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Abstract
1.	 Parallel	latitudinal	clines	in	flowering	time	have	been	documented	in	both	the	in-
vasive	and	native	ranges	of	plants.	Furthermore,	flowering	time	has	been	found	
to	 affect	 biomass	 at	maturity.	 Therefore,	 understanding	how	 these	 flowering	
times	affect	biomass	accumulation	across	latitudes	is	essential	to	understanding	
plant	adaptations	and	distributions.

2.	 We	investigated	and	compared	trends	in	first	flowering	day	(FFD),	aboveground	
biomass	 (AGB),	 belowground	 biomass	 (BGB),	 and	 BGB:AGB	 ratio	 of	 the	 salt	
marsh	 grass	 Spartina alterniflora	 along	 latitudinal	 gradients	 from	 the	 invasive	
(China,	19–	40°N)	and	native	 range	 (United	States,	27–	43°N)	 in	 a	greenhouse	
common	garden	experiment,	and	tested	whether	FFD	would	drive	these	diver-
gences	between	invasive	and	native	ranges.

3.	 The	 invasive	 populations	 produced	 more	 (~20%,	 ~19%)	 AGB	 and	 BGB	 than	
native	 populations,	 but	 there	were	 no	 significant	 differences	 in	 the	 FFD	 and	
BGB:AGB	ratio.	We	 found	significant	parallel	 latitudinal	clines	 in	FFD	 in	both	
invasive	and	native	ranges.	In	addition,	the	BGB:AGB	ratio	was	negatively	cor-
related	with	the	FFD	in	both	the	invasive	and	native	ranges	but	nonsignificant	
in	invasive	populations.	In	contrast,	AGB	and	BGB	increased	with	latitude	in	the	
invasive	range,	but	declined	with	latitude	in	the	native	range.	Most	interestingly,	
we	found	AGB	and	BGB	positively	correlated	with	the	FFD	in	the	native	range,	
but	no	significant	relationships	in	the	invasive	range.

4.	 Our	results	indirectly	support	the	evolution	of	increased	competitive	ability	hy-
pothesis	(EICA)	that	S. alterniflora	has	evolved	to	produce	greater	AGB	and	BGB	
in	China,	but	the	flowering	and	allocation	pattern	of	native	populations	is	main-
tained	in	the	invasive	range.	Our	results	also	suggest	that	invasive	S. alterniflora 
in	China	 is	 not	 constrained	 by	 the	 trade-	off	 of	 earlier	 flowering	with	 smaller	
size,	and	that	flowering	time	has	played	an	important	role	in	biomass	allocation	
across	latitudes.
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1  |  INTRODUC TION

Biological	 invasions	offer	 an	opportunity	 to	 study	how	 the	evolu-
tion	of	flowering	time	affects	vegetative	growth	during	colonization	
across	space	and	time	 (Helliwell	et	al.,	2018;	Hodgins	et	al.,	2018;	
van	 Kleunen	 et	 al.,	 2018).	 Invasive	 plants	 might	 evolve	 to	 flower	
earlier	 (McGoey	 et	 al.,	 2020),	 and	 to	 grow	 faster,	 larger,	 and	with	
greater	biomass	compared	to	natives	(Colautti	et	al.,	2009;	Hanley,	
2012;	Hodgins	&	Rieseberg,	2011;	Shang	et	al.,	2015;	Sobrinho	et	al.,	
2013).	Life-	history	theory	predicts	that	there	is	a	positively	genetic	
correlation	between	flowering	time	with	plant	size	and	biomass,	se-
lection	for	earlier	flowering	will	result	in	maturation	of	smaller	indi-
viduals	due	to	physiological	trade-	offs	(Stearns,	1989).	Accordingly,	
plant	size	has	strongly	positive	correlation	with	shoot	biomass	(Liu	&	
Pennings,	2019),	thus	flowering	time	has	a	positive	effect	on	plant	
size	and	biomass	at	maturity	(Colautti	&	Barrett,	2013;	Helsen	et	al.,	
2020;	Li	et	al.,	2015;	Montague	et	al.,	2008).	When	there	 is	suffi-
cient	genetic	variation,	the	genotypes	that	flower	earlier	at	a	larger	
size	would	 be	 favored,	 because	 the	 evolution	 of	 earlier	 flowering	
significantly	 increases	 the	 fitness	of	 invasive	plants	and	facilitated	
their	 range	 expansions	 (Colautti	 &	 Barrett,	 2013).	 Therefore,	 the	
phenotypic	traits	variation	in	most	plants	may	result	primarily	from	
changes	in	the	flowering	time	(Galloway	&	Burgess,	2012).

Geographic	 gradients	 in	 environmental	 conditions	 can	 select	
for	clinal	adaptation	in	various	traits,	a	phenomenon	that	has	been	
demonstrated	 in	 many	 invasive	 plant	 species	 (Donohue,	 2017;	
Etterson	et	al.,	2016;	Kollmann	&	Banuelos,	2004;	Ridley	&	Ellstrand,	
2010).	Additionally,	clines	in	traits	of	invasive	and	native	populations	
offer	an	opportunity	to	study	parallel	evolution,	and	whether	phe-
notypic	variation	is	due	to	phenotypic	plasticity	or	local	adaptation	
(Alexander	et	al.,	2012;	van	Boheemen	et	al.,	2019;	Hodgins	et	al.,	
2018;	Maron	et	al.,	2004;	McGoey	et	al.,	2020).	However,	the	inter-
play	of	local	adaptation	and	plasticity	in	driving	latitudinal	variation	
in	biomass	allocation	is	rare	(Castillo	et	al.,	2014,	2018;	Zenni	et	al.,	
2014).

Reproductive	 timing	 is	 an	 important	 adaptive	 transition	 from	
vegetative	 to	 reproductive	 growth	 across	 latitudinal	 gradients	
(Barrett	 et	 al.,	 2008;	Colautti	&	Barrett,	2010;	Griffith	&	Watson,	
2005,	2006),	where	populations	at	higher	latitudes	often	evolve	to	
flower	earlier	to	ensure	successful	reproduction	in	shorter	growing	
seasons,	resulting	in	a	clinal	pattern	of	plant	size	and	flowering	time	
(Griffith	&	Watson,	2006;	Haggerty	&	Galloway,	2011;	Santamaria	
et	 al.,	 2003).	 Biomass	 allocations	 are	 expected	 to	 reflect	 a	 func-
tional	 balance	 between	 the	 distribution	 of	 resources	 that	 exist	
above	and	below	the	soil	surface	(Franklin	et	al.,	2012),	and	shifts	in	

above-		versus	belowground	resource	availability	may	alter	relative	
plant	investments	in	root	biomass	(Ma	et	al.,	2021).	Although	most	
studies	have	compared	flowering	phenology	and	biomass	allocation	
between	 invasive	 and	 native	 ranges	 of	 species	 (Beckmann	 et	 al.,	
2009;	 Blossey	 &	 Nötzold,	 1995;	 Brown	 &	 Eckert,	 2005;	 Hanley,	
2012;	Meyer	&	Hull-	Sanders,	2008;	Sobrinho	et	al.,	2013),	there	are	
few	empirical	studies	comparing	the	effect	of	flowering	time	on	bio-
mass	allocation	across	latitudes	between	invasive	and	native	ranges	
(Liu	et	al.,	2022;	McGoey	et	al.,	2020;	Sun	&	Roderick,	2019).

Salt	marshes	are	highly	productive	ecosystems	and	one	of	 the	
most	valuable	carbon	sinks	on	the	planet,	providing	ecosystem	ser-
vices	with	provisioning,	supporting,	regulating,	and	cultural	services	
and	 economic	 benefits	 (Barbier	 et	 al.,	 2011;	McLeod	 et	 al.,	 2011;	
Townend	et	al.,	2011).	The	productivity	of	salt	marsh	plants	plays	a	
key	role	in	these	services	(Kirwan	&	Murray,	2007).	Moreover,	highly	
aboveground	 biomass	 and	 belowground	 biomass	 can	 accumulate	
large	amounts	of	sediments	against	the	effects	of	sea	level	rise	and	
storms	 (Kirwan	&	Megonigal,	 2013).	Thus,	 production	of	plants	 in	
marsh	ecosystems	 is	 important	both	for	carbon	sequestration	and	
the	 persistence	 of	marshes	with	 rising	 sea	 level	 (Kirwan	&	Mudd,	
2012).	 Above-		 and	 belowground	 biomass	 and	 biomass	 allocation	
provide	a	foundation	for	better	understanding	ecosystem	structure	
and	function	in	salt	marshes	(Crosby	et	al.,	2017).	Salt	marsh	plants	
allocated	relatively	more	biomass	belowground	at	higher	latitude	to	
withstand	freezing	and	store	carbon	reserves	belowground	over	the	
winter,	 but	 allocated	 relatively	more	 biomass	 aboveground	 at	 low	
latitude	 because	 the	 plants	 do	 not	 experience	 prolonged	 freezing	
(Crosby	et	al.,	2017;	Kirwan	et	al.,	2009).	Overall,	the	allocation	of	
biomass	 is	a	key	adaptive	strategy	for	salt	marsh	plants	that	could	
enhance	 carbon-	sequestration	 capacity	 and	 stability	 under	 global	
climate	change.

Spartina alterniflora	 is	 native	 to	 the	 United	 States	 (27–	45°N)	
(Kirwan	et	al.,	2009;	Strong	&	Ayres,	2013).	Since	its	introduction	into	
China	in	1979,	this	species	is	now	widely	distributed	in	the	intertidal	
marshes	with	regular	tidal	flooding	from	19°N	to	40°N	latitude	(An	
et	al.,	2007;	Liu	et	al.,	2016;	Xu	&	Zhuo,	1985).	This	has	been	the	largest	
and	most	recent	of	many	substantial	invasions	of	S. alterniflora	around	
the	world	(Strong	&	Ayres,	2013).	Previous	studies	have	reported	lat-
itudinal	variation	in	growth,	reproduction,	or	defense	of	S. alterniflora 
in	 its	 invasive	and	native	ranges	 (Liu,	Chen,	et	al.,	2020;	Liu,	Zhang,	
et	al.,	2020;	Strong	&	Ayres,	2013).	The	aboveground	biomass	of	S. 
alterniflora	decreases	with	 latitude	 in	 its	native	range	 (Kirwan	et	al.,	
2009),	which	appears	to	have	a	genetic	basis	(Liu,	Chen,	et	al.,	2020;	
Liu,	Zhang,	et	al.,	2020).	Biomass	allocation	notably	changes	between	
high	 and	 low	 latitudes,	which	decreased	 allocation	 to	belowground	
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biomass	with	 increasing	 latitude	 (Crosby	et	al.,	2017).	However,	 the	
aboveground	biomass	of	S. alterniflora	showed	a	hump-	shaped	rela-
tionship	with	 latitude	 in	 its	 invasive	range	 in	China,	which	 is	mainly	
due	to	phenotypic	plasticity	(Liu,	Chen,	et	al.,	2020;	Liu	et	al.,	2016,	
2017;	Liu,	Zhang,	et	al.,	2020).	Furthermore,	most	research	of	biomass	
allocation	 was	 conducted	 at	 local	 scales,	 focused	 on	 the	 response	
to	some	abiotic	factors	(Castillo	et	al.,	2008;	Darby	&	Turner,	2008;	
Snedden	et	al.,	2015).	However,	the	broader	scale	pattern	of	this	lat-
itudinal	variation	 in	biomass	accumulation,	and	 its	 relationship	with	
flowering	time,	is	still	unknown	(but	see	Crosby	et	al.,	2015).

Here,	we	ask	whether	biomass	allocation	variation	in	S. alterni-
flora	along	 latitudes	has	a	genetic	basis	or	 is	driven	by	phenotypic	
plasticity.	 If	 so,	 we	 ask	 whether	 biomass	 genetic	 differentiation	
among	populations	was	dependent	on	flowering	time.	Therefore,	we	
compared	 first	 flowering	day,	 aboveground	biomass,	belowground	
biomass,	 and	 belowground	 biomass:aboveground	 biomass	 ratio	 of	
S. alterniflora	 from	the	 invasive	and	native	 ranges	 in	a	greenhouse	
common	garden	experiment.	Through	this,	we	address	the	following	
questions:	(1)	do	invasive	populations	exhibit	earlier	flowering	phe-
nology	and	greater	biomass	compared	with	native	populations?	(2)	
do	 flowering	 time	and	biomass	allocation	vary	along	 latitudes	and	
does	the	response	to	latitudes	differ	between	ranges?	(3)	do	the	re-
lationships	between	flowering	time	and	aboveground	biomass,	be-
lowground	biomass,	and	aboveground	versus	belowground	biomass	
allocation	differ	between	ranges?

2  |  MATERIAL S AND METHODS

2.1  |  Study locations and seed collections

The	 peak	 seed	 production	 lasted	 from	 September	 to	 November	
throughout	 the	 coastal	 area	 of	 China	 in	 2014	 (Chen	 et	 al.,	 2021).	
We	 collected	 seeds	 at	 10	 locations	 spanning	20°	 of	 latitude	 from	
20.9°	 (Guangdong,	province)	 to	39.0°N	 (Tianjin,	province)	 in	China	
(Figure	1a)	in	September-	November,	2014.	We	also	collected	seeds	
at	16	locations	spanning	16°	of	latitude	from	27.7°	(Florida)	to	43°N	

(Maine)	 in	the	United	States	(Figure	1b)	 in	October	and	November	
2014.	At	each	 location,	we	worked	at	 two	sites,	2–	3	km	apart.	At	
each	site,	we	sampled	five	0.5	×	0.5	m	quadrats,	with	at	least	30	m	
spacing	between	quadrats,	each	quadrat	was	treated	as	a	seed	fam-
ily.	We	randomly	collected	10	inflorescences	within	a	meter	of	each	
quadrat.	We	collected	the	filled	seeds	in	each	inflorescence	(Daehler	
&	Strong,	1994;	Liu	et	al.,	2016).	Filled	seeds	have	an	embryo,	en-
dosperm,	 and	 can	 potentially	 germinate	 and	 grow;	 unfilled	 seeds	
have	neither	of	these	tissues	and	cannot	germinate	or	grow	(Ayres	
et	 al.,	 2008;	Daehler	&	 Strong,	 1994).	 The	 filled	 seeds	 from	 each	
quadrat	were	collected	and	placed	into	separate	zip-	lock	bags.	Seeds	
were	stored	in	8	PSU	seawater	at	4°C	in	preparation	for	the	common	
garden	experiment	(Liu	et	al.,	2016).

2.2  |  Greenhouse common garden experiment

This	 study	 was	 conducted	 in	 a	 greenhouse	 common	 garden	 at	
Xiamen	 (24.62°N,	 118.31°E).	 The	 mean	 annual	 temperature	 is	
21.5℃,	 the	 sunshine	 duration	 is	 1827	 h/year	 and	 the	 relative	
humidity	 is	 78%.	We	 sampled	 10	 populations	 in	 China	 (invasive	
range)	and	16	populations	in	the	United	States	(native	range).	We	
randomly	 chose	 10	 seed	 families	 per	 population.	We	 chose	 one	
seedling	 from	each	 seed	 family	 (one	 for	 each	of	 ten	 rectangular	
plastic	 pools:	 length:	 1.2	 m,	 width:	 0.9	 m,	 depth:	 0.3	 m),	 which	
seeds	 were	 germinated	 and	 grown	 in	 a	 growth	 chamber	 until	
seedlings	were	approximately	5	cm	tall	in	March	2015,	for	a	total	
of	260	plants	(160	from	the	United	States;	100	from	China).	One	
seedling	was	randomly	assigned	a	position	in	a	plastic	pot	(18	cm	
in	diameter	and	24	cm	deep)	within	a	block	of	ten	blocks.	Each	pot	
contained	a	substrate	of	a	mixture	of	peat	50%	Jiffy's	peat	soil	and	
50%	vermiculite	by	volume.	Artificial	sea	water	(10	PSU)	that	had	
been	amended	with	 fertilizer	 (C:N:P	15–	15–	15;	0.5	g	per	pot)	 to	
~2	cm	above	the	soil	level	in	the	pots	was	used	to	water	the	plants.	
The	fully	flooded	soil	in	the	pots	could	minimize	variation	in	salin-
ity	caused	by	evaporation,	and	mimic	the	soil	composition	or	the	
tidal	 regime	experienced	by	plants	 in	nature.	Water	 in	 the	pools	

F I G U R E  1 Map	of	Spartina alterniflora 
collection	locations	in	the:	invasive	(open	
circles)	(a),	and	native	(closed	circles)	
ranges	(b)

(a) (b)
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was	completely	replaced	once	a	month	and	salinity	was	checked	
every	other	day	and	freshwater	was	added	as	needed	to	maintain	
salinity	as	in	Liu,	Chen,	et	al.	(2020)	and	Liu,	Zhang,	et	al.	(2020).	
From	May	to	the	end	of	the	growing	season	in	October	2015,	we	
recorded	the	date	on	which	the	first	S. alterniflora	shoot	flowered	
in	each	pot.	 In	October	2015,	all	aboveground	and	belowground	
biomass	was	then	harvested	and	oven-	dried	at	60°C	for	72	h	and	
subsequently	 weighted.	 The	 belowground	 samples	 of	 each	 pot	
were	gently	washed	over	a	2-	mm	mesh	sieve	 to	 remove	 the	 soil	
substrate.

2.3  |  Statistical analyses

We	used	two-	sample	t-	tests	to	test	for	differences	in	FFD,	AGB,	
BGB,	and	BGB:AGB	between	the	invasive	and	native	ranges	in	the	
common	garden.	Data	were	log(x)-	transformed	or	square-	root(x)-	
transformed	 or	 arcsin(x)-	transformed	when	 necessary	 and	 used	
Shapiro–	Wilk's	test	and	Levene's	test	 to	test	the	normality	of	er-
rors	 and	homogeneity	 of	 variance.	We	used	 linear	 regression	 to	
analyze	 the	 relationships	 between	 plant	 traits	 (FFD,	 AGB,	 BGB,	
and	BGB:AGB)	 and	 latitude	 of	 origin	 in	 the	 common	 garden.	 To	
confirm	 the	 differences	 in	 latitudinal	 clines	 between	 ranges,	we	
used	general	 linear	models,	with	 range	and	 latitude	as	main	 fac-
tors,	to	determine	the	main	and	interacting	effects	on	FFD,	AGB,	
BGB,	and	BGB:AGB	ratio.	To	confirm	the	effect	of	flowering	time	
on	biomass	allocation,	we	used	general	linear	models,	with	range	
and	FFD	as	main	 factors,	 to	determine	 the	main	 and	 interacting	
effects	on	AGB,	BGB,	and	BGB:AGB	ratio.	We	performed	all	anal-
yses	 using	 R	 statistical	 software	 (R	 Development	 Core	 Team,	 R	
version	3.6.2,	2019).

3  |  RESULTS

3.1  |  Flowering and biomass variation between 
ranges

AGB	 and	 BGB	 of	 the	 invasive	 plants	 were	 on	 average	 signifi-
cantly	 higher	 (~20%,	 ~19%)	 than	 those	 of	 the	 native	 populations	
(Figure	2b,c;	Table	1b,c).	However,	there	were	no	differences	in	the	
FFD	and	BGB:AGB	ratio	between	ranges	(Figure	2a,d;	Table	1a,d).

3.2  |  Flowering and biomass variation 
across latitudes

In	both	ranges,	the	FFD	decreased	significantly	with	latitude,	with	a	
stronger	cline	in	the	native	range	(Figure	3a,b).	AGB	and	BGB	from	
the	 invasive	 range	 showed	weakly	 positive	 relationships	with	 lati-
tude,	but	 there	was	no	significant	 relationship	between	BGB:AGB	
ratio	and	latitude	of	origin	(Figure	3c,e,g).	However,	AGB	and	BGB	
of	 S. alterniflora	 populations	 from	 the	 native	 range	 significantly	

decreased	with	latitude	of	origin,	although	BGB:AGB	ratio	increased	
with	latitude	of	origin	(Figure	3d,f,h).	The	general	linear	model	analy-
ses	 revealed	 significant	 latitude-	by-	range	 interaction	 effects	 on	
FFD,	AGB,	BGB,	and	BGB:AGB	(Table	1a–	d).

3.3  |  Effects of flowering time on 
biomass allocation

In	the	 invasive	range,	AGB	and	BGB	weakly	decreased	with	FFD	
(Figure	4a,c).	In	contrast,	in	the	native	range,	AGB	and	BGB	strongly	
increased	with	FFD	(Figure	4b,d).	 In	both	ranges,	BGB:AGB	ratio	
decreased	with	FFD	(Figure	4e,f).	FFD	has	a	significant	effect	on	
AGB	and	BGB:AGB	 ratio	 (Table	2a,c),	 and	 there	were	 significant	
interactions	 between	 FFD	 and	 range	 effect	 on	 AGB	 and	 BGB	
(Table	2a,b).

4  |  DISCUSSION

Salt	marshes	play	an	important	role	in	carbon	sequestration	glob-
ally	 and	 provide	 numerous	 ecosystem	 services	 (Barbier	 et	 al.,	
2011).	Many	of	these	services	stem	from	the	productivity	of	salt	
marsh	 systems	 (Kirwan	&	Murray,	 2007).	Our	 data	 suggest	 that	
changes	in	FFD	and	biomass	allocation	with	latitude	are	key	pro-
cesses	 in	productivity	of	salt	marshes.	 In	comparing	growth	pat-
terns	 and	 life-	history	 traits	 of	 S. alterniflora	 plants	 grown	 in	 a	
common	 garden,	 we	 found	 that	 invasive	 populations	 produced	
more	AGB	and	BGB	biomass	than	native	populations,	supporting	
the	EICA	hypothesis,	 in	which	 invasive	plants	 escape	 from	 their	
native	enemies	and	can,	therefore,	divert	resources	from	defense	
to	growth,	improving	their	competitive	ability	(Blossey	&	Nötzold,	
1995;	Bossdorf	et	al.,	2005;	Maron	et	al.,	2004).	However,	we	did	
not	 find	 any	 significant	 differences	 in	 FFD	 and	 BGB:AGB	 ratio	
between	 ranges,	 indicating	 that	climatic	conditions	 in	 the	native	
range	of	species	selected	for	a	flowering	and	allocation	pattern	are	
maintained	after	being	 introduced	 to	 the	 invasive	 range	 (Crosby	
et	al.,	2015;	Godoy	et	al.,	2009;	Shang	et	al.,	2015).	And	the	envi-
ronmental	conditions	introduced	in	China	along	latitudes	are	simi-
lar	to	the	native	range	where	S. alterniflora	evolved	(Kirwan	et	al.,	
2009;	Liu,	Chen,	et	al.,	2020;	Liu,	Zhang,	et	al.,	2020).	Moreover,	
our	results	demonstrated	that	parallel	flowering	time	clines	across	
latitudes	resulted	in	contrasting	AGB	and	BGB	clines	between	in-
troduced	and	native	populations,	 indicating	 invasive	populations	
may	have	broken	free	of	the	genetic	constraints	predicted	by	life-	
history	trade-	offs	(Colautti	&	Barrett,	2010).	We	also	found	flow-
ering	time	negatively	correlated	(p =	.002)	with	BGB:AGB	ratio	in	
the	native	range,	indicating	earlier	flowering	time	would	shift	bio-
mass	allocation	from	above-		to	belowground	(Crosby	et	al.,	2015;	
Woods	et	al.,	2012).	S. alterniflora	can	evolve	parallel	or	different	
latitudinal	clines	rapidly	in	invasive	and	native	ranges,	with	impli-
cations	for	further	the	range	expansion	across	latitude	(Colautti	&	
Barrett,	2010).
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Plants	often	perform	better	in	their	invasive	ranges	compared	to	
in	their	native	ranges,	showing	 invasive	phenotypes	such	as	 larger	
size,	and	higher	biomass	(Bossdorf	et	al.,	2005;	Colautti	et	al.,	2009;	
Hierro	et	al.,	2005;	Hodgins	et	al.,	2018;	van	Kleunen	et	al.,	2010,	
2018;	Leger	&	Rice,	2003)	and	earlier	flowering	at	times	depending	
on	 the	 local	 environment	 in	 the	 introduced	 range	 (McGoey	 et	 al.,	
2020).	Our	results	showed	that	the	AGB	and	BGB	were	higher	in	the	
invasive	plants	than	in	the	native	plants	in	the	greenhouse	common	
garden,	consistent	with	previous	studies	on	S. alterniflora	(Liu,	Chen,	
et	al.,	2020;	Liu,	Zhang,	et	al.,	2020;	Qing	et	al.,	2011;	Shang	et	al.,	
2015).	S. alterniflora	suffers	higher	herbivory	pressure	 in	 its	native	

than	in	its	invasive	range	(Gratton	&	Denno,	2005;	Holdredge	et	al.,	
2009;	Li	et	al.,	2009;	Silliman	et	al.,	2005).	So,	 the	 invasive	plants	
could	be	re-	directing	resources	from	herbivore	defense	to	growth.	
Intraspecific	 hybrid	 vigor	 is	 thought	 to	 have	 played	 a	 role	 in	 the	
spread	of	other	invasive	species	(Glotzbecker	et	al.,	2016).	Genetic	
admixture	can	facilitate	colonization	via	hybrid	vigor	and	profoundly	
enhance	 invasion	via	contributing	novel	genetic	variation	 to	adap-
tion	 (Rius	&	Darling,	2014).	S. alterniflora	 in	China	had	multiple	or-
igins	 from	 three	US	 provenances,	which	were	 cultivated	 together	
and	crossed,	and	the	most	vigorous	 lineages	were	propagated	and	
grew	bigger	(Qiao	et	al.,	2019;	Qing	et	al.,	2011;	Shang	et	al.,	2015).	
However,	we	did	not	 find	significant	differences	 in	 flowering	 time	
and	BGB:AGB	ratio	between	 invasive	and	native	ranges,	which	 in-
dicated	 flowering	and	 the	biomass	allocation	between	above-		and	
belowground	are	the	results	of	local	climate	adaptation	in	the	native	
range	similar	to	the	invasive	range	(Chen	et	al.,	2021;	Crosby	et	al.,	
2015;	Liu,	Chen,	et	al.,	2020;	Liu,	Zhang,	et	al.,	2020).

Flowering	 time	 is	 a	 key	 life-	history	 trait	 that	 can	have	a	major	
impact	 on	 fitness	 and	 is	 thus	 likely	 a	 target	 of	 strong	 selection	
during	 invasion	and	spread	across	 large	geographic	areas	 (Colautti	
&	Barrett,	2010;	Weiner,	2004).	We	found	flowering	time	advanced	
with	 increasing	 latitude	 in	 both	 invasive	 and	 native	 populations,	
which	is	consistent	with	invasive	populations	being	pre-	adapted	to	
latitudinal	 clines	 from	 the	 native	 range	 (Colautti	 &	 Barrett,	 2013;	
Hodgins	&	Rieseberg,	 2011;	 Leger	&	Rice,	 2007;	Montague	et	 al.,	
2008;	Samis	et	al.,	2012;	Stinchcombe	et	al.,	2004).	This	cline	may	
be	caused	by	the	more	compressed	growing	season	with	increasing	
latitude,	leading	to	earlier	flowering	times	at	high	latitudes	compared	
to	lower	ones	(Novy	et	al.,	2013;	Pau	et	al.,	2011).	Because	all	the	S. 
alterniflora	plants	 in	China	had	a	common	origin	from	seeds	of	ge-
netic	admixtures	among	three	native	provenance	four	decades	ago	
(Qiao	et	al.,	2019),	this	indicates	rapid	and	perhaps	ongoing	selection	
for	earlier	flowering	times	at	sites	with	a	shorter	growing	season,	as	
occurs	in	the	native	range	(Crosby	et	al.,	2015;	Seneca,	1974;	Somers	
&	Grant,	1981).

Previous	work	has	 found	 that	 aboveground	biomass	 showed	a	
hump-	shaped	 relationship	with	 latitude	 in	 the	 field	 in	 the	 invasive	

F I G U R E  2 First	flowering	day	(a),	aboveground	biomass	(b),	belowground	biomass	(c).	and	belowground	biomass:aboveground	biomass	
ratio	(d)	of	Spartina alterniflora	populations	from	the	invasive	(China)	and	native	(United	States)	ranges	in	the	greenhouse	common	garden.	
DOY,	day	of	year.	p	value	indicates	significance	of	t-	tests	between	the	invasive	and	native	range

TA B L E  1 General	linear	models,	with	range	and	latitude	as	main	
factors,	was	used	to	determine	the	main	and	interacting	effects	on	
FFD,	AGB,	BGB,	and	BGB:AGB	ratio

Traits Factor effects df F p

(a)	FFD Range 1 2.55 .11

Latitude 1 133.66 <.0001

Range	*	Latitude 1 58.64 <.0001

Residuals 171

(b)	AGB Range 1 12.02 .0006

Latitude 1 23.41 <.0001

Range	*	Latitude 1 75.67 <.0001

Residuals 246

(c)	BGB Range 1 4.59 .03

Latitude 1 0.51 .47

Range	*	Latitude 1 12.85 .0004

Residuals 245

(d)	BGB:AGB	
ratio

Range 1 0.01 .96

Latitude 1 9.57 .002

Latitude*Range 1 5.52 .02

Residuals 245

Note: Entries	in	bold	indicate	statistically	significantly	results	(p <	.05).
Abbreviations:	AGB,	aboveground	biomass;	BGB,	belowground	
biomass;	FFD,	the	first	flowering	day.
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range,	and	that	these	patterns	were	largely	due	to	phenotypic	plas-
ticity	(Liu,	Chen,	et	al.,	2020).	However,	this	study	did	not	quantify	
belowground	 biomass	 and	 biomass	 allocation,	 and	 so	 could	 not	
establish	whether	 it	 follows	 the	 same	 latitudinal	 patterns	 as	 abo-
veground	 biomass.	 In	 the	 greenhouse	 common	 garden,	 AGB	 and	
BGB	 decreased	 with	 latitude	 in	 the	 native	 range,	 but	 weakly	 in-
creased	with	latitude	in	the	invasive	range,	and	it	has	been	proved	
that	 patterns	 disappeared	 in	 the	 second	 year	 (Liu,	 Chen,	 et	 al.,	
2020).	This	suggests	that	the	AGB	and	BGB	clines	across	latitudes	
are	driven	by	a	genetic	basis	in	the	native	range,	but	mainly	by	phe-
notypic	plasticity	in	the	invasive	ranges	(Liu,	Chen,	et	al.,	2020).	In	
North	America,	latitudinal	patterns	in	S. alterniflora	traits	often	have	
a	 strong	genetic	 component	 (Seliskar	et	 al.,	 2002;	Travis	&	Grace,	
2010),	 supporting	 the	 genetic	 differentiation	 of	 different	 traits	

(Blum	et	al.,	2007;	Qiao	et	al.,	2019;	Strong	&	Ayres,	2013).	However,	
while	the	BGB:AGB	ratio	increased	with	latitude	in	the	native	range,	
this	cline	disappeared	in	the	invasive	range,	indicating	that	invasive	
populations	have	freed	them	from	the	trade-	off	between	these	two	
competing	modes	as	seen	in	the	native	range	(Crosby	et	al.,	2015).	
Otherwise,	 with	 populations	 at	 higher	 latitudes	 experiencing	 less	
severe	competition	in	the	invasive	range	because	of	largely	vacant	
niches	with	 fewer	conspecifics	 in	mudflat	habitats,	weak	selective	
pressure	for	competitive	ability	(vegetative	growth)	permitted	plants	
to	 invest	 less	energy	 in	aboveground	biomass	and	more	energy	 in	
belowground	 biomass	 (Bertness	 &	 Hacker,	 1994;	 Bhattarai	 et	 al.,	
2017;	Schemske	et	al.,	2009).

Shifting	in	biomass	allocation	from	above-		to	belowground	was	
related	 to	 flowering	 phenology	 (Crosby	 et	 al.,	 2015).	We	 found	

F I G U R E  3 Relationships	between	
first	flowering	day	(a,	b),	aboveground	
biomass	(c,	d),	belowground	biomass	(e,	f)	
and	belowground	biomass:aboveground	
biomass	ratio	(g,	h),	and	latitude	of	origin	
in	the	greenhouse	common	garden.	DOY,	
day	of	year
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that	 first	 flowering	day	positively	 correlated	with	AGB	and	BGB	
in	the	native	range,	where	northern	populations	flower	earlier	at	a	
smaller	size	compared	with	southern	populations,	consistent	with	
an	 adaptive	 response	 to	 latitudinal	 changes	 in	 growing-	season	
length	 and	 life-	history	 trade-	offs	 (Chen	 et	 al.,	 2021;	 Colautti	 &	
Barrett,	2010).	In	contrast	to	native	range,	the	first	flowering	time	
negatively	 correlated	 with	 AGB	 and	 BGB	 in	 the	 invasive	 range,	
indicating	 that	 natural	 selection	 will	 favor	 genotypes	 with	 both	
earlier	 flowering	 time	 and	 large	 size	 because	 of	 higher	 fitness,	
in	 conflict	with	 the	 life-	history	paradigm	 relating	 flowering	 time	
and	 plant	 size	 (Colautti	 &	 Barrett,	 2010).	 Moreover,	 we	 found	
that	 flowering	 time	 positively	 correlated	with	 BGB:AGB	 ratio	 in	
both	native	and	invasive	range,	 indicating	that	flowering	phenol-
ogy	would	be	related	to	the	biomass	allocation	of	plants	(Crosby	
et	al.,	2015;	Weiner,	2004).	Our	 results	are	consistent	with	pre-
vious	 findings	 that	 higher	 root-	to-	shoot	 ratios	 were	 genetically	

correlated	with	early	phenology	(Woods	et	al.,	2012).	Therefore,	
belowground	biomass	accumulation	will	be	affected	by	the	start,	
end,	 and	 length	 of	 the	 growing	 season	 (Crosby	 et	 al.,	 2015;	 Liu	
et	al.,	2022).	Future	predictions	of	salt	marsh	growth	and	accre-
tion	should	thus	consider	not	only	the	impact	of	the	length	of	the	
growing	 season	but	 also	 the	plant's	 life	 cycle	 (Weiner,	 2004).	 In	
general,	 our	 results	 suggest	 that	 flowering	 time	 is	 the	 primary	
driver	of	the	aboveground	versus	belowground	biomass	allocation	
pattern	for	plants	(Cheng	et	al.,	2015).	One	caveat	of	this	study	is	
that	all	plants	were	grown	from	seed	and,	therefore,	subject	to	ma-
ternal	effects.	However,	we	think	it	unlikely	that	maternal	effects	
could	 explain	 the	 phenotypic	 patterns	 presented	 here	 because	
maternal	 effects	 are	 more	 pervasive	 in	 early	 life-	history	 stages	
(Liu,	Chen,	et	al.,	2020;	Liu,	Zhang,	et	al.,	2020;	Montague	et	al.,	
2008;	Rossiter,	1998),	while	here	we	focused	on	traits	at	the	end	
of	the	annual	life	cycle.

F I G U R E  4 Relationships	between	
aboveground	biomass	(a,	b),	belowground	
biomass	(c,	d)	and	belowground	
biomass:aboveground	biomass	ratio	(e,	f),	
and	first	flowering	day	in	the	greenhouse	
common	garden.	DOY,	day	of	year
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This	study	has	shown	that	S. alterniflora	would	produce	more	AGB	
and	BGB	in	the	invasive	range	than	in	the	native	range,	which	is	con-
sistent	with	EICA	hypothesis.	This	 study	also	has	 identified	parallel	
flowering	time	clines	in	the	invasive	and	native	ranges,	but	contrasting	
AGB	and	BGB	clines.	One	of	the	more	significant	findings	to	emerge	
from	this	study	is	that	 invasive	populations	have	broken	free	of	the	
genetic	constrains	relating	earlier	flowering	with	smaller	size.	Larger	
size	at	earlier	flowering	time	will	contribute	to	the	enhancement	and	
evolution	in	competitive	ability,	and	further	result	in	higher	reproduc-
tive	output	and	fitness,	which	will	facilitate	the	evolutionary	response	
of	invasive	species	to	local	environment	and	further	the	range	expan-
sion	(Colautti	&	Barrett,	2010).	Given	that,	we	recover	negative	rela-
tionships	between	flowering	time	and	AGB	and	BGB	in	the	invasive	
range.	Moreover,	earlier	flowering	would	shift	aboveground	biomass	
to	belowground	biomass.	These	findings	have	significant	implications	
for	our	understanding	of	how	flowering	phenology	affects	biomass	
allocation	across	 latitudes.	When	we	model	the	productivity	of	salt	
marshes,	we	should,	therefore,	consider	the	flowering	phenology	as	
an	important	cue	in	the	future.	Finally,	we	propose	that	rapid	evolu-
tion,	biomass	reallocation	across	 latitudes	and	phenotypic	plasticity	
of	this	invasive	species	contribute	to	successful	invasion	of	plants.
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