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Abstract: In over a century since its discovery, Alzheimer’s disease (AD) has continued to be a global
health concern due to its incurable nature and overwhelming increase among older people. In this
paper, we give an overview of the efforts of researchers towards identifying potent BACE1 exosite-
binding antibodies and allosteric inhibitors. Herein, we apply computer-aided drug design (CADD)
methods to unravel the interactions of some proposed psychotic and meroterpenoid BACE1 allosteric
site inhibitors. This study is aimed at validating the allosteric potentials of these selected compounds
targeted at BACE1 inhibition. Molecular docking, molecular dynamic (MD) simulations, and post-
MD analyses are carried out on these selected compounds, which have been experimentally proven
to exhibit allosteric inhibition on BACE1. The SwissDock software enabled us to identify more than
five druggable pockets on the BACE1 structural surface using docking. Besides the active site region,
a melatonin derivative (compound 1) previously proposed as a BACE1 allostery inhibitor showed
appreciable stability at eight different subsites on BACE1. Refinement with molecular dynamic (MD)
simulations shows that the identified non-catalytic sites are potential allostery sites for compound 1.
The allostery and binding mechanism of the selected potent inhibitors show that the smaller the
molecule, the easier the attachment to several enzyme regions. This finding hereby establishes that
most of these selected compounds failed to exhibit strong allosteric binding with BACE1 except for
compound 1. We hereby suggest that further studies and additional identification/validation of
other BACE1 allosteric compounds be done. Furthermore, this additional allosteric site investigation
will help in reducing the associated challenges with designing BACE1 inhibitors while exploring the
opportunities in the design of allosteric BACE1 inhibitors.

Keywords: Alzheimer’s disease; BACE1; multisite targeting; allosteric inhibitor; molecular docking;
molecular dynamics (MD) simulations

1. Introduction

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder discovered
in November 1906 [1,2]. The extracellular β-amyloids (Aβ) plaques and intracellular
neurofibrillary tangles (NFTs) are cardinal AD pathological features [1,3,4]. β-amyloids
aggregate when either β-secretase or γ-secretase cleaves the amyloid precursor protein
(APP). β-amyloids accumulation can also occur when both β and γ secretase proteins
concurrently (Figure 1) cleave APP. At the N-terminal of the APP, the β-secretase cleavage
results in more harmful soluble β-amyloid precursor protein (sAPPβ) and C99 amino acid
fragments [1]. The amino acids produced by β-secretase mainly consist of Aβ-40 [1,5],
which are often cleared by a combination of lysosomal and protease processes or conjugates
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and exhibit harmful effects. Subsequently, the cleavage by γ-secretase at the C-terminal
results in peptides of the length 30–43 Å [1,5]. The cleavage by γ-secretase is regarded as
non-amyloidogenic (Figure 1) because it produces nonreactive P3 peptide (in the middle
segment) in addition to intracellular carboxy-terminal fragment (CTF) [6,7]. Further cleav-
ing of APP at the extracellular domain with β-secretase or α-secretase at the distal region
results in the amyloidogenic pathway. This cleavage produces β-amyloid fragment plaques
in the middle segment with a soluble sAPPβ N-terminal [6,7].

Alzheimer’s disease facts and figures (2021) showed that about 6.2 million people in
the United States of America are living with AD-related dementia and this incidence might
increase to about 13 million by the year 2050 [1,8,9]. Globally, approximately 600 billion
American dollars are required to care for a 35 million population living with AD-related
dementia per annum, and this amount is reportedly 1% of global Gross Domestic Product
(GDP) [1,10].
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ability (persons > 60 years) and helping them with the preventions intended to modify the 
risk factors. Furthermore, taking advantage of the modern neuroimaging and cerebrospi-
nal fluid examinations and subsequent data analysis in early diagnosis of the persons at 

Figure 1. Illustration of APP amyloidogenic and non-amyloidogenic pathways [1,11]. The cleavage
mechanism by γ-secretase is non-amyloidogenic, while β-secretase or α-secretase cleavage results in
the amyloidogenic pathway. CTFα and CTFβ are alpha and beta carboxy-terminal fragments, AICD
represents the amyloid precursor protein intracellular domain.

The early symptoms of AD include disruption of daily life activities due to memory
loss; difficulty in understanding visual images and completing known tasks; challenges
with identification, speaking, and writing new words; disorganization; and constant mood
swings [12,13]. Available AD treatments have focused on decreasing the level of Aβ

aggregation and the accumulation of hyperphosphorylated tau. An alternative approach is
using drugs to reverse the symptoms, prevent tissue/cell damage, reduce fats/swollenness,
inoculate, and for hormonal treatment [14]. Currently, some tau-related therapies are
under clinical trial. For an efficient AD treatment approach, early treatment assessment
strategies and diagnostic biochemical markers are crucial [15]. The current research on AD
treatment is three-fold. This includes identifying populations with higher vulnerability
(persons > 60 years) and helping them with the preventions intended to modify the risk
factors. Furthermore, taking advantage of the modern neuroimaging and cerebrospinal
fluid examinations and subsequent data analysis in early diagnosis of the persons at the
preclinical stage. And finally, the identification of disease-modifying compounds to inhibit
Aβ and the NFTs accumulation [16].
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Since its discovery in 1999, BACE1 has had a primary focus on the reduction of
β-amyloid plaques in the brain. Although there is no approved BACE1 inhibitor [17],
evidence of its inhibition towards AD management remains feasible. Its inhibition is
one of the therapies targeted toward AD management [18,19]. Researchers have made
relentless efforts to design potential BACE1 inhibitors with desirable properties in the
reduction of Aβ accumulation in the brain. Six potential BACE1 drugs such as Atabecestat,
Umibecestat, LY3202626, Elenbecestat, Lanabecestat, and Verubecestat, showed initial
benefits in reducing the amyloid-beta plaques responsible for AD-related symptoms [18–20].
Several complications from these BACE1 drugs at phase II/III clinical trials informed
discontinuation [21,22]. There is a need to understand why these BACE1 drugs failed.
Good knowledge of the inhibiting potentials and properties of BACE1 inhibitors serves as a
prerequisite for the development of molecules with high selectivity and specificity [18–20].
Also, more attention on BACE1 non-active sites inhibition might be a promising approach
in targeting them in AD management.

BACE1 is a family of the aspartate protease with a characteristic catalytic dyad
(Asp32/228) at its active site, required for substrate cleavage [23,24]. The β-hairpin loop
(flap), through its dynamic conformations, controls the movement of the substrate into the
active site. The flap residues are 67–75 besides the binding subsites S1, S2, S3, S4, S1′, S2′, S3′,
and S4′. Residues Leu30, Phe108, Ile110, Ile118, and Trp115, within S1 and S3 subsites, make
up the hydrophobic region, while S2 and S4 hydrophilic region comprise residues Lys9,
Ser10, Thr72, Gln73, Thr231, Thr232, Arg235, Arg307, and Lys321. Other hydrophilic sites
include the S3′ and S4′ with residues Pro70, Thr72, Glu125, Arg128, Arg195, and Trp197.
The S2′, which is amphipathic (both hydrophobic and hydrophilic) and located closer to
S4′, contains residues Ser35, Val69, Ile126, and Tyr198. The catalytic dyad is at the center of
S1′ (with residues Ile226 and Val332) subsite [24,25]. Figure 2 shows the summary BACE1
binding pockets, substrate cleavage, and anti-BACE1 binding to the non-catalytic region.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 18 
 

 

the preclinical stage. And finally, the identification of disease-modifying compounds to 
inhibit Aβ and the NFTs accumulation [16]. 

Since its discovery in 1999, BACE1 has had a primary focus on the reduction of β-
amyloid plaques in the brain. Although there is no approved BACE1 inhibitor [17], evi-
dence of its inhibition towards AD management remains feasible. Its inhibition is one of 
the therapies targeted toward AD management [18,19]. Researchers have made relentless 
efforts to design potential BACE1 inhibitors with desirable properties in the reduction of 
Aβ accumulation in the brain. Six potential BACE1 drugs such as Atabecestat, Umibec-
estat, LY3202626, Elenbecestat, Lanabecestat, and Verubecestat, showed initial benefits in 
reducing the amyloid-beta plaques responsible for AD-related symptoms [18–20]. Several 
complications from these BACE1 drugs at phase II/III clinical trials informed discontinu-
ation [21,22]. There is a need to understand why these BACE1 drugs failed. Good 
knowledge of the inhibiting potentials and properties of BACE1 inhibitors serves as a pre-
requisite for the development of molecules with high selectivity and specificity [18–20]. 
Also, more attention on BACE1 non-active sites inhibition might be a promising approach 
in targeting them in AD management. 

BACE1 is a family of the aspartate protease with a characteristic catalytic dyad 
(Asp32/228) at its active site, required for substrate cleavage [23,24]. The β-hairpin loop 
(flap), through its dynamic conformations, controls the movement of the substrate into 
the active site. The flap residues are 67–75 besides the binding subsites S1, S2, S3, S4, S1′, 
S2′, S3′, and S4′. Residues Leu30, Phe108, Ile110, Ile118, and Trp115, within S1 and S3 sub-
sites, make up the hydrophobic region, while S2 and S4 hydrophilic region comprise res-
idues Lys9, Ser10, Thr72, Gln73, Thr231, Thr232, Arg235, Arg307, and Lys321. Other hy-
drophilic sites include the S3′ and S4′ with residues Pro70, Thr72, Glu125, Arg128, Arg195, 
and Trp197. The S2′, which is amphipathic (both hydrophobic and hydrophilic) and lo-
cated closer to S4′, contains residues Ser35, Val69, Ile126, and Tyr198. The catalytic dyad 
is at the center of S1′ (with residues Ile226 and Val332) subsite [24,25]. Figure 2 shows the 
summary BACE1 binding pockets, substrate cleavage, and anti-BACE1 binding to the 
non-catalytic region. 

 
Figure 2. Illustration of BACE1 active site (primary binding site), binding subsites (secondary 
sites), and anti-BACE1 attachment [20]. The characteristic catalytic Asp32/228 dyad hydrolyzes the 
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sites), and anti-BACE1 attachment [20]. The characteristic catalytic Asp32/228 dyad hydrolyzes the
substrate or reversible inhibitor; other non-catalytic residues are involved if an inhibitor binds at
secondary sites.
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Allosteric inhibition is a form of noncompetitive inhibition that occurs at another
protein site different from the active site [26]. In allosteric inhibition, the inhibitor binds
to a distant site away from the active site, rendering the active site unfit for the substrate
to bind [26,27]. We lately reviewed different studies from researchers on BACE1 allosteric
sites inhibition and exosite-binding antibody development [20]. The survey facilitates the
documentation of some inhibitors with potential propensities to the BACE1 allosteric sites
(Figure 3). Most of these compounds identified using experimental approaches are yet to
be explored at the molecular level to evaluate if they indeed interact at the allosteric regions
of BACE1. However, some phytocompounds, including 3,5,7,3′,4′-pentamethoxyflavone
(PMF) [28], nor-rubrofusarin 6-O-β-D-glucoside [29], loganin [30], and gamma-linolenic
acid [31] have been proposed through docking and kinetics study as allosteric inhibitors.
Besides, Rombouts et al. [32] applied a fragment-based virtual screening approach to
identify BACE1 inhibitors, which bind at the other subsites without interacting with
Asp32 and Asp228. Integrated analysis, including nuclear magnetic resonance (NMR),
fluorescence resonance energy transfer (FRET) assay, and ThermoFluor (TF), produced six
hits [32]. Refinement and analysis showed that four of these compounds [32] competitively
bind with OM99-2 [33]. X-ray atomistic interaction revealed that one of these hits occupied
the S1 and S3 subsites without interacting with the catalytic Asp32 and Asp228 (Figure 3).
Compound 12 with protein data bank (PDB) [34] code 5MXD [32] showed an IC50 value of
0.5 mM, which is significant. Although the interaction pose occurred close to the BACE1
active site region, we assume this mechanism as a potential allosteric inhibition.
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Figure 3. Zoomed-in 3D snapshot of BACE1 crystal structure complexed with compound 12 (PDB
code: 5MXD) devoid of Asp32/228 interaction [32]. The compound binds at the flap region of BACE1
and we generated this image with the Discovery Studio R2017 [35].

Herein, we apply molecular modeling methods, including molecular docking and
molecular dynamics (MD) simulations to unravel the interaction of some potential allosteric
inhibitors with BACE1. Readers may be puzzled by the uniqueness of the present work
since there exist investigations on BACE1 allosterism. Indeed, there are propositions
on BACE1 allosteric or secondary sites inhibition, there is still a knowledge gap at the
molecular level using computational methods, like MD simulations. Besides, Pietro et al.’s
(2017) study of conformational ensemble and binding mode analysis of some multisite
inhibitors using MD and docking method [36], studies that explore multisite targeting of
BACE1 towards drug design for AD are still scarce. In this study, we selected compounds
(Figure 4) proposed by different authors [28–31,37–41] as potent BACE1 allosteric inhibitors
for some computational experiments. Docking analysis revealed that these compounds
bind at allosteric sites but are highly stable at the active site. Our observation aligns with the
kinetic experiments and suggestions available in the literature [28–31,37–41] for the various
compounds. Only compound 1 (a melatonin derivative) with 88% inhibitory activity at
5 µM BACE1 concentration [37] showed appreciable stability at six different allostery
pockets. We further refined the stability of the representative molecule (compound 1) at the
BACE1 binding region to establish if these sites are transient or long-lived using several
metrics. Understanding how potent small inhibitors modulate and inhibit BACE1 at the
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molecular level would enable us to manipulate synthetic enzymes or design drugs for AD
treatment.
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Figure 4. The selected potential allosteric inhibitors of BACE1 with reported IC50 values (no data
for anisoperidone and * indicates extrapolated from 88% inhibition of BACE1 at 5 µM). Besides
LY2811376, all the molecules are naturally occurring compounds or their derivatives. LY2811376
0.9 nM [38,39]. Gamma-linolenic acid 76 µM [31]. Sargahydroquinoic acid 4.4 µM [40]. Anisoperi-
done [41]. Compound 1 2.84* µM [37].

2. Materials and Methods
2.1. System Preparation

BACE1 X-ray 3D structures are available as several complexes in the PDB repositories.
We selected 6PZ4 [42] to maintain consistency with previous studies [1,43]. Investigations
have shown favorable outcomes with BACE1 mono-protonation of Asp32 [1,44], hence, we
protonated Asp32 using PROPKA [45] at pH 7. Protein structure refinement entails using
the Maestro protein preparation wizard package [46] to add hydrogens, assign bond orders,
remove water and non-ligand molecules. We added missing residues in MODELLER
9.19 [47] implemented in the UCSF Chimera [48]. The ligands were prepared for docking
in GaussView 6.0.16 [49], optimized in Avogadro [50], and saved in Mol2 format for the
docking study.

2.2. Docking

Docking is a molecular modeling method that involves predicting the preferred orien-
tation of one molecule when bound to another molecule [51]. It requires computational
software compatible to dock small compounds into a macromolecule including protein
structures [52]. The conformations of the docked ligand-enzyme complex prediction in-
volve assessing the different poses of the ligand within the receptor’s binding site. The
scoring of the various poses enables predicting the molecular mechanisms, the binding
free energy of the complex, and nonbonded interaction properties [53]. Over the years, the
combination of docking and further binding free energy predictions remained useful in
designing protease inhibitors such as HIV and BACE1 proteases [54,55].

We used SwissDock online docking software [56,57] to search for the regions where
the selected compounds bind to the BACE1. SwissDock automatically prepares the ligand
and enzyme structures before docking using a webserver. The implemented docking
algorithm is the CHARMM force field [58] to offer an accurate docking approach. Therefore,
ligands and the protein files (in Mol2 and PDB) automatically convert to CHARMM
format after upload. Although prediction of ligand poses are premised on experimentally
identified binding sites, the SwissDock is advantageous because it enables flexible docking
[56,57]. This unconstrained docking facilitates several ligand conformational orientations
within the enzyme. The automated process also reduces human errors by using the web
interface in generating alternative input files and parameters while interpreting the docking
outcome [56]. SwissDock webserver is incorporated with the Apache web server, PHP
(opensource technology) [59], which has dual Xeon E440 2.83 GHz at 1.7 Å and 16 GB. The
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docking procedures include minimizing at 100 steps steepest descent to remove any clashes
inherent from adjusting the protein structure. Also, it uses a 5 kcal/mol.Å−2 constraint to
restrict nonphysical movements of heavy atoms during minimization.

2.3. Molecular Dynamic Simulations

MD MD simulation is an approach in computational modeling to explore the con-
formational dynamics of molecules [60]. Molecular simulation provides a similitude of
real-time possibilities to predict protein or molecule behavior with or without interacting
with other molecules [61]. MD simulation is crucial in drug design; it facilitates binding
and catalytic mechanism prediction after identifying a molecule with a plausible propensity
for a target [62,63]. Many researchers have indicated MD as crucial to refine, validate, and
improve docking evaluation [61,64]. There are several commercial, non-commercial, and
web-based MD simulation programs for molecular modeling studies [63] in which the
AMBER suite [65] is a prominent one.

We performed MD simulations on the AMBER 18 program package integrated with
graphics processing units (GPU) [66] using the particle mesh Ewald method (PMEMD) [67]
package with the Sander module. The long-range electrostatic interactions cut-off is at
12 Å. The simulation pre-step involves generating a partial atomic charge for the ligand
using the General Amber Force Field (GAFF) [68] of the ANTECHAMBER module. The
GAFF is a simple harmonic function developed as a complete and suitable force field for
rational drug design [69]. Further procedures are topology and coordinate preparation,
enzyme-ligand coupling, solvation, and neutralization. Explicit solvation was done with
the Leap module of the AMBER 18 package in a TIP3P orthorhombic water box at 10 Å
to any edge. The pre-MD production steps are partial minimization, total minimization,
heating, and equilibration.

The partial minimization was at 10,000 steepest descent steps with 10 kcal/mol.Å−2

harmonic restraint on all heavy atoms to relax the system and remove potential atom
clashes. We also run a full minimization with another steepest and conjugate gradient
descents at 5000 steps each without constraints. Systems heating was from 0 K to 300 K for
300 ps using Langevin dynamics, 1 ps collision frequency, and a 5 kcal/mol.Å−2 applied
harmonic restraints at a constant volume. We subsequently equilibrated for 500 ps at
300 K under constant pressure and temperature (NPT) ensemble. The final step is MD
simulation for 120 ns at 2 fs time step without any restraints at 300 K and 1 atm in the NPT
ensemble switching on the Langevin temperature scaling [70] and Berendsen barostat [71]
algorithm for temperature and pressure, respectively. The molecular dynamic simulation
also involves applying the SHAKE algorithm [72] to constrain hydrogen atoms.

2.4. Post-Simulation Analysis

We measured system stability through root-mean-square deviation (RMSD) calcula-
tion. The RMSD trajectory of the protein backbone alpha carbon (Cα) generated with the
CPPTRAJ [73] module uses Equation (1) for its estimation. The standard deviation of the
interatomic distance between Cα backbone atoms of two amino acids v and w at n points
in Equation (1) represents vi as Cα coordinates in v at the time i, and wi is the coordinates
of Cα atom in w at the time i.

RMSD(v, w) =

√
1
n

n

∑
i=1
||vi − wi||2 (1)

The radius of gyration (RoG) is the moment inertia of atoms from their center of mass.
RoG is often applicable in quantifying the molecular rigidity of a system [74]. The RoG
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(Equation (2)) is the square root of the inertia moment of atoms, where n is the number of
atoms, ri represents the atomic position, and rm signifies the mean position of all atoms.

RoG =

√
1
n

i=0

∑
n
(ri − rm)2 (2)

We estimate the root-mean-square fluctuation (RMSF) to predict the conformational
changes on a per-residue basis. Equation (3) shows the RMSF equation whereby xi(j)
represents the i-th Cα atom position in the j-th model structure, and (xi) denotes the
averaged location of the i-th Cα backbone atom in all models.

RMSF =

√√√√ 1
n

n

∑
j
|xi(j) − (xi)|2 (3)

Further analyses include secondary structure prediction with the definition secondary
structure of protein (DSSP) approach of Kabsch and Sander [75] implemented in the
CPPTRAJ program. The DSSP approach involves analyzing the most likely secondary
structure assignment through the 3D structure of a protein. It entails interpreting atom
position in a protein and calculating the hydrogen bond (HB) energy between all atoms.
DSSP algorithm ignores any hydrogen available in the input structure then computes the
significant hydrogen positions after placing them at 1.0 Å from the backbone nitrogen in
the reverse direction from the backbone carbonyl bond [75]. The assignment completes by
using the top two HBs in N and C=O to predict the most likely secondary structure class
for each residue in the protein.

3. Results and Discussion
3.1. Allosteric Sites and Prediction

Blind molecular docking with SwissDock generated different binding poses at various
sites on the BACE1 protein structure. All the compounds (Figure 4) show favorable
interaction with BACE1 widely around the active site region and sparsely at other domains
(Figure 5). This observation indicates that these compounds are selective for the BACE1
active site over other subsites. We notice a significant overlay of LY2811376 poses on
the BACE1 flap tip as the only identified allostery site. The observation is consistent
with previous reports [38,39] on LY2811376 modulatory and inhibitory potentials. All the
predicted sites are feasible subsites as suggested in a survey of ligand-binding modes of
co-crystallized BACE1 structures [76] and molecular modeling study [36].

Zoomed-in profile of all compounds’ interactions at the BACE1 active site is avail-
able in the supporting information (SI) captioned as Figure S1. Gamma-linolenic and
sargahydroquinoic acids with the most favored binding affinity (Table 1) at BACE1 active
site show two distinct hydrogen bond (HB) interactions (Figure S1) via Thr33/Gly34 and
Gly34/Gln73 (Table 2), respectively. Electrostatic interaction from hydrogen bonding is
imperative for inhibitor stability at the active site of an enzyme. The electrostatic effect
represents an approach to predict catalysis [77]. Compound 1 shows an interaction at eight
different subsites on the BACE1 scaffold (Figure 6), thereby indicating the molecule as
a potent allostery modulator and multitarget directed ligand (MTDL). The compound is
relatively sizeable compared to others (Figure 4) with unique functional groups, including
amide. These physicochemical properties make compound 1 flexible with the propensity
to attach at several regions on the BACE1 scaffold through different molecular interactions,
including electrostatic and van der Waals (Figure 6).
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Figure 5. Binding modes of the allostery inhibitors on BACE1 through docking. LY2811376 converges
mainly at the active site and partially on top of the flap and gamma-linolenic acid binds favorably at
the primary site and two other secondary sites as predicted previously [31]. Sargahydroquinoic acid
and anisoperidone interact at the active site and extend to the flap tip, while compound 1 binds at
several regions.

Table 1. Full fitness and binding energy (in kcal/mol) predicted from docking of potent allostery
molecules to BACE1 active site. The co-crystalized ligand (AM6494) of 6PZ4 binds preferentially at
the catalytic active site of BACE1 as proposed [42] and validates the accuracy of the docking method.

AM6494
(Internal Ligand) LY2811376 Gamma-Linolenic Acid Sargahydroquinoic Acid Anisoperidone Compound 1

Full fitness −1610.66 −1868.32 −1868.37 −1849.84 −1814.99 −1882.12

Binding energy −8.47 −7.80 −7.97 −8.64 −7.91 −7.51

Table 2. Predominant interactions of some of the docked compounds including their binding energies.

Compound Class Binding Energy in
kcal/mol

Residues Forming
Hydrogen Bond

Residues Forming
Electrostatic Interaction

Sargahydroquinoic acid Meroterpenoids −8.64 Gln73, Gly34 Gly74, Gly73

Gamma-linolenic acid Meroterpenoids −7.97 Gly34, Thr33 Val31, Ash32, Thr33, Gly34,
Ser35

Ly2811376 Antipsychotic drug −7.80 Ash32

Leu30, Val31, Ash32, Gly34,
Thr72, Gln73, Gly74,

Lys107, Phe108, Leu119,
Asp228

Anisoperidone Psychotic drug −7.91 Ser35 Ash32, Ser35, Gly230
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Figure 6. The interaction profile of compound 1 for its various poses on the BACE1 scaffold. The
first and second values below each pose are full fitness and binding energy in kcal/mol, respectively.
Allos. site signifies allosteric site, the dashed green and blue lines represent classical hydrogen bond
and bridging water HB, respectively.

Table 1 shows the full fitness energy and the predicted binding scores for all the potent
molecules’ interactions at the active site. The binding poses scored using their full fitness
and clustered show interaction energy values within −7.51 and −8.64 kcal/mol. Although
with the lowest binding score, compound 1 has the most favored full fitness of its moieties in
the BACE1 active site. Its binding energy to other binding regions within the enzyme ranges
from−6.12 to 7.10 kcal/mol with favorable fitness scores (Figure 6). The interaction of Thr232
and flap region residues buttress previous molecular docking prediction of compound 1
binding pose [37]. To give a clearer picture of the stability of compound 1 interaction to
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BACE1 at the different binding subsites, we simulate each complex (Figure 6) using the
amber force field. The molecular docking approach enables us to unravel druggable regions
for potential multisite targeting in BACE1 towards AD treatment.

3.2. Protein Structural Changes

We assess changes to the BACE1 backbone structure when bound to compound 1
using RMSD calculation of the protein Cα atoms. In molecular modeling, RMSD scoring
enables conformational dynamics and system stability prediction. Figure 7 depicts the
RMSD plots per time in which allosteric sites 2 and 3 (Figure 6) are unavailable because
their MD simulation failed. The data indicate the relative stability of the protein’s primary
structure over the 120 nanoseconds production run. Each complex shows appreciable
overlap with relative stability around 90–120 ns, indicating that all the protein structures
converged without large-scale conformational transitions. RMS deviation higher than 3.5 Å
is a potential indication of significant BACE1 conformational switch in domains such as
flap opening and closing [43].
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Figure 7. Evolution of the alpha carbon backbone atom root-mean-square deviation (RMSD/angstrom)
over 120 ns molecular simulations for compound 1 binding to various regions on BACE1 structure.
Allos. site represents the allosteric site and the definition for each site including the interaction residues
is available in Figure 6.

Compound 1 binds to the active site with an average RMSD of 2.162 ± 0.206 Å, while
allosteric sites 1, 4–8 show mean RMSD scores within 1.766 and 2.072 Å (Table 3). This
result denotes that compound 1 binding at the active site increases the protein backbone
dynamics compared to the six potential allosteric sites. Note that the minimum RMSD
value is 0 Å, and allostery site 4 shows the lowest outcome in all the parameters (Table 3),
while the free BACE1 structure has an average RMSD value of 3.75 ± 0.44 Å [43].
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Table 3. Analysis of the RMSD (in Å) scores over the 120 ns simulation time. Std. represents standard,
and zero is the minimum RMSD value in all cases. Allos. site equals allosteric site.

Structure Mean Std. Deviation Sum Median Maximum

Active site 2.1621 0.2055 259,457.3803 2.2042 2.6966

Allos. site1 2.0978 0.2361 251,733.1464 2.1311 2.7724

Allos. site4 1.7662 0.2415 211,943.7953 1.8211 2.3821

Allos. site5 1.8605 0.2358 223,259.2948 1.8680 2.5829

Allos. site6 1.9718 0.1835 236,610.3866 1.9719 2.6936

Allos. site7 2.0477 0.2511 245,728.2049 2.0577 2.8403

Allos. site8 2.0715 0.2863 248,582.0876 2.1185 2.8550

To estimate the effect of compound 1 interaction on BACE1 intrinsic arrangement
during the simulation, we estimate the protein secondary structure using the DSSP [75]
method. Figure 8 shows that the ligand binding at the various spaces induces small
changes to the protein structure. For instance, the binding of compound 1 at allosteric site
1 diminishes the alpha arrangement to anti around residues 335–338. BACE1 has a few
highly folded alpha helixes (pink color, Figure 5). Alteration of the helix to anti (Figure 8)
might impact the protein’s structural stability significantly. The DSSP map of allosteric sites
4–8 (SI, Figure S2) is like the active site (Figure 8).
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3.3. Allostery Dynamics

We use the RMSF metric to probe how compound 1 dynamically perturbs the motion of
the entire protein structure. The computation includes all atomic flexibility (both backbone
and sidechain atoms) to identify the effect of the studied molecule at the various regions on
BACE1 per residue. RMSF is a crucial concept to evaluate protein dynamics and individual
residue flexibility [78]. The RMSF projections for compound 1 binding (Figure 9) are
fascinating, with a high spectrum separation between the active site and others (potential
allosteric sites). This outcome signifies that compound 1 binding to allostery sites decreases
BACE1 flexibility, whereas residue mobility is high when bound to the active site. The
fluctuation pattern and projection for active site binding (Figure 9) are akin to our previous
simulation of apo BACE1 RMSF [43], denoting that compound 1 binding at the active
region is most likely inconsequential on the protein mobility, thus supporting Panyatip
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et al. [37] in silico predictions. Eighteen residues show very high fluctuations (>20 Å) with
the highest RMSF of 23.422 Å (see maximum value in Table 4) in Ser58 for the active site
system.
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Figure 9. Per residue (a total of 385) fluctuation through all-atom root-mean-square fluctuation
(RMSF/angstrom) scoring for compound 1 binding to several regions on BACE1. Allos. site represents
the allosteric site and the definition for each site including the interacting residues is available in
Figure 6.

Table 4. Statistics of the RMSF (in Å) scores per residue. Std. represents standard and Allos. site
represents the allosteric site and the definition for each site including the interaction residues is
available in Figure 6.

Structure Mean Std. Deviation Sum Minimum Median Maximum

Active site 12.7287 4.4411 4900.5407 1.8308 12.7957 23.4217

Allos. site1 1.1061 0.5945 425.8476 0.4607 0.9276 4.6406

Allos. site4 1.2339 0.6990 475.0518 0.4862 1.0253 6.0701

Allos. site5 1.1837 0.7235 455.7218 0.4885 0.9607 5.4793

Allos. site6 1.0945 0.6632 421.3987 0.4608 0.8835 4.8497

Allos. site7 1.3478 0.9132 518.9077 0.4959 1.0523 7.1664

Allos. site8 1.2023 0.6809 462.8932 0.4824 1.0027 5.1997

We propose that the allostery mechanism of compound 1 on BACE1 is both modula-
tory and inhibitory. The analysis reflects that the melatonin derivative can allosterically
restrict BACE1 motility. It acts as an inhibitor at the potential allosteric sites and as a
modulator at the active site. This phenomenon indicates that compound 1 is a potential
MTDL targeting multiple subsites on BACE1. The mechanism would distort BACE1 struc-
tural arrangement and availability for natural substrate binding, lowering its level in AD
conditions. Irrespective of the targeted subsite, compound 1 exerts relatively low flexibility
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across all the 385 residues. The average RMSF values are within 1.095 and 1.348 Å (Table 4),
with allosteric site 7 showing slightly higher projections (above 5 Å) at residues 164–167.

3.4. Rigid Body Motion

The mass-weighted radius of gyration (RoG) is a moment of atom inertia from their
center of mass [79]. The calculation setup for RoG analysis includes all the atoms to notice
the effect of allostery binding on the BACE1 surface. Figure 10 shows the RoG evolution
per time for each model system. Besides sites 7 and 8 with average RoG of 21.5 and 21.4 Å,
the approximate average RoG value is 21.2 Å (Table 5). These values are close, denoting
that the atoms in the BACE1 structure have similar moment inertia in the various models.
However, allosteric site 7 facilitates slightly higher RoG (Figure 10) like its RMSF (Figure 9).
The data signifies less compactness in the allosteric site 7 BACE1 model.

Also, allostery site 7 shows the highest data in all the parameters, while site 5 shows
the least mean RoG score (Table 5). The RoG metric enables us to predict how BACE1 moves
as a rigid body when complexed with the melatonin derivative at the active region and
allosteric sites. The outcome shows that compound 1 exerts compactness on the BACE1,
restricting protein motions during the simulation. The similarity of the RoG projections and
the same mean values depicts compound 1 as a potential active site and allosteric inhibitor.
This outcome denotes that the computationally predicted sites are potential target sites for
drug binding in BACE1.
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angstrom) induced by coupling compound 1 to the various regions on BACE1 structure. Allos. site
represents the allosteric site and the definition for each site including the interacting residues is
available in Figure 6.
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Table 5. Data analysis of the RoG (in Å) scores over the simulation time (120 ns). Std. represents
standard, and Allos. site indicates allosteric site.

Structure Mean Std. Deviation Sum Minimum Median Maximum

Active site 21.2192 0.1077 2.5463 × 106

2.5463 × 106 20.8742 21.2056 21.7118

Allos. site1 21.2645 0.1095 2.5517 × 106 20.8634 21.2516 21.8045

Allos. site4 21.2119 0.1409 2.5454 × 106 20.7715 21.2161 21.6625

Allos. site5 21.1757 0.1174 2.5411 × 106 20.7654 21.1789 21.7439

Allos. site6 21.2353 0.1524 2.5482 × 106 20.7983 21.2214 21.9438

Allos. site7 21.5352 0.1706 2.5842 × 106 21.0101 21.5438 22.0738

Allos. site8 21.3830 0.1535 2.5660 × 106 20.9068 21.3716 21.9775

4. Conclusions

Allosteric inhibition is a type of noncompetitive inhibition occurring at another protein
site different from the active site. In this mechanism, the inhibitor binds to a site(s) other
than the active site, thereby rendering the active site unfit for the substrate to bind. In
allosteric inhibition, it is a case in which the moiety gets to the enzyme or protein first,
which blocks the other from binding. As a sequel to our previous review study on some
identified allosteric inhibitors and exosite-binding antibodies of BACE1 over the last 8 years
(2013–2020), we, hereby, in this study applied CADD methods to further validate the claims
as contained in the reviewed study. We selected six compounds that were reported to
bind on sites different from the BACE1 active site. Some of these compounds are classified
as meroterpenoids (Sargahydroquinoic acid and Gamma-Linolenic acid) and psychotic
drugs (Anisoperidone). Good knowledge of the inhibiting potentials and properties of
BACE1 inhibitors also serves as a prerequisite for the development of molecules with
high selectivity and specificity. We show in this study that besides the active site, BACE1
targeting at other subsites is plausible towards AD therapy. From the results of the molec-
ular docking, molecular dynamic (MD) simulations, and subsequent post-MD analyses,
the identified regions correspond with some predicted subsites and the small molecules
(like compound 1) bind through several other BACE1 residues. The allostery and binding
mechanisms of the selected potent inhibitors show that the smaller the molecule, the easier
the attachment to several enzyme regions. This finding hereby establishes that most of
these selected compounds failed to exhibit strong allosteric binding with BACE1 except for
compound 1. We hereby suggest further studies and additional identification/validation
of other BACE1 allosteric compounds be done. Furthermore, this additional allosteric
site investigation will help in reducing the associated challenges with designing BACE1
inhibitors, while exploring the opportunities in the design of allosteric BACE1 inhibitors.
We further suggest that diverting attention from the conventional active site through a de-
tailed computer-aided drug design approach would assist in designing a potential BACE1
inhibitor that might attain the approval stage for AD management.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27144372/s1, Figure S1: The interaction profile of compounds at
the BACE1 active site and Figure S2: The protein secondary structure plot for compound 1 interaction
at the various allosteric sites of BACE1.
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