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Abstract
1.	 Parallel latitudinal clines in flowering time have been documented in both the in-
vasive and native ranges of plants. Furthermore, flowering time has been found 
to affect biomass at maturity. Therefore, understanding how these flowering 
times affect biomass accumulation across latitudes is essential to understanding 
plant adaptations and distributions.

2.	 We investigated and compared trends in first flowering day (FFD), aboveground 
biomass (AGB), belowground biomass (BGB), and BGB:AGB ratio of the salt 
marsh grass Spartina alterniflora along latitudinal gradients from the invasive 
(China, 19–40°N) and native range (United States, 27–43°N) in a greenhouse 
common garden experiment, and tested whether FFD would drive these diver-
gences between invasive and native ranges.

3.	 The invasive populations produced more (~20%, ~19%) AGB and BGB than 
native populations, but there were no significant differences in the FFD and 
BGB:AGB ratio. We found significant parallel latitudinal clines in FFD in both 
invasive and native ranges. In addition, the BGB:AGB ratio was negatively cor-
related with the FFD in both the invasive and native ranges but nonsignificant 
in invasive populations. In contrast, AGB and BGB increased with latitude in the 
invasive range, but declined with latitude in the native range. Most interestingly, 
we found AGB and BGB positively correlated with the FFD in the native range, 
but no significant relationships in the invasive range.

4.	 Our results indirectly support the evolution of increased competitive ability hy-
pothesis (EICA) that S. alterniflora has evolved to produce greater AGB and BGB 
in China, but the flowering and allocation pattern of native populations is main-
tained in the invasive range. Our results also suggest that invasive S. alterniflora 
in China is not constrained by the trade-off of earlier flowering with smaller 
size, and that flowering time has played an important role in biomass allocation 
across latitudes.
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1  |  INTRODUC TION

Biological invasions offer an opportunity to study how the evolu-
tion of flowering time affects vegetative growth during colonization 
across space and time (Helliwell et al., 2018; Hodgins et al., 2018; 
van Kleunen et al., 2018). Invasive plants might evolve to flower 
earlier (McGoey et al., 2020), and to grow faster, larger, and with 
greater biomass compared to natives (Colautti et al., 2009; Hanley, 
2012; Hodgins & Rieseberg, 2011; Shang et al., 2015; Sobrinho et al., 
2013). Life-history theory predicts that there is a positively genetic 
correlation between flowering time with plant size and biomass, se-
lection for earlier flowering will result in maturation of smaller indi-
viduals due to physiological trade-offs (Stearns, 1989). Accordingly, 
plant size has strongly positive correlation with shoot biomass (Liu & 
Pennings, 2019), thus flowering time has a positive effect on plant 
size and biomass at maturity (Colautti & Barrett, 2013; Helsen et al., 
2020; Li et al., 2015; Montague et al., 2008). When there is suffi-
cient genetic variation, the genotypes that flower earlier at a larger 
size would be favored, because the evolution of earlier flowering 
significantly increases the fitness of invasive plants and facilitated 
their range expansions (Colautti & Barrett, 2013). Therefore, the 
phenotypic traits variation in most plants may result primarily from 
changes in the flowering time (Galloway & Burgess, 2012).

Geographic gradients in environmental conditions can select 
for clinal adaptation in various traits, a phenomenon that has been 
demonstrated in many invasive plant species (Donohue, 2017; 
Etterson et al., 2016; Kollmann & Banuelos, 2004; Ridley & Ellstrand, 
2010). Additionally, clines in traits of invasive and native populations 
offer an opportunity to study parallel evolution, and whether phe-
notypic variation is due to phenotypic plasticity or local adaptation 
(Alexander et al., 2012; van Boheemen et al., 2019; Hodgins et al., 
2018; Maron et al., 2004; McGoey et al., 2020). However, the inter-
play of local adaptation and plasticity in driving latitudinal variation 
in biomass allocation is rare (Castillo et al., 2014, 2018; Zenni et al., 
2014).

Reproductive timing is an important adaptive transition from 
vegetative to reproductive growth across latitudinal gradients 
(Barrett et al., 2008; Colautti & Barrett, 2010; Griffith & Watson, 
2005, 2006), where populations at higher latitudes often evolve to 
flower earlier to ensure successful reproduction in shorter growing 
seasons, resulting in a clinal pattern of plant size and flowering time 
(Griffith & Watson, 2006; Haggerty & Galloway, 2011; Santamaria 
et al., 2003). Biomass allocations are expected to reflect a func-
tional balance between the distribution of resources that exist 
above and below the soil surface (Franklin et al., 2012), and shifts in 

above- versus belowground resource availability may alter relative 
plant investments in root biomass (Ma et al., 2021). Although most 
studies have compared flowering phenology and biomass allocation 
between invasive and native ranges of species (Beckmann et al., 
2009; Blossey & Nötzold, 1995; Brown & Eckert, 2005; Hanley, 
2012; Meyer & Hull-Sanders, 2008; Sobrinho et al., 2013), there are 
few empirical studies comparing the effect of flowering time on bio-
mass allocation across latitudes between invasive and native ranges 
(Liu et al., 2022; McGoey et al., 2020; Sun & Roderick, 2019).

Salt marshes are highly productive ecosystems and one of the 
most valuable carbon sinks on the planet, providing ecosystem ser-
vices with provisioning, supporting, regulating, and cultural services 
and economic benefits (Barbier et al., 2011; McLeod et al., 2011; 
Townend et al., 2011). The productivity of salt marsh plants plays a 
key role in these services (Kirwan & Murray, 2007). Moreover, highly 
aboveground biomass and belowground biomass can accumulate 
large amounts of sediments against the effects of sea level rise and 
storms (Kirwan & Megonigal, 2013). Thus, production of plants in 
marsh ecosystems is important both for carbon sequestration and 
the persistence of marshes with rising sea level (Kirwan & Mudd, 
2012). Above-  and belowground biomass and biomass allocation 
provide a foundation for better understanding ecosystem structure 
and function in salt marshes (Crosby et al., 2017). Salt marsh plants 
allocated relatively more biomass belowground at higher latitude to 
withstand freezing and store carbon reserves belowground over the 
winter, but allocated relatively more biomass aboveground at low 
latitude because the plants do not experience prolonged freezing 
(Crosby et al., 2017; Kirwan et al., 2009). Overall, the allocation of 
biomass is a key adaptive strategy for salt marsh plants that could 
enhance carbon-sequestration capacity and stability under global 
climate change.

Spartina alterniflora is native to the United States (27–45°N) 
(Kirwan et al., 2009; Strong & Ayres, 2013). Since its introduction into 
China in 1979, this species is now widely distributed in the intertidal 
marshes with regular tidal flooding from 19°N to 40°N latitude (An 
et al., 2007; Liu et al., 2016; Xu & Zhuo, 1985). This has been the largest 
and most recent of many substantial invasions of S. alterniflora around 
the world (Strong & Ayres, 2013). Previous studies have reported lat-
itudinal variation in growth, reproduction, or defense of S. alterniflora 
in its invasive and native ranges (Liu, Chen, et al., 2020; Liu, Zhang, 
et al., 2020; Strong & Ayres, 2013). The aboveground biomass of S. 
alterniflora decreases with latitude in its native range (Kirwan et al., 
2009), which appears to have a genetic basis (Liu, Chen, et al., 2020; 
Liu, Zhang, et al., 2020). Biomass allocation notably changes between 
high and low latitudes, which decreased allocation to belowground 
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biomass with increasing latitude (Crosby et al., 2017). However, the 
aboveground biomass of S. alterniflora showed a hump-shaped rela-
tionship with latitude in its invasive range in China, which is mainly 
due to phenotypic plasticity (Liu, Chen, et al., 2020; Liu et al., 2016, 
2017; Liu, Zhang, et al., 2020). Furthermore, most research of biomass 
allocation was conducted at local scales, focused on the response 
to some abiotic factors (Castillo et al., 2008; Darby & Turner, 2008; 
Snedden et al., 2015). However, the broader scale pattern of this lat-
itudinal variation in biomass accumulation, and its relationship with 
flowering time, is still unknown (but see Crosby et al., 2015).

Here, we ask whether biomass allocation variation in S. alterni-
flora along latitudes has a genetic basis or is driven by phenotypic 
plasticity. If so, we ask whether biomass genetic differentiation 
among populations was dependent on flowering time. Therefore, we 
compared first flowering day, aboveground biomass, belowground 
biomass, and belowground biomass:aboveground biomass ratio of 
S. alterniflora from the invasive and native ranges in a greenhouse 
common garden experiment. Through this, we address the following 
questions: (1) do invasive populations exhibit earlier flowering phe-
nology and greater biomass compared with native populations? (2) 
do flowering time and biomass allocation vary along latitudes and 
does the response to latitudes differ between ranges? (3) do the re-
lationships between flowering time and aboveground biomass, be-
lowground biomass, and aboveground versus belowground biomass 
allocation differ between ranges?

2  |  MATERIAL S AND METHODS

2.1  |  Study locations and seed collections

The peak seed production lasted from September to November 
throughout the coastal area of China in 2014 (Chen et al., 2021). 
We collected seeds at 10  locations spanning 20° of latitude from 
20.9° (Guangdong, province) to 39.0°N (Tianjin, province) in China 
(Figure 1a) in September-November, 2014. We also collected seeds 
at 16 locations spanning 16° of latitude from 27.7° (Florida) to 43°N 

(Maine) in the United States (Figure 1b) in October and November 
2014. At each location, we worked at two sites, 2–3 km apart. At 
each site, we sampled five 0.5 × 0.5 m quadrats, with at least 30 m 
spacing between quadrats, each quadrat was treated as a seed fam-
ily. We randomly collected 10 inflorescences within a meter of each 
quadrat. We collected the filled seeds in each inflorescence (Daehler 
& Strong, 1994; Liu et al., 2016). Filled seeds have an embryo, en-
dosperm, and can potentially germinate and grow; unfilled seeds 
have neither of these tissues and cannot germinate or grow (Ayres 
et al., 2008; Daehler & Strong, 1994). The filled seeds from each 
quadrat were collected and placed into separate zip-lock bags. Seeds 
were stored in 8 PSU seawater at 4°C in preparation for the common 
garden experiment (Liu et al., 2016).

2.2  |  Greenhouse common garden experiment

This study was conducted in a greenhouse common garden at 
Xiamen (24.62°N, 118.31°E). The mean annual temperature is 
21.5℃, the sunshine duration is 1827  h/year and the relative 
humidity is 78%. We sampled 10 populations in China (invasive 
range) and 16 populations in the United States (native range). We 
randomly chose 10  seed families per population. We chose one 
seedling from each seed family (one for each of ten rectangular 
plastic pools: length: 1.2  m, width: 0.9  m, depth: 0.3  m), which 
seeds were germinated and grown in a growth chamber until 
seedlings were approximately 5 cm tall in March 2015, for a total 
of 260 plants (160 from the United States; 100 from China). One 
seedling was randomly assigned a position in a plastic pot (18 cm 
in diameter and 24 cm deep) within a block of ten blocks. Each pot 
contained a substrate of a mixture of peat 50% Jiffy's peat soil and 
50% vermiculite by volume. Artificial sea water (10 PSU) that had 
been amended with fertilizer (C:N:P 15–15–15; 0.5 g per pot) to 
~2 cm above the soil level in the pots was used to water the plants. 
The fully flooded soil in the pots could minimize variation in salin-
ity caused by evaporation, and mimic the soil composition or the 
tidal regime experienced by plants in nature. Water in the pools 

F I G U R E  1 Map of Spartina alterniflora 
collection locations in the: invasive (open 
circles) (a), and native (closed circles) 
ranges (b)

(a) (b)
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was completely replaced once a month and salinity was checked 
every other day and freshwater was added as needed to maintain 
salinity as in Liu, Chen, et al. (2020) and Liu, Zhang, et al. (2020). 
From May to the end of the growing season in October 2015, we 
recorded the date on which the first S. alterniflora shoot flowered 
in each pot. In October 2015, all aboveground and belowground 
biomass was then harvested and oven-dried at 60°C for 72 h and 
subsequently weighted. The belowground samples of each pot 
were gently washed over a 2-mm mesh sieve to remove the soil 
substrate.

2.3  |  Statistical analyses

We used two-sample t-tests to test for differences in FFD, AGB, 
BGB, and BGB:AGB between the invasive and native ranges in the 
common garden. Data were log(x)-transformed or square-root(x)-
transformed or arcsin(x)-transformed when necessary and used 
Shapiro–Wilk's test and Levene's test to test the normality of er-
rors and homogeneity of variance. We used linear regression to 
analyze the relationships between plant traits (FFD, AGB, BGB, 
and BGB:AGB) and latitude of origin in the common garden. To 
confirm the differences in latitudinal clines between ranges, we 
used general linear models, with range and latitude as main fac-
tors, to determine the main and interacting effects on FFD, AGB, 
BGB, and BGB:AGB ratio. To confirm the effect of flowering time 
on biomass allocation, we used general linear models, with range 
and FFD as main factors, to determine the main and interacting 
effects on AGB, BGB, and BGB:AGB ratio. We performed all anal-
yses using R statistical software (R Development Core Team, R 
version 3.6.2, 2019).

3  |  RESULTS

3.1  |  Flowering and biomass variation between 
ranges

AGB and BGB of the invasive plants were on average signifi-
cantly higher (~20%, ~19%) than those of the native populations 
(Figure 2b,c; Table 1b,c). However, there were no differences in the 
FFD and BGB:AGB ratio between ranges (Figure 2a,d; Table 1a,d).

3.2  |  Flowering and biomass variation 
across latitudes

In both ranges, the FFD decreased significantly with latitude, with a 
stronger cline in the native range (Figure 3a,b). AGB and BGB from 
the invasive range showed weakly positive relationships with lati-
tude, but there was no significant relationship between BGB:AGB 
ratio and latitude of origin (Figure 3c,e,g). However, AGB and BGB 
of S. alterniflora populations from the native range significantly 

decreased with latitude of origin, although BGB:AGB ratio increased 
with latitude of origin (Figure 3d,f,h). The general linear model analy-
ses revealed significant latitude-by-range interaction effects on 
FFD, AGB, BGB, and BGB:AGB (Table 1a–d).

3.3  |  Effects of flowering time on 
biomass allocation

In the invasive range, AGB and BGB weakly decreased with FFD 
(Figure 4a,c). In contrast, in the native range, AGB and BGB strongly 
increased with FFD (Figure 4b,d). In both ranges, BGB:AGB ratio 
decreased with FFD (Figure 4e,f). FFD has a significant effect on 
AGB and BGB:AGB ratio (Table 2a,c), and there were significant 
interactions between FFD and range effect on AGB and BGB 
(Table 2a,b).

4  |  DISCUSSION

Salt marshes play an important role in carbon sequestration glob-
ally and provide numerous ecosystem services (Barbier et al., 
2011). Many of these services stem from the productivity of salt 
marsh systems (Kirwan & Murray, 2007). Our data suggest that 
changes in FFD and biomass allocation with latitude are key pro-
cesses in productivity of salt marshes. In comparing growth pat-
terns and life-history traits of S. alterniflora plants grown in a 
common garden, we found that invasive populations produced 
more AGB and BGB biomass than native populations, supporting 
the EICA hypothesis, in which invasive plants escape from their 
native enemies and can, therefore, divert resources from defense 
to growth, improving their competitive ability (Blossey & Nötzold, 
1995; Bossdorf et al., 2005; Maron et al., 2004). However, we did 
not find any significant differences in FFD and BGB:AGB ratio 
between ranges, indicating that climatic conditions in the native 
range of species selected for a flowering and allocation pattern are 
maintained after being introduced to the invasive range (Crosby 
et al., 2015; Godoy et al., 2009; Shang et al., 2015). And the envi-
ronmental conditions introduced in China along latitudes are simi-
lar to the native range where S. alterniflora evolved (Kirwan et al., 
2009; Liu, Chen, et al., 2020; Liu, Zhang, et al., 2020). Moreover, 
our results demonstrated that parallel flowering time clines across 
latitudes resulted in contrasting AGB and BGB clines between in-
troduced and native populations, indicating invasive populations 
may have broken free of the genetic constraints predicted by life-
history trade-offs (Colautti & Barrett, 2010). We also found flow-
ering time negatively correlated (p = .002) with BGB:AGB ratio in 
the native range, indicating earlier flowering time would shift bio-
mass allocation from above- to belowground (Crosby et al., 2015; 
Woods et al., 2012). S. alterniflora can evolve parallel or different 
latitudinal clines rapidly in invasive and native ranges, with impli-
cations for further the range expansion across latitude (Colautti & 
Barrett, 2010).
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Plants often perform better in their invasive ranges compared to 
in their native ranges, showing invasive phenotypes such as larger 
size, and higher biomass (Bossdorf et al., 2005; Colautti et al., 2009; 
Hierro et al., 2005; Hodgins et al., 2018; van Kleunen et al., 2010, 
2018; Leger & Rice, 2003) and earlier flowering at times depending 
on the local environment in the introduced range (McGoey et al., 
2020). Our results showed that the AGB and BGB were higher in the 
invasive plants than in the native plants in the greenhouse common 
garden, consistent with previous studies on S. alterniflora (Liu, Chen, 
et al., 2020; Liu, Zhang, et al., 2020; Qing et al., 2011; Shang et al., 
2015). S. alterniflora suffers higher herbivory pressure in its native 

than in its invasive range (Gratton & Denno, 2005; Holdredge et al., 
2009; Li et al., 2009; Silliman et al., 2005). So, the invasive plants 
could be re-directing resources from herbivore defense to growth. 
Intraspecific hybrid vigor is thought to have played a role in the 
spread of other invasive species (Glotzbecker et al., 2016). Genetic 
admixture can facilitate colonization via hybrid vigor and profoundly 
enhance invasion via contributing novel genetic variation to adap-
tion (Rius & Darling, 2014). S. alterniflora in China had multiple or-
igins from three US provenances, which were cultivated together 
and crossed, and the most vigorous lineages were propagated and 
grew bigger (Qiao et al., 2019; Qing et al., 2011; Shang et al., 2015). 
However, we did not find significant differences in flowering time 
and BGB:AGB ratio between invasive and native ranges, which in-
dicated flowering and the biomass allocation between above- and 
belowground are the results of local climate adaptation in the native 
range similar to the invasive range (Chen et al., 2021; Crosby et al., 
2015; Liu, Chen, et al., 2020; Liu, Zhang, et al., 2020).

Flowering time is a key life-history trait that can have a major 
impact on fitness and is thus likely a target of strong selection 
during invasion and spread across large geographic areas (Colautti 
& Barrett, 2010; Weiner, 2004). We found flowering time advanced 
with increasing latitude in both invasive and native populations, 
which is consistent with invasive populations being pre-adapted to 
latitudinal clines from the native range (Colautti & Barrett, 2013; 
Hodgins & Rieseberg, 2011; Leger & Rice, 2007; Montague et al., 
2008; Samis et al., 2012; Stinchcombe et al., 2004). This cline may 
be caused by the more compressed growing season with increasing 
latitude, leading to earlier flowering times at high latitudes compared 
to lower ones (Novy et al., 2013; Pau et al., 2011). Because all the S. 
alterniflora plants in China had a common origin from seeds of ge-
netic admixtures among three native provenance four decades ago 
(Qiao et al., 2019), this indicates rapid and perhaps ongoing selection 
for earlier flowering times at sites with a shorter growing season, as 
occurs in the native range (Crosby et al., 2015; Seneca, 1974; Somers 
& Grant, 1981).

Previous work has found that aboveground biomass showed a 
hump-shaped relationship with latitude in the field in the invasive 

F I G U R E  2 First flowering day (a), aboveground biomass (b), belowground biomass (c). and belowground biomass:aboveground biomass 
ratio (d) of Spartina alterniflora populations from the invasive (China) and native (United States) ranges in the greenhouse common garden. 
DOY, day of year. p value indicates significance of t-tests between the invasive and native range

TA B L E  1 General linear models, with range and latitude as main 
factors, was used to determine the main and interacting effects on 
FFD, AGB, BGB, and BGB:AGB ratio

Traits Factor effects df F p

(a) FFD Range 1 2.55 .11

Latitude 1 133.66 <.0001

Range * Latitude 1 58.64 <.0001

Residuals 171

(b) AGB Range 1 12.02 .0006

Latitude 1 23.41 <.0001

Range * Latitude 1 75.67 <.0001

Residuals 246

(c) BGB Range 1 4.59 .03

Latitude 1 0.51 .47

Range * Latitude 1 12.85 .0004

Residuals 245

(d) BGB:AGB 
ratio

Range 1 0.01 .96

Latitude 1 9.57 .002

Latitude*Range 1 5.52 .02

Residuals 245

Note: Entries in bold indicate statistically significantly results (p < .05).
Abbreviations: AGB, aboveground biomass; BGB, belowground 
biomass; FFD, the first flowering day.
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range, and that these patterns were largely due to phenotypic plas-
ticity (Liu, Chen, et al., 2020). However, this study did not quantify 
belowground biomass and biomass allocation, and so could not 
establish whether it follows the same latitudinal patterns as abo-
veground biomass. In the greenhouse common garden, AGB and 
BGB decreased with latitude in the native range, but weakly in-
creased with latitude in the invasive range, and it has been proved 
that patterns disappeared in the second year (Liu, Chen, et al., 
2020). This suggests that the AGB and BGB clines across latitudes 
are driven by a genetic basis in the native range, but mainly by phe-
notypic plasticity in the invasive ranges (Liu, Chen, et al., 2020). In 
North America, latitudinal patterns in S. alterniflora traits often have 
a strong genetic component (Seliskar et al., 2002; Travis & Grace, 
2010), supporting the genetic differentiation of different traits 

(Blum et al., 2007; Qiao et al., 2019; Strong & Ayres, 2013). However, 
while the BGB:AGB ratio increased with latitude in the native range, 
this cline disappeared in the invasive range, indicating that invasive 
populations have freed them from the trade-off between these two 
competing modes as seen in the native range (Crosby et al., 2015). 
Otherwise, with populations at higher latitudes experiencing less 
severe competition in the invasive range because of largely vacant 
niches with fewer conspecifics in mudflat habitats, weak selective 
pressure for competitive ability (vegetative growth) permitted plants 
to invest less energy in aboveground biomass and more energy in 
belowground biomass (Bertness & Hacker, 1994; Bhattarai et al., 
2017; Schemske et al., 2009).

Shifting in biomass allocation from above- to belowground was 
related to flowering phenology (Crosby et al., 2015). We found 

F I G U R E  3 Relationships between 
first flowering day (a, b), aboveground 
biomass (c, d), belowground biomass (e, f) 
and belowground biomass:aboveground 
biomass ratio (g, h), and latitude of origin 
in the greenhouse common garden. DOY, 
day of year
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that first flowering day positively correlated with AGB and BGB 
in the native range, where northern populations flower earlier at a 
smaller size compared with southern populations, consistent with 
an adaptive response to latitudinal changes in growing-season 
length and life-history trade-offs (Chen et al., 2021; Colautti & 
Barrett, 2010). In contrast to native range, the first flowering time 
negatively correlated with AGB and BGB in the invasive range, 
indicating that natural selection will favor genotypes with both 
earlier flowering time and large size because of higher fitness, 
in conflict with the life-history paradigm relating flowering time 
and plant size (Colautti & Barrett, 2010). Moreover, we found 
that flowering time positively correlated with BGB:AGB ratio in 
both native and invasive range, indicating that flowering phenol-
ogy would be related to the biomass allocation of plants (Crosby 
et al., 2015; Weiner, 2004). Our results are consistent with pre-
vious findings that higher root-to-shoot ratios were genetically 

correlated with early phenology (Woods et al., 2012). Therefore, 
belowground biomass accumulation will be affected by the start, 
end, and length of the growing season (Crosby et al., 2015; Liu 
et al., 2022). Future predictions of salt marsh growth and accre-
tion should thus consider not only the impact of the length of the 
growing season but also the plant's life cycle (Weiner, 2004). In 
general, our results suggest that flowering time is the primary 
driver of the aboveground versus belowground biomass allocation 
pattern for plants (Cheng et al., 2015). One caveat of this study is 
that all plants were grown from seed and, therefore, subject to ma-
ternal effects. However, we think it unlikely that maternal effects 
could explain the phenotypic patterns presented here because 
maternal effects are more pervasive in early life-history stages 
(Liu, Chen, et al., 2020; Liu, Zhang, et al., 2020; Montague et al., 
2008; Rossiter, 1998), while here we focused on traits at the end 
of the annual life cycle.

F I G U R E  4 Relationships between 
aboveground biomass (a, b), belowground 
biomass (c, d) and belowground 
biomass:aboveground biomass ratio (e, f), 
and first flowering day in the greenhouse 
common garden. DOY, day of year
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This study has shown that S. alterniflora would produce more AGB 
and BGB in the invasive range than in the native range, which is con-
sistent with EICA hypothesis. This study also has identified parallel 
flowering time clines in the invasive and native ranges, but contrasting 
AGB and BGB clines. One of the more significant findings to emerge 
from this study is that invasive populations have broken free of the 
genetic constrains relating earlier flowering with smaller size. Larger 
size at earlier flowering time will contribute to the enhancement and 
evolution in competitive ability, and further result in higher reproduc-
tive output and fitness, which will facilitate the evolutionary response 
of invasive species to local environment and further the range expan-
sion (Colautti & Barrett, 2010). Given that, we recover negative rela-
tionships between flowering time and AGB and BGB in the invasive 
range. Moreover, earlier flowering would shift aboveground biomass 
to belowground biomass. These findings have significant implications 
for our understanding of how flowering phenology affects biomass 
allocation across latitudes. When we model the productivity of salt 
marshes, we should, therefore, consider the flowering phenology as 
an important cue in the future. Finally, we propose that rapid evolu-
tion, biomass reallocation across latitudes and phenotypic plasticity 
of this invasive species contribute to successful invasion of plants.
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