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The non-coding genome, consisting of more than 98% of all genetic information in hu-
mans and once judged as ‘Junk DNA’, is increasingly moving into the spotlight in the field
of human genetics. Non-coding regulatory elements (NCREs) are crucial to ensure correct
spatio-temporal gene expression. Technological advancements have allowed to identify
NCREs on a large scale, and mechanistic studies have helped to understand the biolog-
ical mechanisms underlying their function. It is increasingly becoming clear that genetic
alterations of NCREs can cause genetic disorders, including brain diseases. In this review,
we concisely discuss mechanisms of gene regulation and how to investigate them, and give
examples of non-coding alterations of NCREs that give rise to human brain disorders. The
cross-talk between basic and clinical studies enhances the understanding of normal and
pathological function of NCREs, allowing better interpretation of already existing and novel
data. Improved functional annotation of NCREs will not only benefit diagnostics for patients,
but might also lead to novel areas of investigations for targeted therapies, applicable to a
wide panel of genetic disorders. The intrinsic complexity and precision of the gene regulation
process can be turned to the advantage of highly specific treatments. We further discuss
this exciting new field of ‘enhancer therapy’ based on recent examples.

Introduction
The human genome contains more than 20,000 protein-coding genes whose expression needs to be
precisely regulated in order for normal development and physiology to occur. A key component
of this well-tuned orchestra of gene regulation are non-coding regulatory elements (NCREs), which
modulate the magnitude, timing and cell specificity of gene expression. The cross-talk between cod-
ing and non-coding genome relies on multiple factors, from DNA sequence to 3D chromatin struc-
ture. As one of the most complex organs of the human body, the brain is particularly dependent
on the correct timing, location and level of gene expression, enabling its development and function-
ing during life. It is therefore not surprising, that alterations in the regulatory processes of gene reg-
ulation, including chromatin modifications, often lead to neurodevelopmental disorders [1–6]. Con-
stantly improving genetic diagnostic techniques, based on next-generation sequencing (NGS), are
currently the most effective in identifying disease-causing (e.g. pathogenic) variants in the coding
sequences [7]. However, in more than 50% of individuals affected by neurodevelopmental disor-
ders a genetic cause remains elusive despite a high clinical suspicion for a genetic disorder, and it
seems plausible that the explanation for this ‘missing heritability’ can be found in the non-coding
genome in a significant number of cases [7]. The limited functional annotation of non-coding se-
quences and limitations in our understanding of NCRE function impedes and perplexes the inter-
pretation of non-coding variants in a diagnostic setting. This, however, is anticipated to change as
we witness more studies bridging the fundamental and clinical aspects of NCREs. Also, more than
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90% of disease-associated single nucleotide polymorphisms (SNPs) identified by genome-wide association studies
(GWASs) are located in non-coding regions of the genome [8], reinforcing the need to better understand mechanisms
of gene regulation, NCREs and the non-coding genome.

In this review, we first discuss the basics of gene regulatory mechanisms and methods that can help to functionally
annotate NCREs. We then highlight a number of examples where alterations of NCREs lead to disease and discuss
potential options to modify NCREs as future treatment modalities for genetic disorders.

Mechanisms of gene regulation by the non-coding genome in a nutshell
Both proximal and distal NCREs interact with target genes to control gene expression, and these include promoters,
enhancers, silencers and insulators. Promoters are located next to the transcription start site of a gene, and switch the
gene transcription on and off. Spatio-temporal regulation of promoter activity is enabled by the interaction of pro-
moters with other distal NCREs, such as enhancers. Enhancers are relatively short sequences (100–1000 bp) that can
reside in exons, introns or intergenic regions, which can be located in close proximity of target genes, but also being
distantly located up to megabases (Mb) away from their targets [9]. Enhancers contain multiple binding sites for tran-
scription factors (TFs), which recruit cofactors that together activate transcription of target genes, independently of
the enhancer orientation [9,10]. Other predictive features of enhancers include their location in open chromatin when
active and epigenetic modifications like enrichment of histone modifications, such as monomethylation of lysine 4
of histone H3 or acetylation of lysine 27 of histone H3 (H3K4me1 and H3K27ac) [11]. Indeed, TF binding capac-
ity to enhancers can be influenced by DNA methylation and chromatin organization, although some TFs also have
pioneer factor activity, which means that they can actively open-up closed chromatin regions, enabling activation of
genes during development [12,13]. Enhancers are ultimately brought into close proximity to their target promoters by
chromatin looping, enabling gene expression [9,14,15]. These enhancer–promoter interactions are mainly confined
to topologically associated domains (TADs) and occur in open-chromatin regions. TADs are genomic domains with
an average size of ∼1 Mb that encompass regions that preferentially physically interact with other sequences within
the same TAD, being delimited and maintained by boundary elements (insulators) [16,17] (Figure 1A). In contrast
with enhancers, silencers are NCREs that upon binding of regulatory proteins repress gene expression [18].

There is accumulating evidence that many genes are regulated by more than one enhancer. This enhancer redun-
dancy has been first described in Drosophila and is referred to as ‘shadow enhancers’, which drive (partially) overlap-
ping spatio-temporal activity, conferring a level of redundancy and enforcing resistance to genetic variations [19,20].
Recently, the term ‘super enhancer’ (SE) has been coined which describes clusters of putative enhancers in close ge-
nomic proximity with unusually high potential to activate transcription of key genes that define cell identity [21–24].
SEs were proposed to differ from putative enhancers in size, TF density and sensitivity to perturbation [21,22,25,26].
Despite this interesting concept, a number of studies have challenged this view and have proposed that SEs are simply
a collection of multiple enhancers located in close proximity, that together do not result in more enhancer activity
than the sum of its parts [24,27]. Their precise role needs to be further investigated.

How to identify putative and functional NCREs
To identify putative NCREs, one can take advantage of the several distinct features at different epigenome layers that
allow to distinguish NCREs from other non-coding sequences, such as specific chromatin marks, binding of TFs,
chromatin accessibility and structural organization, and a variety of techniques that can detect these features.

Chromatin immunoprecipitation (ChIP) was introduced to study protein–DNA interactions, and its combina-
tion with NGS allows to determine genome-wide binding profiles of proteins of interest [28,29]. When applied
to NCRE-associated proteins, such as lineage-specific TFs or enhancer-associated histone modifications such as
H3K4me1 and H3K27ac, it allows to identify the location of putative enhancers genome-wide [29,30]. It is, however,
important to note that not all of these putative enhancers will turn out to be ‘bona fide’ active enhancers. For example,
several studies have shown that not all H3K27ac marked sites function as enhancers in validation experiments, and
the genome-wide depletion of some of the enhancer associated marks seem to strikingly impact very little on gene
expression [31–34]. This emphasizes that even though ChIP-seq of histone modifications and enhancer-associated
TFs is very useful to identify putative enhancers, functional validation remains crucial to confirm these findings
[31,35–37].

Another feature of enhancers is their need to be accessible for TFs and structural proteins, and therefore, they
reside in open chromatin when active. These accessible DNA regions can be identified by multiple techniques, in-
cluding the Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq). ATAC-seq
takes advantage of transposons such as Tn5, which preferentially integrate into open chromatin regions and inserts
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Figure 1. Enhancer–promoter interaction regulates gene expression

(A) Overview of enhancer–promoter interaction restricted within the TAD. The genome (black line) is organized by domains named

TADs, which are established and defined by CTCF insulators and their interaction with the cohesin complex. To establish the en-

hancer–promoter interaction loop, TFs bind to both enhancer and the target promoter where the RNA Pol II complex is assembled

to start transcription of the target gene. Other proteins, such as the Mediator complex, connect enhancer and promoter by interac-

tions with TFs and the transcriptional machinery. (B) Flowchart illustrating how genetic variants in NCRE can contribute to disease,

and how this knowledge could be utilized to develop future therapies. Through NGS-based studies and other future diagnostic ap-

proaches, variants in NCREs are identified. Computational analysis will help to prioritize possibly disease causing variants. These

can include SNPs, insertions, deletions, inversions or translocations of enhancers; and alterations in chromatin looping preventing

the proper formation of TADs, all potentially influencing or disrupting gene regulatory mechanisms and, therefore, gene expres-

sion output. The functional validation of identified variants can help to establish their pathogenicity and can provide cues for the

development of future novel therapies targeting NCREs and gene regulatory mechanisms benefitting patients.

adapters by tagmentation [38]. These regions are then amplified and sequenced by NGS. One of the main advantages
of ATAC-seq is that with minimal input material it can also identify other NCREs, such as promoters, which reside
in accessible chromatin as well.

Chromatin architecture plays an essential role in gene regulation, facilitating enhancer–promoter interactions. Sev-
eral methods exist to assess chromatin conformation. These include, among others, high-throughput chromosome
conformation capture (Hi-C), which allows high-throughput contact mapping of genome-wide interactions, which
allows to identify enhancer–promoter interactions and TADs [39]. Other techniques include methods that study the
genome-wide interactions of selected regions of interest (such as promoter capture Hi-C [40]) or targets bound by a

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

673



Essays in Biochemistry (2021) 65 671–683
https://doi.org/10.1042/EBC20200121

protein of interest (such as HiChIP [41]). Together, these and other approaches allow to map chromatin conformation
interactions, and the knowledge obtained from this can be used to predict the location of putative enhancers.

Although ChIP-seq, ATAC-seq and chromatin conformation assays are able to identify putative NCREs, functional
validation remains crucial as not all putative enhancers in fact are real enhancers [42–44], even when localized in
open-chromatin regions [33,45]. Classically, this validation was done by low throughput reporter assays, but new
technologies enable us to significantly upscale functional validations. These include massively parallel reporter assays
(MPRAs), such as STARR-seq [32], that allows the determination of enhancer activity on an episomal plasmid in a
high-throughput manner, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based screens in
which NCREs can be edited in high-throughput at endogenous loci, allowing to directly assess effects on endogenous
gene expression [46]. MPRAs were first developed by Patwardhan et al. in 2009 for promoter assays and enables the
analysis of thousands of regulatory elements in a single experiment [47,48]. Libraries of thousands of enhancers are
en masse cloned in a reporter construct containing a unique barcode for each enhancer candidate [49]. The RNA-seq
readout of these libraries after expression in cells or even in vivo in animal models is used to determine the enhancer
function by linking the abundance of barcodes in mRNA to the element’s activity [47]. This not only allows the testing
of pre-selected genomic regions of choice, but also the screening of randomly fragmented sequences open chromatin
regions, regions associated with TFs or histone marks, or even whole genomes [31,32,45,50–52]. Similar approaches
can also be used to study the effects of genetic variants on function of putative enhancers via saturation mutagenesis
experiments [53]. Together, with all these different currently available tools, the field now seems for the first time
ready to start deciphering the regulatory grammar of the non-coding genome, and provide functional annotation to
non-coding sequences. Knowledge obtained from this will enable us to better interpret genetic variation encountered
in patients and might elucidate unknown causes of disease in the field of human genetics (Figure 1B).

Non-coding variants in the context of genetic brain disease
The fact that evolution has resulted in such complex, well-organized processes of gene regulation, and the obvious
need for these processes for the development of an organism [54], let it not come as a surprise that disturbance of these
mechanisms can lead to human disease. Aberrations of NCREs have indeed been implicated in the pathogenesis of
human disorders. A classic example is pre-axial polydactyly, where variants in a limb-specific enhancer, the so-called
ZRS region located in intron 5 of the LMBR1 gene, causes disturbed expression of SHH, located more than 1 Mb
away, resulting in pre-axial polydactyly [55,56]. Other examples include a variant in a silencer of NOTCH1, which
was shown to contribute to Tetralogy of Fallot (a congenital heart disease) [57] and translocations of the NCREs of
PAX6 that lead to aniridia [56]. Multiple disease examples show that the human brain seems particularly sensitive
to gene expression disbalance [4,43,58], and many neurodevelopmental disorders are linked to chromatin modi-
fiers [5,59–64] and architectural proteins with roles in establishing chromatin conformation, such as CTCF, YY1 and
STAG1 [1,3,4,65,66]. In this section, we will focus on a number of recent examples that illustrate the wide range of
alterations of gene regulatory processes that can cause brain-related disorders, and the novel approaches to identify
them. These alterations can range from deletions or duplications of NCREs identified by whole-genome sequencing
(WGS) or copy number analysis, point mutations in NCREs detected by WGS or targeted sequencing, disruption
of TAD boundaries encountered by chromatin conformation studies, and dysfunction of proteins involved in gene
regulatory processes, just to mention a few (for further in-depth review, see [1,43,67,68]) (Figure 1B).

Primary familial brain calcification (PFBC) is a rare microvascular calcifying disorder presenting with neuropsy-
chiatric symptoms, which is caused by haploinsufficiency of an inorganic phosphate transporter, SLC20A2. Recently,
a deletion encompassing an enhancer region upstream of SLC20A2 was identified in three patients with PFBC [69],
and resulted in decreased SLC20A2 expression and phosphate uptake to a similar level as observed in SLC20A2
haploinsufficiency. Similar enhancer deletions have been found in proximity of GABRD, a susceptibility factor for
juvenile myoclonic epilepsy [70], in a study that performed WGS analysis in an epilepsy cohort [71]. In 28.8% of 198
patients, copy number variants were found near known epilepsy genes, indicating that disruption of the gene regula-
tory landscape of these genes might be the cause of epilepsy [71]. Two studies have employed targeted sequencing of
putative NCREs and provided evidence of single nucleotide alterations at NCREs being causative of developmental
disorders. Based on targeted NCRE sequencing of 7930 individuals from the Deciphering Developmental Disorders
(DDD) study, it was estimated that 1–3% of patients with neurodevelopmental disorders carry de novo pathogenic
variant in fetal brain-active NCREs [72], although the number of NCREs investigated in this study was rather lim-
ited, possibly underestimating the real contribution of genetic variants in NCREs. Using another targeted sequencing
approach, bi-allelic variants in NCREs were found in approximately 5% of consanguineous cases of autism spectrum
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disorder (ASD) [73]. Interestingly, these variants are located in human accelerated regions (HARs), which are con-
served genomic loci with elevated divergence in humans. Won et al. further confirmed that non-coding elements in
HARs and human gained/lost enhancers interact with genes involved in human brain development, including risk
genes for ASD, developmental delay and schizophrenia [74].

One of the challenges in the field remains the linking of encountered non-coding variants from WGS or GWAS
to their target genes and, therefore, to neurodevelopmental disorders, as functional annotation of NCREs is still lim-
ited. Rapidly accumulating chromatin interaction data may change this. For example, several GWAS risk loci could
be assigned to schizophrenia-associated genes based on 3D chromatin interaction maps of developing human cortex
derived using Hi-C [75]. Hi-C is even about to enter the clinical setting for individual patients. In a recent study, Hi-C
maps of cells derived from nine patients presenting with developmental disorders and harboring structural variants
revealed altered TADs and regulatory elements [76]. One of these structural variants from a patient caused altered
levels of FOXG1. Since variants in FOXG1 and its regulatory elements were reported in congenital Rett syndrome
and Rett syndrome-like phenotypes, the new variant is likely underlying the condition of this individual [77]. Interest-
ingly, TAD-disruption appears to be a common mechanism underlying developmental disorders [78]. Deregulation
of gene expression was reported in 7.3% of 219 cases of neurodevelopmental disorders, including ten individuals
with structural variants disrupting the regulation of MEF2C, which causes intellectual disability (ID), epilepsy and
cerebral malformations [79–83]. Patients carrying TAD-disrupting variants distal to MEF2C had lower MEF2C ex-
pression (as assessed in lymphoblastoid cell lines), which suggests TAD disruption as a likely explanation of patient
condition.

Another challenging point in variant analysis and functional validation is the tissue-specificity of NCREs (re-
viewed in [43,84]), and this might be overcome by integrating data derived from relevant in vitro models, such
as induced pluripotent stem cell (iPSC)-derived or primary neuronal cells. Combination of chromatin accessibil-
ity analysis in iPSC-derived excitatory neurons, and risk variants identified in GWAS, allowed the identification
of 108 potentially functional loci in NCREs, that might contribute to schizophrenia [85]. A risk variant located at
the MIR137 locus, at a neuron-specific TF-binding site, was confirmed to alter the chromatin accessibility of the
MIR137 promoter. This resulted in altered gene expression which changed dendrite and synapse formation. Another
comprehensive study in four iPSC-derived neuronal cell types integrated Hi-C, open chromatin and RNA-seq data
to identify long-range enhancer–promoter interactions connecting NCREs to their target genes [86]. The approach
was confirmed by CRISPR interference (CRISPRi) targeting cell type-specific regulatory regions of CDK5RAP3.
CDK5RAP3 was down-regulated in excitatory neurons when CRISPRi was directed to regions 1 and 2, whereas the
effect of interfering with region 3 was only observed in astrocytes and motor neurons. The generated dataset allowed
to link 70% of SNPs from GWASs for 11 neuropsychiatric disorders to the promoter-interacting region in one or
more cell type. Nott et al. identified NCREs using ATAC-seq and ChIP-seq in major brain cell types from cortical
brain tissues obtained from six individuals [87]. Risk variants for neurological and psychiatric disorders were then
mapped to these regions. The functional effect of a deletion of the microglia-specific BIN1 enhancer that contained
an Alzheimer’s disease-risk variant, was confirmed in microglia but, not in neurons or astrocytes, which were differ-
entiated from the same CRISPR-Cas9 edited human iPSC. Nevertheless, the high-throughput validation of these data
remains challenging as each enhancer variant needs to be tested in the respective cell type.

Interestingly, it is becoming clear that enhancers can also predict the pathogenicity of genes that are associated with
them [88]. Using machine learning, Wang et al. established an enhancer-domain score (EDS), which takes several pa-
rameters into consideration, including the enhancer-domain size, enhancer redundancy, the number of functional
nucleotides, TF-binding sites and tissue-specific activity [89]. This revealed that genes regulated by enhancers with
a higher EDS are more likely associated with human diseases than genes with a lower score. Also, a higher EDS
was linked to genes resilient against genetic disturbance. In other words, functionally important genes might over-
come the effects of functionally disturbing genetic variants by using a set of redundant NCREs for their regulation.
Furthermore, it was shown that enhancers with a higher EDS regulate genes which are depleted of cis-expression
quantitative trait loci (cis-eQTLs) [89]. cis-eQTLs are loci near a gene of interest which partly explain the variation
of gene-expression levels [90]. As EDS correlates variations in regulatory regions with phenotypic effects, it could
be used as a tool to find the most clinically relevant enhancers and complement other methods which measure the
importance of dosage-sensitive genes. This approach integrated with open chromatin data in iPSC-derived neurons
revealed potential causative variants of schizophrenia which also influenced chromatin accessibility [91].

In summary, considerable progress has been made in identifying and linking variants in NCREs to their target genes
in various cell types in the context of neurological disorders. The integration of these data with functional validation
would not only be crucial to enhance our understanding of the functioning of NCREs and their role in neurodevelop-
ment, but also of immense value to improve diagnostics. One could hypothesize that upon functional annotation and
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Figure 2. Different approaches to target enhancers as therapeutic agents

(A) Schematic representation of targeting enhancer activity via dCas9 fused with a transcription activator or repressor to treat dis-

ease. Transgenic mice carrying the dCas9 and the single-guide RNA (sgRNA) can either activate or repress the target NCRE and,

therefore, promote or down-regulate gene expression, respectively. Both, dCas9 fused with the transcription repressor or activator

and sgRNA can also be delivered by two independent recombinant adeno-associated viruses (rAAVs) in mice, which could poten-

tially be translated to the clinic. (B) Enhancer activity can be controlled by small molecules like dihydroergotamine (DHE). In absence

of DHE, the NR4A promoter remains inactive allowing activation of MYC SE cluster which results in enhanced MYC expression

and, consequently, cell proliferation. DHE induces NR4A expression by binding to its promoter, and NR4A suppresses the MYC

SE thus MYC expression and cell proliferation in acute myeloid leukemia are inhibited. Similar approaches could be designed for

other disorders, based on knowledge obtained from gene regulatory mechanism studies. Abbreviation: dCas9, nuclease-deficient

Cas9.

validation of more NCREs, it will become feasible to sequence NCREs at high throughput in genetically unexplained
patients with neurogenetic disorders as a routine diagnostic approach, or to use the information derived from NCRE
studies as a computational filter in WGS analysis, thereby increasing the diagnostic yield in clinical genetics (Figure
1B).

Modulating enhancer activity for future disease treatment
The increasing knowledge of NCREs relevance in neurodevelopmental diseases opens novel strategies for therapeutic
interventions. So far, genome-editing strategies to rescue a disease phenotype have mainly focused on protein-coding
regions [92]. Although less progress has been made on modifying or influencing NCREs, a number of recent studies
show great promise for such ‘enhancer treatment’, either by influencing NCRE activity by chemical compounds or
directly altering NCREs using CRISPR-Cas9-based approaches (Figure 2). The examples that we discuss in this sec-
tion have clearly benefitted from an in-depth functional understanding of NCREs and gene regulatory mechanisms
obtained from fundamental studies, reinforcing the need of these to fully benefit translational studies.

An interesting example of the use of small molecules to modify NCRE activity comes from the oncology field.
Activation of the oncogene MYC is a key driver for acute myeloid leukemia (AML), and is driven by a cluster of
enhancers which activity is negatively regulated by the nuclear receptor NR4A [93]. NR4A expression can be induced

676 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Essays in Biochemistry (2021) 65 671–683
https://doi.org/10.1042/EBC20200121

by dihydroergotamine (DHE), an FDA-approved drug against migraine [94]. This NR4A-inducing activity of DHE
was leveraged as an enhancer targeting therapy and resulted in reduced enhancer activity with dismissal of enhancer
bound co-activators, reduced H3K27ac and diminished enhancer RNA transcription, ultimately resulting in reduced
MYC expression and AML cell proliferation [95] (Figure 2B). This illustrates the yet-to-be unraveled potential of
small molecules in enhancer treatment, especially when identified in drug repurposing screens, allowing rapid bench
to bedside translation.

In the gene therapy field, recombinant adeno-associated virus (rAAV) are promising vectors to re-establish gene
expression in genetic disorders to compensate for haploinsufficiency, but this might lead to ectopic transgene ex-
pression [96]. CRISPR-mediated gene activation (CRISPRa), in which a nuclease-deficient Cas9 (dCas9) is fused to a
transcriptional activator, such as VP64, and is targeted using guide RNAs (gRNAs) to a promoter or enhancer, might
overcome these limitations [97]. This approach was recently applied to mice that show obesity due to haploinsuffi-
ciency of the genes SIM and Mc4r [98]. By using gRNAs targeting the hypothalamic enhancer and promoter of Sim
and the promoter of Mc4r, expression of these genes could be up-regulated which was sufficient to rescue the phe-
notype. As a pre-clinical proof of concept, also rAAV-mediated delivery of CRISPRa was performed demonstrating
the possible clinical translation of this approach to humans to treat other gene-dosage abnormalities [98]. A simi-
lar approach was applied to a mouse model of Dravet syndrome (DS), a severe epileptic encephalopathy caused by
loss-of-function mutations in SCN1A. Using rAVV-mediated delivery to the brain of DS mouse pups, dCas9 fused
to the transcriptional activator VP160 was targeted by gRNAs to the Scn1a promoter and resulted in up-regulated
Scn1a expression from the wildtype allele [99]. As dCas9 can also be fused to repressive domains [100], similar ap-
proaches could also be developed to silence genes, either by directly silencing the promoter or to interfere with other
NCREs, and might therefore also provide options to treat disorders caused by gain-of-function mutations [100]. It
will be interesting to test whether these approaches could also be further developed to influence gene expression in
an allele-specific manner, or to induce expression of specific gene isoforms which are normally not expressed but
could rescue phenotypes. The latter could provide a targeted therapy for a severe epileptic encephalopathy caused by
a recurrent mutation in UGP2 (Barakat–Perenthaler syndrome, OMIM# 618744), in which the shorter UGP2 iso-
form is not expressed in brain due to the mutation, and up-regulation of the longer UGP2 isoform which is normally
absent from brain could potentially result in a therapy [101].

Obviously, all the approaches discussed in this section will require extensive optimizations and pre-clinical testing
to ensure that the right expression levels can be achieved to benefit patients. It is however promising and inspiring for
the field, that a first enhancer focused gene therapy that uses CRISPR-Cas9 technology has even recently made it into
the clinic [102]. Transfusion-dependent β-thalassemia and sickle cell disease are difficult to treat genetic disorders
primary affecting red blood cells, caused by mutations in hemoglobin β [103,104]. Previous work had shown that in-
duction of fetal hemoglobin (HbF) can improve symptoms in both disorders [105]. BCL11A is a repressor ofγ-globin
expression and HbF production in adult erythrocytes, and its expression is under control of the BCL11A enhancer.
Using CRISPR-Cas9, the BCL11A enhancer was deleted in CD34+ hematopoietic stem and progenitor cells, enabling
autologous stem cell transplantation in β-thalassemia and sickle cell disease patients. This resulted in long-lasting
engraftment of the enhancer deleted cells, resulting in increased HbF expression and improved clinical outcomes
[102]. This elegantly illustrates how similar approaches could also be designed for other genetic disorders, including
those affecting the neurvous system.

Conclusion
The increasing number of examples where variants in NCREs are linked to human diseases, including neurode-
velopmental phenotypes, certainly warrants their evaluation in a clinical diagnostic setting. To further exploit this
potential, not only for diagnostics but also for therapies, the field still needs to address many key questions. This in-
cludes but is not limited to deciphering the logic behind tissue-specific NCRE activity, the causes and consequences
of enhancer redundancy, the establishment of 3D genome organization and the full annotation of all functional
non-coding sequences. The many technology advancements in the field, including functional genomics assays and
CRISPR-Cas9-based tools, will certainly help to achieve this. But of equal importance will be studying the genetics
of human beings, either in large cohorts of healthy individuals to understand normal genetic variation outside of
protein-coding genes, or in the context of rare genetic disorders that impact on gene regulatory mechanisms, and
which might inform us on new targets and pathways for future therapies. Despite the tremendous potential that
NCREs have for therapy, it is clear that it will not be straight forward to develop such treatments easily, as numerous
parameters like off-target effects, cell-type specificity, and levels of gene expression need to be defined in order to
apply ‘enhancer treatment’ in a wide range of patients. However, the new studies involving enhancer treatment in
animal models as well as the first human clinical trials give hope for overcoming the hurdles in the foresight future.
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Summary
• NCREs are important regulators of gene expression.

• Technology innovations and new model systems allow improved functional annotation of NCREs,
which increases our capacity to understand genetic variation encountered outside of protein-coding
genes.

• There is a rising number of genetic disorders, including neurodevelopmental phenotypes, that is
linked to non-coding variants, and the first therapies targeted to NCREs are being developed.

• Increasing our knowledge on NCREs and gene regulatory mechanisms further will enable improved
future diagnostics and therapy options for patients with genetic disorders.
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