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Abstract

Understanding hierarchy and modularity in natural as well as technological networks is of

utmost importance. A major aspect of such analysis involves identifying the nodes that are

crucial to the overall processing structure of the network. More recently, the approach of

hourglass analysis has been developed for the purpose of quantitatively analyzing whether

only a few intermediate nodes mediate the information processing between a large number

of inputs and outputs of a network. We develop a new framework for hourglass analysis that

takes network weights into account while identifying the core nodes and the extent of hour-

glass effect in a given weighted network. We use this framework to study the structural con-

nectome of the C. elegans and identify intermediate neurons that form the core of sensori-

motor pathways in the organism. Our results show that the neurons forming the core of the

connectome show significant differences across the male and hermaphrodite sexes, with

most core nodes in the male concentrated in sex-organs while they are located in the head

for the hermaphrodite. Our work demonstrates that taking weights into account for network

analysis framework leads to emergence of different network patterns in terms of identifica-

tion of core nodes and hourglass structure in the network, which otherwise would be missed

by unweighted approaches.

Introduction

Many networks in both technological and biological systems tend to follow a structure where a

large number of inputs and outputs are connected by pathways through a small number of

intermediate nodes in the network [1–3]. In such a hierarchical organization of a network,

these intermediate nodes are typically of high importance as they form either the bottleneck or

the core of the overall information flow in the network. This pattern of hierarchy has been

observed in many networks in biological as well as techno-social systems [2, 4–6]. In the case

of various biological networks, modularity and hierarchy are well known to help organisms

function ceaselessly with better robustness despite external disturbances to the input and
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output modules [7, 8]. In addition to this robustness for survival, modular and hierarchical

networks are also helpful in evolvability [9], as certain peripheral (input/output) modules of

less criticality in the information-flow of the network can be modified more effectively in

response to prolonged external environment changes spanning across multiple generations of

the organism [7, 10, 11].

In such scenarios, it is important to examine the set of nodes which are critical to the struc-

ture or functioning of the network. Many measures have been used in network science to ana-

lyze centrality structure in networks [12–15]. More recently frameworks characterizing the

bow-tie structure have been developed to study networks that are organized in a hierarchically

modular fashion and facilitate distributed information processing [16–18]. In the same line,

[19] developed the hourglass analysis framework to study hierarchical dependency networks,

especially for networks with a relatively higher number of inputs and outputs mediated

through a much smaller set of intermediate modules. The hourglass effect has been observed

in networks from various domains in biology including metabolism [16, 20, 21], neuronal

structure for visual-cognitive tasks [22]. The hourglass framework identifies a set of core nodes

(known as the τ-core) in a source-target dependency network based on the path centrality

metric [19], returning a small set of critical nodes through which most input to output path-

ways pass. Additionally, [19] also developed the H-score metric to quantify the extent to which

a given network shows the hourglass effect.

Among the neuronal networks in biology, the connectome of the Caenorhabditis elegans
(C. elegans) has been of particular interest. It is the only fully-mapped structural connectome

among all organisms with a nervous system, enabling the study of structural properties of neu-

ronal networks, many of which could be generic to systems as complex as the human brain

[23]. Recent work has pointed out that the C. elegans nervous system can be viewed more as a

distributed information processing system [24]. The aim to identify critical neurons in the

connectome has thus focused on creating measures that take an integrated picture from the

whole network while computing the critical neurons and analyzing the properties of the net-

work as a whole [25]. Had performed the hourglass analysis on the C. elegans connectome by

considering it as an information processing system with an environmental input received by

the input nodes (sensory neurons), processed by an intermediate network of nodes (inter-neu-

rons) to generate an appropriate output response through output nodes (motor neurons). The

hourglass analysis framework was extended to handle feedback loops in the given network

doing away with the assumption of the network representing the information processing sys-

tem being a directed acyclic graph (DAG) [25]. However, all the studies analyzing the hour-

glass properties have been done using the unweighted hermaphrodite connectome of the C.
elegans published by [23]. Recently [26], published a new connectome of the C. elegans with

datasets for both male and hermaphrodite sexes along with the weights for each connection

based on the number and size of neuronal synapses between a pair of neurons as seen in elec-

tron microscopy (EM) series.

In this paper, we firstly present a new framework to study the hourglass effect in weighted

networks in the context of the C. elegans connectome. The importance of taking weights in a

network into account is well known [27, 28]. For the first purpose of the weighted hourglass

analysis, we develop a method named multi-edge transformation (MET) which involves per-

forming hourglass analysis on a weight-based transformation of the original network. An

important concept in identifying the “waist” or core nodes in the hourglass analysis is the path

centrality metric [19, 25], which was earlier defined only for unweighted networks. The MET

method presented in this paper redefines the path centrality of a node by taking into account

the weights of edges along the source-target (sensory-motor) paths that traverse through the

node. Thus MET assigns importance to nodes in the network based on not merely the number
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of source-target paths passing through them but also the extent to which these paths contain

highly weighted edges. Our results on the C. elegans connectome data show that the weighted

version (MET) of the hourglass analysis identifies a more specific yet not fully overlapping set

of core nodes (neurons) as compared to the unweighted version (UNW). We also show

through randomization experiments that the hourglass effect exhibited by the weighted net-

works at hand is not due to chance, as the empirical network had a significantly higher H-

score compared to the corresponding networks generated through the randomization

procedure.

Secondly, we also present a comparison between the male and hermaphrodite connectomes

in terms of their hourglass properties. By using both the unweighted and weighted versions of

the hourglass analysis on the male and hermaphrodite connectomes, we show that the neurons

that form the core of the network structure differ significantly between the male and hermaph-

rodite, both in location and function. Almost all of the neurons that form the core of hermaph-

rodite were located in the head and are involved in functions like information integration,

behavioral response, locomotion, and commanding. However, a large portion of the core neu-

rons of male connectomes are in the pre-anal ganglion and involved in various functions

related to mating behavior. While [26] had also observed differences between the male and

hermaphrodite connectomes in terms of dedicated sex neurons in the male for certain repro-

ductive functions, our work shows that the sex-specific neurons in the male are actually at the

core of network structure, and these interneurons are highly intervened in a lot of sensorimo-

tor pathways.

Taking together, our work presents a way to analyze a given weighted network for a small

set of core nodes through which most of the input-output pathways pass, making them essen-

tial for most sensorimotor activity in the specific case of neuronal connectomes. The applica-

tion of this framework on the C. elegans connectome shows that there are significant

differences in the way the male and hermaphrodite connectomes are organized, especially in

terms of the set of neurons at the core of end-to-end neuronal pathways. This difference pat-

tern between the sexes persists irrespective of whether the connectome is considered as a

weighted or an unweighted network. Our work opens a new possibility of how modern net-

work analysis frameworks can be used to understand subtle structural differences that may

play a part in defining the differences in behavioral characteristics of organisms.

Materials and methods

Datasets/Connectomes

Datasets with neuronal networks of the C. elegans for both male and hermaphrodite sexes

from [29] were used in this study, referred to as maleCook and hermCook in the paper.

Directed networks were built from the dataset with all chemical synapse connections between

pairs of neurons represented as directed edges, and the number of synapses in each connection

was used as the weight of each edge. While the dataset also provides information about the

size of the chemical synapses, it is yet unclear how to interpret the influences that the size of a

chemical synapse has in the neuronal signal transmission, thus we interpreted only the number

of synapses between neurons as edge weight, and built our following models based on this

interpretation. Only non-pharyngeal neurons were used to create the networks with each

neuron categorized into sensory (S), intermediate (I), and motor (M) neurons. The number

of neurons in each category for both male and hermaphrodite connectomes is detailed in

Table 1. Hereafter, the term connectome would refer to the sub-network consisting of only

S, I, and M neurons, unless mentioned otherwise.
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For comparison purposes, we also include a previously widely-used unweighted connec-

tome from [23](termed as hermVarshney). The details of number of neurons and edges in the

networks generated by these connectomes can be found in Table 1. hermCook consists of con-

siderably larger number of edges than hermVarshney, and the weights of the edges unique to

hermCook were found to be significantly weaker than the weights of all the edges in herm-
Varshney (p-value <10−76), as shown in Fig 1.

Preprocessing

There are no nodes that play a dual role (out of S, I, M) as per the provided data in [29]. Four

neurons in the male connectome have been mentioned in the cell list but not present in the

connectome, which include two male-specific neurons ‘CA01’ (inter) and ‘CP00’ and two sex-

shared neurons ‘BAGR’ (sensory), ‘ADAR’ (inter). Neurons near the pharynx were previously

found to form a self-contained, autonomously acting nervous system [26]. Therefore, we

include only non-pharyngal neurons in the hourglass analysis. After these processes, one neu-

ron in the male connectome, ‘URYDL’ (sensory) was found to be not connected to other

remaining neurons. We exclude it in further analysis.

Table 1. Number of nodes (neurons) and edges (connections) in the networks generated by the three connectomes.

connectome n m nS nI nM
maleCook 358 3905 (3388) 137 113 108

hermCook 280 3565 (2999) 83 81 116

hermVarshney 279 2194 (1864) 88 (76) 87 (84) 119

Each edge represents the existence of chemical synpase connectivity between two neurons, while the edge-weights represent the number of chemical synapses between

two neurons. The numbers in parenthesis are results after the removal of feedback edges from the network. n: number of nodes (neurons), m: number of edges

(connections), nS: number of sensory neurons, nI: number of inter-neurons, nM: number of motor neurons.

https://doi.org/10.1371/journal.pone.0249846.t001

Fig 1. Distribution of edge weights for the edges unique in hermCook and edges common to both networks. Vertical

dashed lines show μint (green) and μuniq (red), which are the average weights (count of synapses) of edges common to both

hermCook and hermVarshney, and unique to hermCook, respectively. The additional edges in the hermCook connectome are

significantly weaker (p-value<10−76) than the edges that are common between both the connectomes.

https://doi.org/10.1371/journal.pone.0249846.g001
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The details of number of edges for all connectomes after feedback edge removal can be

found in Table 1. Table 2 shows the proportion of the 9 possible directed edge directions

between S, I and M neurons. The feedback edges, which include I − S, M − S and M − I connec-

tions, were removed while doing the analysis. This was done to ensure efficient source-target

path computation for the hourglass analysis [25].

The data provided in [29] also includes a separate section on sex-specific neurons. The

male connectome has 84 sex-specific neurons leaving out muscles, categorized into sensory or

inter neurons while the hermaphrodite connectome has only 8 sex-specific neurons (HSNL,

HSNR, VC01, VC02, VC03, VC04, VC05, VC06), all of which are motor neurons.

Hourglass analysis on unweighted networks

The hourglass analysis as described in [19] is a framework to analyze a network in terms of

nodes that are responsible for most of the information flow between the source (or input) and

target (or output) nodes of a network. If only a few nodes are a part of majority of the paths

connecting the source and target nodes, then the network is said to exhibit hourglass property,

and these nodes can be said to constitute the core of the network, similar to the waist of an

hourglass. The following subsections detail out the mathematical formulation of this concept

by defining the relevant metrics and methods to compute them.

Generating source-target paths. If the C. elegans connectome is thought of as an infor-

mation processing system to be analyzed in terms of the hourglass property, it can be done in

terms of the number of source-target paths (S-T paths) i.e. paths connecting a source node to a

target node in the network. Nodes through which a larger proportion of S-T paths pass can be

considered as nodes of importance for the information processing system. Among all S-T

paths present in a network, usually only a subset of the paths would be used in the information

flow, which requires domain-specific knowledge to determine. In terms of C. elegans neuronal

network, previous work [25] proposed a series of path constraints based on consideration of

routing efficiency (top shortest paths) or diffusion efficiency (paths with limited lengths).

In this study, we used the set of S-T paths that are at most 4 hops in length. We restrict the

set of paths in terms of maximum length rather than selecting the shortest ones because there

is no biological evidence so far supporting the neuronal network’s ability to route information

through the shortest paths—which requires each neuron to have complete information about

the connectome. Moreover, previous work on the C. elegans connectome evaluated a number

of sensory-to-motor neuron path selection schemes—without noticing major differences [25].

We rely on this path selection scheme for brevity as it seems more plausible for neuronal com-

munication. We use the notation P4 to denote this set of paths. Hereafter, the term S-T paths

will be used to refer to the set of paths from source to target nodes that belong to the P4 paths.

τ-core and path centrality. There are numerous metrics for examining the extent to

which a node plays a role in information transfer in the network. While metrics like degree

Table 2. Proportion of connections between sensory (S), inter (I) and motor (M) neurons for all connectomes.

S I M S I M S I M

S 0.21 0.20 0.06 0.10 0.15 0.07 0.07 0.17 0.07

I 0.09 0.19 0.10 0.08 0.22 0.13 0.06 0.23 0.16

M 0.01 0.03 0.11 0.02 0.05 0.16 0.01 0.07 0.16

(a) maleCook (b) hermCook (c) hermVarshney

Rows represent the category of the pre-synaptic neuron and columns represent the post-synaptic neuron of the chemical junction.

https://doi.org/10.1371/journal.pone.0249846.t002
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and eigenvector centrality are based on local properties, centrality metrics that are informed

from the network in its entirety are also used for paradigms involving information flow. In the

context of the C. elegans neuronal connectome, a relevant metric should account for the fact

that the network function involves transfer of neuronal signals between various parts of the

nervous system. We used the path centrality metric in this study for formulating the centrality

of a node in the network. With the set of paths identified, the next step is to find the core of the

network. This is equivalent to finding τ-core, defined as the smallest set of nodes covering a

fraction τ (the path-coverage threshold) of the entire set of paths. Unfortunately, finding τ-

core is an NP-Complete problem [19]. Nevertheless, by defining the concept of the path cen-

trality we could build a greedy heuristic approach to compute the approximately optimal

solution.

The path centrality P(v) of a node v, also known as stress of a node [30], is defined as the

number of S-T paths that pass through v. In the context of C. elegans connectome, the path

centrality represents the number of sensory-motor neuronal pathways in which a particular

neuron participates, thus capturing how important a neuron is to the overall neuronal trans-

missions in the network.

We could find an approximate solution for computing the τ-core by iteratively adding

nodes with the highest path centrality in the network into the core set, starting initially with an

empty set. In each step i after a node vi is picked, we compute all the paths in the P4 that could

be traversed by node vi, and removed all the nodes and edges in this set of paths. Then, we

recalculate the path centrality of each node before adding the next node. This is repeated until

at least a fraction τ of S-T paths have been removed (covered). The entire process of obtaining

the τ-core using this iterative removal of nodes with highest path centrality is delineated more

formally in Algorithm 1.

Algorithm 1. Computation of τ-core using greedy heuristic
1: procedure COMPUTECORE(τ, PST)
2: τ  path-coverage threshold
3: PST  set of S-T paths
4: np  0 (number of paths passing through core nodes)
5: nt  |PST| (total number of S-T paths)
6: C  ; (set of core nodes initiated with empty set)
7: while np < τ nt do
8: PC  [P(v) 8 v 2 V, v =2 C] ⊳ Path centralities of nodes
which are not in the core set
9: bestNode  argmaxv PC ⊳ Select node with the highest path
centrality
10: C  C [ {bestNode} ⊳ Add the node to set of core nodes
11: Pbest  {p 8p 2 PST, bestNode 2 p} ⊳ Create a set of paths
passing through bestNode
12: np  np + |Pbest|
13: PST  PST\Pbest ⊳ Remove all paths passing through the newly
added core node
14: end
15: return C

Hourglass score. While the computation for the τ-core of a network provides a set of

nodes through which a large fraction (τ) of S-T paths pass, to evaluate the hourglass property

of a network we still need a reference with which the size of the core can be compared. This is

because while the τ-core can be computed for a very large τ close to 1, there is no gaurantee

whether the size of this τ-core is small enough to say that the network exhibits an hourglass

effect when compared to a network that definitely does not. To resolve this, the H-score (or

the Hourglass Score) has been used as a metric involving a comparison between the size of

PLOS ONE A weighted network analysis framework for hourglass effect—And its application in the C. elegans connectome

PLOS ONE | https://doi.org/10.1371/journal.pone.0249846 October 27, 2021 6 / 18

https://doi.org/10.1371/journal.pone.0249846


τ-core of the original network G with a derived network Gf known as the flat dependency net-
work. Gf is constructed from G in such a manner that Gf has no hourglass effect while it cap-

tures the source-target relationships of G [19]. The procedure is as follows:

• Nodes The source and the target nodes are the same in Gf as they are in G. However, Gf

does not have any intermediate nodes.

• Edges The edges for Gf are constructed by replacing each S-T path connecting each pair of

source node s and target node t in G with an edge from s to t in Gf. Since this can lead to

multiple edges between source node s and target node t as there can be multiple S-T paths

from s to t, these edges can be replaced with a single edge of weight w, where w is the number

of S-T paths between s and t in G.

It should be noted that the Gf is constructed in a manner such that the dependencies

between source and target nodes are maintained along with the number of S-T paths between

each pair of source-target nodes. However, it does not have any intermediate nodes (or set of

nodes) through which most of the S-T paths would pass. In other words, Gf cannot exhibit

hourglass property by design. Also, τ-core of Gf cannot be larger than the τ-core of G. This is

because the τ-core of Gf is made up of only source and target nodes while the τ-core of G can

have intermediate nodes replacing multiple source or target nodes in the core set. Therefore

we can say that,

CðtÞ � Cf ðtÞ � minfjSj; jTjg ð1Þ

where C(τ) and Cf(τ) are the sizes of the τ-core of G and Gf respectively. S and T represent the

set of source and target nodes respectively. The H-score is defined using this premise to mea-

sure the extent to which the network G shows the hourglass effect. The H-score H(τ) of a given

network and threshold τ is defined as:

HðtÞ ¼ 1 �
CðtÞ
Cf ðtÞ

ð2Þ

It can be inferred that 0�H(τ)� 1. The H-score is closer to one if the size of the τ-core of

the original network G is much smaller than that of Gf, thus implying that G shows stronger

hourglass effect because of a smaller core set compared to Gf.

Randomization experiment—Edge shuffling. The H-score metric captures the extent

to which the hourglass effect is present in a given network. However, we cannot rule out the

possibility of the hourglass effect arising due to random artifacts, while not being a property

of the topology of the particular network. To check this on unweighted networks, we per-

formed a randomization procedure as in [25] for testing the statistical significance of the

hourglass effect. This procedure shuffles the network edges while preserving total number of

nodes and edges, in-degree of all nodes and the partial ordering of the nodes in the network

[25].

Hourglass analysis on weighted networks

The aforementioned hourglass analysis pipeline could be further extended by utilizing the

edge weight information to provide a more accurate estimation of the hourglass property of a

network. The core idea is that we could assign a weight to each path for estimating the relative

importance of each path in the information flow in a network, followed by the computation

of path centrality and τ-core based on it. The following subsections detail the formulation of

weighted hourglass analysis.
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Path weighting with multi-edge transformation. For each path in the candidate paths

identified through path selection (P4 in this case), we assign a path weight based on the weight

of edges in involved in the given path. Mathematically, we define the path weight as

wp ¼ f ðwe1
; . . . ;wen

Þ; e1; . . . en 2 p ð3Þ

where wp is the weight of a path p, e1, . . .en are the edges in p and we1
; . . . ;wen

denotes their

corresponding weights. f can be any function that accepts a randomly-large set of values and

returns a single value. Different definitions of the edge weights may expect different definitions

of f. For example, in networks where edge weight represents the flow through the edge, f could

be defined as taking the minimum among edges weights, so that the weight of the path repre-

sents the maximal possible flow along the path. If the weight of the edge represents the effi-

ciency of communication between nodes, f could be taking the inverse of the sum of the

inverse of the inputs, so that the weight of path represents the communication efficiency

between source and target.

In the case of C. elegans neuronal network, the weight of an edge represents the number of

synapses in each connection. Therefore, we introduce the multi-edge transformation (MET)

model, in which each edge in the network with weight w is replaced of w parallel edges of

weight 1. As a result, each path p identified in the original hourglass analysis will be counted

wp times in the weighted hourglass analysis, with wp being the number of unique combinations

of edges that could form the path. Mathematically, we have

wp ¼
Y

e2p

we ð4Þ

Besides intuitive biological interpretation, the MET model has several advantages mathe-

matically: 1) It can reduce to the original hourglass analysis when the weight of edges in the

network is equal to 1; 2) The weight of any edges in a path is important for determining the

weight of the path.

Weighted path centrality and τ-core. If we interpret the path weight as the importance

of a path, we could further modify the definition of core in hourglass analysis to be the mini-

mum set of nodes that play a major role in the information flow in the neuronal network. In

other words, we define τ-core to be the smallest set of nodes that cover paths that explain more

than τ ratio of total path weights in the network.

Again we can use the weighted path centrality to build a heuristic algorithm to compute the

τ-core. For a network with PST as the set of S-T paths, we define the weighted path centrality of

a node v as

P vð Þ ¼
X

p 2 PST
v 2 p

wp ð5Þ

To visualize this concept, Fig 2 shows an example of a network and Table 3 values shows

the path centrality computed for each of the nodes in this network, for both unweighted hour-

glass analysis and weighted hourglass analysis.

There may be nodes in the network which would not be a part of the core in an otherwise

unweighted network with the same set of nodes and edges, but could still be responsible for

most of the source to target pathways when the network is imagined in terms of the number of

synaptic connections between neurons. Thus transforming the graph based on the weights i.e.

number of synapses between neurons essentially captures this notion.

Randomization experiment—Edge weight permutation. To test the statistical signifi-

cance of H-score against randomized networks [25], had done a randomization analysis in
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their work which involved rearranging the network edges. For weighted networks, however,

we could reduce the variance brought by randomization by using edge weight permutation.

This can be done by shuffling the weight of the edges while keeping the structural topology of

the network intact. This randomization allows us to more precisely evaluate the hourglass

effects of the empirical network caused only by the weights instead of the network topology.

We compared the empirical network with 500 such randomized networks generated by edge-

weight permutation to check the statistical significance of the hourglass effect in the networks.

Results

Hourglass effect in weighted and unweighted networks

We apply the hourglass analysis according to the framework mentioned in subsection Hour-
glass analysis on unweighted networks using the routing scheme P4 for generating source-target

paths as described in subsection Generating source-target paths. Let P denote the set of paths

Fig 2. A sample weighted network with 10 nodes. Source, intermediate, and target nodes are represented in green,

blue, and red colors respectively. It should be noted that node d has the highest path centrality as per the unweighted

hourglass model since most of the paths pass through it. However, if the weights are considered and the multi-edge

transformation (MET) model is used, then nodes f and g would be the nodes with the highest path centrality and

forming the core.

https://doi.org/10.1371/journal.pone.0249846.g002

Table 3. Path centrality of all nodes of the network in Fig 2.

method a b c d e f g h i j

unweighted 6 6 2 8 2 6 6 3 6 3

MET 12 12 8 8 8 12 12 6 12 6

Path centrality was measured using the unweighted and multi-edge transformation (MET) methods.

https://doi.org/10.1371/journal.pone.0249846.t003
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generated by this routing scheme, the main aim of the analysis is to compute the smallest set of

nodes (neurons) that cover a fraction τ of all the source-target (sensorimotor) paths in P. The

path centrality (or coverage) metric is defined in Hourglass analysis on unweighted networks
subsection to quantify the importance of a given node (or set of nodes) in the S-T information

flow pathways in the network. To measure the extent to which a network exhibits the hourglass

effect in its structure, the H-score is computed as detailed in subsection Hourglass analysis on
unweighted networks. This subsection deals with comparison between the weighted (MET

method) and unweighted (UNW) versions of the hourglass analysis for the C. elegans connec-

tome, while the comparison between the hermaphrodite and male sexes is done in the subse-

quent subsection (Sex-wise comparison of the hourglass effect).
Fig 3 summarizes the results for the hourglass analysis using the unweighted (UNW)

framework on hermCook and hermVarshney connectomes, as well as the weighted hourglass

Fig 3. Comparison of hourglass effects in hermVarshney, hermCook with or without MET transformation. UNW: Unweighted version of hourglass

analysis. MET: Mutli-edge transformation method of hourglass analysis for weighted networks. As described in subsections Hourglass analysis on
unweighted networks and Hourglass analysis on weighted networks, hourglass analysis was performed to compute (a) the set of core nodes (neurons) in

the τ-core at τ = 0.9 along with their path coverage as fraction of S-T paths that pass through the node, (b) Cumulative path coverage with the addition

of each node in decreasing order of path coverage, and (c) the H-score metric at various values of τ to quantify the extent to which the network shows

the hourglass effect.

https://doi.org/10.1371/journal.pone.0249846.g003
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framework (MET) on the hermCook connectome. As detailed below, the weighted version dif-

fers from the unweighted version in terms of various properties in the hourglass analysis.

In both weighted and unweighted cases, the networks do show the hourglass effect with a

high H-score (Fig 3(c)). It can be noted in Fig 3(c) that with additional weaker edges, the H-

score using UNW method for hermCook is much lower than that for hermVarshney, while the

H-score for MET framework is much higher than that of the UNW framework on hermCook.

Even though the UNW analysis on hermCook seems to indicate a much weaker hourglass

effect, taking weights into account in the MET framework uncovers a much stronger hourglass

structure in the same connectome (hermCook).
To identify the neurons that form the important nodes in the hourglass structure of the net-

work, the τ-core was computed as a set of iteratively selected nodes in the network that have

the highest path coverage (see subsection τ-core and path centrality and Algorithm 1). The

nodes in the τ-core can be considered to form the ‘waist’ of the hourglass structure in the net-

work. Comparing the τ-core for the UNW and MET cases (Fig 3(a)), the MET method results

in a more specific set of core nodes than the UNW case for hermCook, while still retaining the

set of essential high-centrality nodes. Moreover, the nodes corresponding to the pair of neu-

rons RIAR and AVAL/R show much higher hourglass effect in the case of weighted analysis

than in the case of unweighted analysis. The UNW method for hermCook identifies a much

broader set of nodes compared the the hermVarshney connectome, which could be attributed

to the additional edges in the hermCook connectome with weaker weights, thus weakening the

hourglass structure. However, as is observable in the cumulative path coverage plots as well

(Fig 3(b)), the weighted version of the analysis (MET) identifies a more specific set of nodes

with much higher path coverage. In the case of the weighted hourglass analysis using MET

method, the curve has steeper slope than in other cases, implying that certain nodes have

much higher path centrality in the weighted analysis and less nodes are needed to cover the

same fraction τ of all the weighted S-T paths.

Thus, when taking the weights into account, a stronger hourglass structure in the network

can be unravelled, consisting of a smaller yet not fully overlapping set of core nodes compared

to unweighted analysis. The MET method has the highest H-score for larger values of τ (0.5<

τ< 1) despite the lowest values for UNW method on the same hermCook dataset. This further

indicates that a framework considering the connectome as a weighted network reveals very dif-

ferent information about the hourglass properties of the network structure.

Sex-wise comparison of the hourglass effect

To study the differences between the hourglass properties of the hermaphrodite (hermCook)

and male maleCook connectomes, the results from weighted hourglass analysis using the MET

method were analyzed in terms of their core neurons (i.e., nodes in the τ-core at τ = 0.9),

cumulative path coverage and the H-score metrics. The connectomes maleCook and hermCook
are visualized in Fig 4 with node-size representing the path centrality of the nodes as computed

using the multi-edge transformation (MET) method. Fig 5 summarizes these results for com-

parison between the hermaphrodite and male connectomes. It can be noticed in Fig 5(a) that

the set of nodes in the τ-core have four common nodes between the two connectomes, corre-

sponding to the neurons RIAL/R and AVAL/R which are ring and ventral chord inter-neurons

located in the head, respectively. However, the hermaphrodite connectome has four unique

nodes in its τ-core corresponding to the neurons AVEL/R, AIBR and RIMR all of which are

inter-neurons located in the lateral ganglia in the head, while the male connectome has five

unique nodes corresponding to the neurons PVZ, PVV, PDB, PVX and PHCR. These neurons

are mainly located in the pre-anal ganglion and involved in various functions related to mating
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Fig 4. A visualization of (a) hermCook and (b) maleCook connectomes. Each node represents a neuron in the

connectome, with its color representing the type of neuron (red: sensory neuron, green: inter-neuron, blue: motor

neuron), and its transparency representing the path centrality calculated using the MET method. The vertical position

of nodes are calculated based on the location metric in [25], which measures a node’s relative position in the

feedforward network. Horizontally, nodes are placed in the manner that nodes with higher path centrality are closer to

the center. Each edge represents the collection of chemical synapses from one neuron to another, and the transparency

indicates the count of chemical synapses in collection. The nodes forming the τ-core (at τ = 0.9) as described in

subsection Hourglass analysis on weighted networks are labeled with their names.

https://doi.org/10.1371/journal.pone.0249846.g004
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including posture control, vulva detection and copulation [31]. These results are detailed in

Table 4.

Comparison with random networks

To check whether or not the hourglass effect is due to random effects, a comparison with ran-

domized networks was done. The weighted connectomes were randomized by shuffling the

edge weights, while keeping the set of edges the same to ensure that the structure of the net-

work is maintained. Weighted hourglass analysis using the MET method was done on a set of

500 such networks and H-scores were computed for each of them at the same path-coverage

threshold as used for the original networks (τ = 0.9). Such a comparison between the H-score

of the original connectomes with the corresponding set of randomized connectomes for each

of the sexes can tell whether the hourglass effect observed is because of random effects simply

due to the network structure or because of a more specific pattern of weights and S-T paths

that leads the network to exhibit the hourglass property. It should be noted that for unweighted

Fig 5. Sex-wise comparison of the hourglass effects on maleCook, hermCook connectomes. The multi-edge transformation (MET) was used as

described in subsection Hourglass analysis on weighted networks to compute (a) the set of core nodes (neurons) in the τ-core at τ = 0.9 and their path

coverage as fraction of S-T paths passing through the node, (b) Cumulative path coverage with the addition of each node in decreasing order of path

coverage, and (c) the H-score metric to quantify the extent to which the network shows the hourglass effect.

https://doi.org/10.1371/journal.pone.0249846.g005
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networks, the randomization procedure carried out by [25] suffices as a check, but it is not the

minimal randomization in the case of weighted networks.

The difference between H-score for the 500 random networks and the real network is statis-

tically significant (with p-value <10−2) for both the male and hermaphrodite connectomes

when using the MET method as well as the UNW method. Fig 6 shows the distribution of the

H-score curves of randomized networks and original network.

Table 4. Neurons in the τ-core at τ = 0.9 in the weighted hourglass analysis on hermCook and maleCook connectomes.

Neuron τ-core membership Category Location Function(s)�

RIAL/R herm, male inter-neuron Head Integration of outside information and inner state, behavioral response.

AVAL/

R

herm, male inter-neuron Lateral ganglia of

head

Command inter-neuron, locomotion

RIML/R herm inter-neuron Lateral ganglia of

head

Integration of outside information and inner state, behavioral response; locomotion

AVEL/R herm inter-neuron Lateral ganglia of

head

Command inter-neuron, backward locomotion

AIBR herm inter-neuron Lateral ganglia of

head

Integration of information from amphid sensory neurons; locomotion; information

processing

PDB male inter-neuron Pre-anal ganglion Control mating posture

PVX male inter-neuron Pre-anal ganglion Backing during vulva search in mating behavior

PVZ male motor

neuron

Pre-anal ganglion copulation, vulva detection, spicule retraction

PVV male motor

neuron

Pre-anal ganglion Control mating posture

PHCR male motor

neuron

Lumbar Ganglia Temperature avoidance response

The τ-core as defined in subsection τ-core and path centrality is the smallest set of nodes (neurons) in the network through which at least a fraction τ of source-target

paths pass. It can be noticed that the four neurons common to the τ-cores of both the sexes are located in the head and are mainly invovled in the integration of

information and locomotion. However, the neurons unique to the hermaphrodite are located in the head serving functions like information integration, behavioral

response, locomotion etc, while most of the neurons unique to the male are located in the pre-anal ganglion and are involved in various functions related to mating.

� Functions of neurons were inferred from https://www.wormatlas.org/

https://doi.org/10.1371/journal.pone.0249846.t004

Fig 6. Hourglass scores of the empirical network against networks generated with edge weight permutation. For testing the results of the MET

method in both (a) hermCook and (b) maleCook connectomes, only the edge weights were shuffled keeping the edge structure intact to generate 500

randomized networks in each case. Hourglass analysis on in all the above cases reveals significantly lower (p-value<10−2) H-score than the

corresponding original network.

https://doi.org/10.1371/journal.pone.0249846.g006
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Discussion

In this work, we perform a comparison between the male and hermaphrodite structural con-

nectomes of the C. elegans by developing a framework for studying the hourglass effect in

weighted networks. Until recently, the C. elegans connectome was available only as an

unweighted network for hermaphrodite. But with the recent advances [26], the connectome

has been mapped for both the sexes along with edge weights based on the number and size of

the synapses as seen with electron microscopy (EM). Our results show that there is a significant

difference between the hourglass properties in the male and hermaphrodite connectomes,

both in terms of the set of nodes that form the core of the network as well as the extent to

which the network shows the hourglass effect.

Moreover, the hourglass analysis framework for weighted networks is able to narrow down

the core nodes to a much smaller number of nodes in the network, which could mainly be

because of taking the edge-weights into consideration in the computation of the centrality of

the source-target pathways in the network. We had used five different networks created from

two datasets. The widely used dataset by [23] only has the unweighted connectome for the her-

maphrodite, while the remaining four networks were the weighted/unweighted networks from

the male/hermaphrodite connectomes published by [26]. Among these connectomes, the vari-

ation within the same sex based on the dataset and choice of analysis (MET vs UNW) can be

observed in Fig 3. In terms of the core nodes, the multi-edge transformation (MET) method

for hourglass analysis results in a much smaller set of core nodes compared to the unweighted

version (UNW) for both the sexes (Fig 5(a)). Additionally, the cumulative path coverage and

H-score plots (Fig 3(b) and 3(c)) also indicate a similar trend that in the weighted paradigm of

the analysis, the hourglass effect is more visible in the weighted connectomes as compared to

the unweighted case. This could primarily be because of the enhancement of the centrality of

certain neuronal pathways due to their predominant use in the organism as compared to oth-

ers, thus leading to a higher number and size of synaptic connections between the participating

neurons. This trend of significantly higher connectivity (and synaptic connections) of certain

neurons and their pathways has been observed previously [32]. It can be further observed that

the hourglass metrics (cumulative path coverage and H-score) are higher for the unweighted

analysis (UNW) on the older dataset by [23] compared to the same analysis on the unweighted

connectomes by [26] (See Fig 3(b) and 3(c)). The additional set of edges provided in the con-

nectomes by [26] are significantly weaker compared to the older connectome by [23] (Fig 1),

which could explain the emergence of a weaker hourglass effect when using the unweighted

analysis (UNW). However, the same metrics under the weighted analysis (MET) are higher for

the dataset by [26] indicating that the weighted framework is able to take into account the exis-

tence of numerous weaker connections which could otherwise change the result in case of the

unweighted version of the analysis.

The comparison between the male and hermaphrodite connectomes reveals interesting pat-

terns about how the neuronal networks in both the sexes are organized. While the hermaphro-

dite shows a stronger hourglass effect than the male, they have the same core size containing 9

neurons each (Fig 5(a)). However, in the case of the male connectome, the sex-specific neurons

form the majority of the core nodes. This is in line with the observations from previous studies

that the pruning of synapses, that occurs at sexual maturation, affects a lot of sensorimotor

pathways leading to a sexually dimorphic neuronal connectivity in the organism [33]. More-

over, previous work has found that the posterior nervous system in the males gets enlarged to

support mating behavior, adding about 30% more neurons with parallel pathways and com-

plex connectivity, matching that of the whole nervous system of the hermaphrodite [34]. Our

results additionally show that apart from just the addition of the sex-specific subnetwork, the
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sexual dimorphism in the C. elegans also results in significantly different set of neurons form-

ing the core of the sensorimotor information processing pathways in the connectome.

Through this work, we highlight a method to analyze a given weighted network for its hour-

glass property using an algorithmic approach to quantify its extent. The application of the

framework to the weighted C. elegans connectomes for both the sexes reveals differences in the

composition of the neurons that form the core of the hourglass structure in both the networks.

Additionally, we show that when taking edge weights into account using the multi-edge trans-

formation (MET) hourglass framework, different properties of the network emerge in terms of

the core nodes as well the scale of the hourglass effect.

Various methods have been used previously for identifying critical neurons in the C. elegans
connectome, such as graph perturbation techniques [35] and controllability frameworks [36].

The proposed framework in our paper is applicable only to directed networks with a given set

of paths from source nodes to target nodes. The network may include cycles and the nodes

may be of the same or different type—the hourglass method is applicable as long as there is a

given set of directed paths from source to target nodes. A more extensive comparison between

the hourglass framework and other related methods, such as core-periphery or rich-club

approaches [37–40] can be found in [19].

More broadly, there are many approaches to identify important nodes (or rank them) in

general networks [18, 39, 41]. The hourglass analysis framework is fundamentally different

from approaches that are degree-based (such as k-core decomposition), that only consider

shortest paths (such as betweenness centrality), or that consider all possible paths (potentially

weighted based on their length, such as Katz centrality). A comparative study of existing and

extended frameworks along with an interpretation of the outcomes should be done in the near

future to enhance the understanding of the nature of optimization followed by naturally occur-

ring neuronal networks.
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