
The generation of induced pluripotent stem cells from obese
patients as an unlimited source of BAPs that could be expanded
for autologous transplantation is a recently discussed option
[(8–10) and see below]. Another option that we discuss in
the present review is to promote endogenous BA generation
in obese patients. Understanding the mechanisms governing
the commitment of human pluripotent stem cells toward the
brown-like adipogenic lineage, as well as the differentiation
of BAPs into functional BAs, should help addressing
this issue.

HUMAN CELL MODELS AVAILABLE FOR
INVESTIGATING BROWN-LIKE
ADIPOCYTE BIOLOGY

The identification of molecular mechanisms involved in
thermogenic adipocyte generation is progressing substantially in
mice. However, much less is known in humans, thus highlighting
the need for an in vitromodel of human adipocyte development.
Because of the rareness of BAs in adult humans, immortalized

cell lines or multipotent stem cells derived from adipose tissues
of young donors (hMADS cells) are the main cellular models
used to identify pathways critical for adipogenesis. PAZ6 cells
are preadipocytes derived from the vascular stromal fraction of
infant BAT which have been immortalized ex vivo using the
SV40T and t antigens (11). Human preadipocytes from adult
BAT localized in deep neck fat can also be immortalized, as
recently described (12). hMADS cell lines have been isolated from
adipose tissues of young donors in our laboratory. They are not
immortalized cells, but can be maintained for several passages
in vitro thanks to the intrinsic high self-renewal capacity of stem
cells (13, 14). Interestingly, hMADS cells can be converted into
functional brown-like adipocytes (15). However, the features of
infant hMADS dramatically decrease with aging. In addition,
these cells are already committed in the adipose lineage, thus
precluding the possibility of investigating the earliest steps
of adipogenesis.

PLURIPOTENT STEM CELLS REPRESENT
A POWERFUL MODEL TO IDENTIFY
PATHWAYS GOVERNING THERMOGENIC
ADIPOCYTE DEVELOPMENT

Pluripotent stem cells (PSCs), i.e., embryonic stem cells (ESCs)
and induced pluripotent stem cells (iPSCs), display a quasi-
unlimited self-renewal capacity and are an abundant source
of multiple cell types of therapeutic interest. Some papers
in the early 2000s reported the potential of human ES cells
to generate adipocytes (16–18). These observations suggested
that PSCs could be a valuable tool to identify pathways
regulating the different steps of adipogenesis, i.e., from the
generation of adipose progenitors to their differentiation into
mature adipocytes. Then, Taura et al. demonstrated that human
iPSCs have an adipogenic potential comparable to that of
human ES cells (19). However, these authors did not address
the adipogenesis efficiency and the phenotype of adipocytes
generated. Surprisingly, a cocktail of hematopoietic factors
allowed Nishio and colleagues to report, for the first time,
the capacity of human iPSCs to generate substantial BAs (20).
These findings support the idea that, as previously shown in
mice (21), the BMP signaling pathway plays a critical role
in human brown adipocyte generation. However, Nishio did
not purify BAPs from differentiating hiPSCs and there was no
evidence that the stem cells progressed through a complete
adipogenic program to generate adipocytes. Ahfeldt et al.
purified hiPSC-derived fibroblasts that were able to undergo
differentiation into white adipocytes or BAs following forced
expression of adipogenic master genes (22). This strategy allows
the generation of human BAs and may be a powerful tool
for drug discovery, but the question arises as to whether
these cells with ectopic expression of adipogenic master genes
faithfully reflect physiological adipogenesis. More recently, a
procedure to isolate expandable BAPs from hiPSCs and to
generate high levels of functional BAs with no gene transfer
was described (8, 23, 24). West and colleagues clonally
derived several white- and brown- adipocyte progenitors
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from hES cell lines and assessed their adipogenic potential
when encapsulated in a biocompatible matrix approved for
use in human clinical studies (25). These models provide
an opportunity to make effective use of hiPSC features to
identify critical pathways governing the development of brown-
like adipocytes.

HUMAN PLURIPOTENT STEM CELL
COMMITMENT TOWARD THE
BROWN-LIKE ADIPOGENIC LINEAGE IS
NEGATIVELY REGULATED BY THE
RETINOIC ACID PATHWAY

Mohsen-Kanson and colleagues, in our laboratory, investigated
factors involved in the commitment of pluripotent stem cells
toward adipogenic lineages (23). Four hiPS cell lines and one
hES cell line were studied for that purpose. Adipogenic markers,
including UCP1, Dio2, PGC1α, and PRDM16, were detected
in differentiated cultures, indicating that cells having a brown-
like adipocyte gene program were spontaneously generated
during differentiation. However, the adipogenesis efficiency was
weak. Indeed, adipocytes were co-stained with LipidTox (for
triglyceride staining) and CD73 (an adipocyte cell surface
marker), and then quantified by flow cytometry (26). The data
showed that the number of LipidTox+/CD73+ cells represented
only 2% of cells in the differentiated cultures. Small-scale drug
screening to uncover signaling pathways regulating the earliest
steps of human adipogenesis revealed that the retinoic acid (RA)

pathway promoted hiPSCS commitment toward the adipogenic
lineage by increasing the number of LipidTox+/CD73+ cells
to 15%. In contrast, expression of the brown adipocyte specific
marker UCP1 was inhibited in RA-treated cultures. Together,
these data support the hypothesis that RA pathway activation
at an early development stage dramatically promotes the
differentiation of human PSCs into the UCP1-negative adipocyte
lineage, while inhibitingUCP1-positive adipocyte generation (see
Figure 1). This observation is reminiscent of the critical role
of RA in the early steps of mouse ES cell white adipogenesis
(27, 28). The identification of RA targets could provide a means
to uncover genes involved in the earliest steps of adipogenesis.
The combination of computational and experimental approaches
in mouse ES cells revealed an extensive network of transcription
factors that might coordinate the expression of genes essential
for the acquisition of adipocyte characteristics (29). This could
represent a unique comprehensive resource that could be further
explored to investigate human adipocye development.

CRITICAL ROLE OF THE TGFβ PATHWAY
IN HIPSC-BA PROGENITOR
DIFFERENTIATION

Several research groups, including ours, have reported that
hiPSC-BAPs display a low adipogenic capacity that hamper
their use in cell-based therapy and basic research. In fact,
Chen et al. first underlined the limited capacity of hiPSC-
derived progenitors to undergo adipocyte differentiation, a
feature that is often observed by authors but not always

FIGURE 1 | Regulation of brown-like adipose progenitor generation by RA and TGFβ pathways. Treatment of early differentiated hPSCs with retinoic acid (RA) for a

short period of time (between days 3–5) inhibits the generation of brown-like adipose progenitors (BAPs) while promoting the generation of white adipose progenitors

(WAPS). The TGFβ pathway inhibits both the generation of BAPs and their differentiation into mature adipocytes.
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pointed out (30). Interestingly, the low adipogenic differentiation
potential is not restricted to hiPSC-derived cells as cells derived
from human hESCs display the same feature, thus ruling out
the possibility that the low hiPSC-adipogenic capacity could
be due to incomplete reprogramming. The low adipogenic
potential of adipose progenitors is also not dependent on the
methods used to derive them from PSCs (31). Overall, these
observations indicated that appropriate culture conditions had
to be set up to unlock hPSC-BAP adipogenesis. Ascorbic acid,
EGF, hydrocortisone, activin A and IL4 have been shown
to regulate hiPSC-BAPs differentiation (8, 23, 24, 32) (see
Table 1). However, TGFβ signaling has a pivotal role. The
TGFβ pathway has emerged as a critical anti-adipogenic player
through the Smad 2/3 activation (33–35). Deletion of TGFβ
receptor 1 in mice has been shown to promote brown-like
adipogenesis within white adipose tissue, thus supporting a
model where TGFβ receptor signaling plays a role in regulating
the pool of BAPs (36). The Smad2/3 pathway was found to
be active during hiPSC-BAP differentiation, suggesting that
bioactive TGFβ family members were secreted, which might
lock differentiation (24). In agreement with this hypothesis,
Su et al. showed more recently that the expression of TGFβ-
ligands and -receptors increased during the differentiation
of FOXF1 mesoderm progenitors toward adipocytes during
hiPSCs development (8). The anti-adipogenic role of the TGFβ
pathway has also been functionally demonstrated via use of
the TGFβ inhibitor SB431542 (37). Inhibition of the active
Smad 2/3 pathway upon SB431542 addition during hiPSC-BAP
differentiation induced a sharp increase in UCP1 expression and
in the number of mature BAs (8, 24, 38). Figure 1 illustrates
the regulation of brown-like adipocyte generation from hPSCs
by the retinoic acid and TGFβ pathways. Wankhade and
colleagues proposed that negative regulation of PGE2/Cox-2
by TGFβ is involved in the recruitment of brown-like adipose
progenitors (36). Interestingly, inhibition of the TGFβ pathway
is not a prerequisite for adult adipose tissue-derived adipose
progenitor differentiation. The low hiPSC-BAP adipogenic
capacity compared to human adult-BAPs is reminiscent of the
findings of Wang et al. who described distinct mechanisms
regulating differentiation of embryonic-like and adult adipose
progenitors in mice (39). Our hypothesis is that several
pathways inhibit the development of PSC-BAs, which means
that small molecules must be used to unlock differentiation.
We also hypothesize that the current 2D culture conditions
are not effective in promoting hiPSC-BAP differentiation. The
development of new in vitro culture methods better mimicking
the structure of human adipose tissue could now help decipher
relevant regulators of BA adipogenesis.

THE NEXT STEPS TOWARD GAINING
GREATER INSIGHT INTO THE
DEVELOPMENT OF HUMAN BAs: 3D
ADIPOSPHERES GENERATION

The weak efficacy of hiPSC-BAP differentiation might partially
be explained by the culture conditions, which do not mimic

TABLE 1 | Pathways regulating brown/brown-like adipocyte generation from

human pluripotent stem cells.

hPSCs Pathways/facors References

hESCs, hiPSCs BMP7, VEGFA, FLT3LG,

IL6, IGF2

Nishio et al. (20)

hESCs, hiPSCs Retinoic acid Mohsen-Kanson et al. (24)

hiPSCs BMP7, activin A Guenantin et al. (32)

hiPSCs Ascorbic acid,

hydrocortisone, EGF

Hafner et al. (38)

hiPSCs IL4 Su et al. (8)

hiPSCs TGFβ Hafner et al. (38) Su et al. (8)

the physiological microenvironment in which cells normally
reside within adipose tissue. Cells are conventionally grown
as monolayers in 2D, which is out of line with the in vivo
situation. Adipose tissue exhibits a complex lobular architecture
that plays a functional role in adipogenesis (40). Indeed,
adipose tissue is highly vascularized and made up of lobules,
corresponding to clusters of adipocytes, separated from each
other by a structured extracellular matrix (41). Interestingly, it
has been proposed that the adipocyte browning phenomenon
specifically occurs in these lobules (42). In an effort to enhanced
the physiological relevance of in vitro studies, 3D culture
technologies and bioengineering methods for seeding different
cell types in an organoid-like structure are highly promising
(43–46). 3D cultures represent a bridge between traditional
cell culture and live tissue. But, could these new technologies
be applied to hiPSC-BAPs maintenance and differentiation?
It is interesting to note that hiPSC-BAs have been generated
by several teams via the formation of hiPSC-embryoids in
suspension (20, 22, 23, 38). This strongly suggests that hiPSC-
BAPs could be maintained in 3D culture conditions. The
next challenge will be the generation of 3D hiPSC-brown-like
adipospheres resembling human adipose tissue. The challenges
will include to enrich hiPSC-brown-like adipospheres with
endothelial cells and macrophages embedded in an extracellular
matrix allowing functional bidirectional interactions between the
microenvironment and adipocytes.

CONCLUSIONS

Human pluripotent stem cells provide an opportunity to
characterize pathways that play a role in the different steps
of thermogenic adipocyte development. Some factors have
been identified, but their impact on other hiPSC-derived cells
of interest such as white adipocytes, endothelial cells and
macrophages, has yet to be determined and integrated in a
relevant model. 3D culture of hiPSC-adipospheres in which BAs
interact with cell types that are present in the adipose tissue
microenvironment will provide a more suitable physiological
in vitro condition that should lead to the identification of
druggable pathways to counteract obesity and its associated
metabolic disorders.
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