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Abstract

Beginning in March 2020, the United States emerged as the global epicenter for COVID-19

cases with little to guide policy response in the absence of extensive data available for reli-

able epidemiological modeling in the early phases of the pandemic. In the ensuing weeks,

American jurisdictions attempted to manage disease spread on a regional basis using non-

pharmaceutical interventions (i.e., social distancing), as uneven disease burden across the

expansive geography of the United States exerted different implications for policy manage-

ment in different regions. While Arizona policymakers relied initially on state-by-state

national modeling projections from different groups outside of the state, we sought to create

a state-specific model using a mathematical framework that ties disease surveillance with

the future burden on Arizona’s healthcare system. Our framework uses a compartmental

system dynamics model using a SEIRD framework that accounts for multiple types of dis-

ease manifestations for the COVID-19 infection, as well as the observed time delay in epide-

miological findings following public policy enactments. We use a compartment initialization

logic coupled with a fitting technique to construct projections for key metrics to guide public

health policy, including exposures, infections, hospitalizations, and deaths under a variety of

social reopening scenarios. Our approach makes use of X-factor fitting and backcasting

methods to construct meaningful and reliable models with minimal available data in order to

provide timely policy guidance in the early phases of a pandemic.

Introduction

Since its documented onset in December 2019 and formal identification in January 2020 in

Wuhan, China, COVID-19 (SARS-CoV-2) has spread around the globe, infecting more than

7.5 million people globally by mid June 2020 [1]. In an atmosphere of intense uncertainty
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around many of the epidemiological parameters for modeling including true case counts as a

result of low testing availability, the Modeling Emerging Threats for Arizona (METAz) Work-

group of Arizona State University has developed and refined models for predicting the burden

of disease in order to inform policy related to nonpharmaceutical interventions (i.e., social dis-

tancing). Because the burden of disease and transmission dynamics differ by location due to a

variety of factors including geography, population, and environmental conditions, METAz

chose to focus on state-level modeling to inform public health response efforts with greater

precision. The modeling approaches we describe can be applied to any region or state where

region-specific data are available. Here, we focus on the state of Arizona in the American

Southwest (population of around 7.3 million, 113,990 sq. miles, majority population concen-

trated in centrally-located Maricopa County) as a proof of concept.

Arizona’s governor declared a state of emergency on March 11, and municipal govern-

ments began to enact limits on in-person gatherings and some business closures on March 16-

17. From March 30 to May 15, Arizona was under a stay-at-home order issued by the gover-

nor. As of June 10, Arizona has reported 29,852 cases across the state, with the majority of

cases in centrally-located Maricopa County, which includes 60 percent of the state’s popula-

tion. Twenty-seven percent of the total cases were recorded in the first ten days of June. As of

June 10, Arizona’s healthcare system has not experienced an overwhelming surge of COVID-

19 cases exceeding systemwide capacity to care for critically ill patients. Hospital admissions

appeared to have slowed and plateaued in April and May, indicating that social distancing

motivated by state and municipal policies enacted beginning in mid-March had reduced trans-

mission and may have been flattening the curve effectively in order to allow time to prepare

operations for future management of the disease in Arizona and avoid overwhelming hospital

systems as other states experienced.

However, as of early June, Arizona is experiencing increasing widespread community

transmission of SARS-CoV-2. Due to a relatively low rate of testing statewide, there is ongoing

debate and uncertainty about whether Arizona’s case prevalence data provides an accurate

portrait of the true public health risk burden and whether we have passed an (initial) peak of

infections and hospitalizations statewide and in individual counties. Projections from a variety

of modeling groups (i.e., IHME, UA, ASU) had indicated that the peak number of cases will be

reached in Arizona in mid-April to mid-May. However, it is important to note that modeling

projections are inherently uncertain, and accurate assessment of case peaks will be possible

only once the peak has passed. In light of the transmission dynamics and laboratory reporting

delays for the SARS-CoV-2 outbreak, peak determination will be possible approximately two

to four weeks following peak occurrence. It is also important to note that there is still signifi-

cant uncertainty about the transmission dynamics of the virus, including the degree of asymp-

tomatic infection and transmission and the results do not capture the full range of uncertainty.

We demonstrate this observation through our modeling below.

On April 16, the United States Government released Guidelines for Opening Up America

Again, proposing a phased approach to reopening the country. In order to progress into and

through three sequential phases of opening businesses and other public and private services,

states are expected to meet a set of gating criteria outcome metrics along with a set of capacity

responsibilities for carrying out core public health and management functions. In order to

move to Phase 1 with limited reopening of businesses and other services, states must demon-

strate flattening the case rates, and in order to move to Phase 2 with expanded reopening of

businesses and services, states must demonstrate no rebound in case counts from the limited

reopening in Phase 1.

On May 15, Arizona’s stay-at-home order expired, with targeted business openings

occurring on May 8 and May 11. At the time of reopening, Arizona had not met the CDC
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gating criteria to move to Phase 1, nor had the state developed a comprehensive plan that

incorporated the full testing capabilities within the state (both molecular and serological)

with a program linked to non-pharmaceutical interventions (NPI) including stay-at-home

and other social distancing and infection mitigation policies and procedures. In order to

reopen Arizona safely, a phased approach needs to be data-driven and focused on avoiding

a rapid surge in cases through appropriate and effective policy for non-pharmaceutical

interventions.

Rising case counts and hospitalizations in late May and early June reflect that the move to

lift policies restricting in-person interactions and the lack of statewide policies to enforce NPIs

including physical distancing, masking, and hand hygiene resulted in markedly increased

community transmission. As of June 10, there is not a statewide plan articulated to guide

resumption of NPIs despite strong evidence of increased community transmission.

This paper proposes a mathematical framework that ties disease surveillance with the future

burden on Arizona’s hospital system and hospital resources to guide policy decisions in the

early phase of a pandemic before extensive localized data are available. The mathematical

model links together policy interventions with estimated outcomes for infections, hospitaliza-

tions, and deaths in an epidemiological analysis. One of the key features of our modeling

methodology is the time-delay of new infections on confirmed case counts and the impact on

the healthcare system. We propose methods to evaluate the likely outcomes for a range of pol-

icy decisions intended to keep Arizona safe while reopening in a responsible and defensible

sequence.

1 Methods

1.1 Data sources

We use two publicly available data sources to initialize and fit our model: cumulative case

counts and deaths in the State of Arizona between the dates of March 4 and June 7. Figs 1 and

2 depict the data that are used to obtain the results presented below. Both of these are publicly

available and daily announced at the Arizona Department of Health Services’ (ADHS) data

dashboard at https://www.azdhs.gov/preparedness/epidemiology-disease-control/infectious-

disease-epidemiology/covid-19/dashboards/index.php.

Fig 1. Cumulative confirmed COVID-19 cases in Arizona, between March 4 to June 7, 2020.

https://doi.org/10.1371/journal.pone.0242588.g001
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1.2 Structure of the model

We make use of a compartmental system dynamics model using a SEIRD framework that

includes multiple compartments for infected individuals. This model structure allows us to

estimate the number of patients in the hospital and assess model fit with respect to two sources

of data: daily new cases obtained from the daily cumulative confirmed cases and daily cumula-

tive reported deaths given in Figs 1 and 2. In essence, the population of interest, in this case,

the population of the State of Arizona (assumed to be 7,278,717 in this study) is divided into

states of Susceptible (S), Exposed but not yet infectious (E), Asymptomatic infected (I a),

infectious and presymptomatic (I p), Symptomatic with a mild infection (I s), symptomatic

with a severe infection and hospitalized (H), symptomatic with a critical infection and in the

ICU (C), undergoing additional recovery in ICU (B), Recovered and immune (R) and Dead

(D), as shown in Fig 3.

Our model defines separate compartments for asymptomatic and presymptomatic individ-

uals to explicitly account for differing rates of transmission and differing durations of illness.

Individuals who are exposed to the virus go through a latent period (modeled by a rate of z)

Fig 2. Cumulative COVID-19 related deaths in Arizona, between March 4 to June 7, 2020.

https://doi.org/10.1371/journal.pone.0242588.g002

Fig 3. Depiction of the compartmentalized system dynamics model used to represent transmission and disease

progression for State of Arizona projections.

https://doi.org/10.1371/journal.pone.0242588.g003
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during which they are exposed but not yet infectious. Following this latent period, we assume

that some infections will recover without developing any symptoms (i.e., I a). The remaining

infections will be presymptomatic for a period of time (modeled by a rate of δ) meaning that

their symptoms will remain subclinical, but they are assumed to be infectious during this time

[2]. For symptomatic infections, the incubation time is taken to be 5 days, based on estimates

by [3–7].

Due to the fact that our model includes multiple compartments with different characteris-

tics of symptom onset and duration of infection, it is difficult to directly apply the serial inter-

val/generation time estimates from the literature to estimate the duration of the latent period

given that the classic definition of latent period depends on stability of the time to symptom

onset. Therefore, for the novel coronavirus with variation in symptom onset, we use an aver-

aged infectious period to estimate the latent period from estimates of serial interval. Recall that

an approximation for the average latent period can be obtained by subtracting half the average

infectious period from the average serial interval. Before explaining our assumption on the

duration of infectiousness, we note that we used 6.6 days as the serial interval, which was sup-

ported by the early estimates available in the literature at the time of our study [4, 6, 8, 9] and

was relevant to the local context that we were trying to model. Subsequent estimates of serial

interval were slightly lower (around 5.5 days) due to faster identification of cases and contact

tracing efforts [7, 10–13].

We assume that asymptomatic and symptomatic individuals are no longer infectious after

they recover. The duration to recovery or death (i.e., the period of infectiousness) depends on

the severity of the disease. We modeled a number of observed variations on how symptomatic

individuals experience COVID-19. After the presymptomatic period, a large fraction, 81%

(denoted by ρ in the model) estimated by [14, 15], of symptomatic individuals go through a

6-day infectiousness period with relatively mild symptoms that do not require hospitalization.

Similarly, we assumed that asymptomatic patients recover at a rate of γ = 1/6, corresponding

to an average recovery duration of 6 days after the preinfectious period. This assumption was

based on the estimates of infectious periods for mild infections available at the time of the

study, which was somewhat scarce, since most of the available data was on severe or critical

patients getting care at the hospital. We used [16] to justify an “average” duration of infectious-

ness of around 7 days for these patients, which subsequently proved to be a good assumption

as shown by [17]. The remaining 19% of symptomatic patients develop a severe or critical

infection and seek care at a hospital. We assume that these patients are generally isolated and

infect others at a much reduced rate. We discuss this assumption further below. Using an aver-

age duration of infectiousness calculated as 0.4�6 + 0.6�8 = 7.2 days (using a weighted average

of durations of infectiousness for asymptomatic and symptomatic patients), we can approxi-

mate average latent period as 6.6-3.6 = 3.0 days. Given the 5 day estimate for the incubation

period, this gives us 2 days for the presymptomatic duration (modeled with rate δ).

According to the available peer-reviewed literature, a large portion of the patients admitted

to the hospital have a severe, but not critical, infection and recover after an average duration of

7 days in a regular hospital bed. An average of 20% of these patients, however, progress to a

critical infection, requiring ICU care and possibly intubation. In addition to patients that prog-

ress to the ICU from a regular hospital bed, a small fraction of patients that present to the hos-

pital with critical respiratory distress are directly admitted to the ICU. We have conferred with

local clinicians in the Phoenix metropolitan area and Tucson (Arizona’s major population cen-

ters) who confirm these patterns of patient progression through the hospital system. Hence, in

our model, there are two modes of admission to the ICU; one directly from the emergency

department and the other one from a regular ward, after the patient’s infection progresses to a

critical condition. The parameters for these splits are set to ensure that (i) the fraction of
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symptomatic patients with mild infection is 81% [14, 15], (ii) the total fraction of symptomatic

patients that develop a critical infection that requires ICU care is 5% [14] and (iii) 20% of

patients in a regular bed progress to a critical infection [18].

Studies in the literature cite a diverse range of outcomes for patients in the ICU, but most

agree that the ICU duration for patients that eventually recover is generally longer. For exam-

ple, one study [19] cites point estimates for the duration of onset-of-symptoms to death to be

17.8 days and from onset-of-symptoms to hospital discharge to be 22.6 days. The additional

time to discharge is due partly to various steps that caregivers have to take to arrange for care

after the ICU period since generally patients that underwent intubation and other invasive

procedures require subsequent care in other post-acute facilities. The additional post-acute

recovery time is represented as another compartment, with a duration of 4 days (modeled with

rate α). The reported average ICU stays in the literature are generally very diverse; we adopted

a conservative point estimate of 8 days to align with the symptom onset to recovery/death esti-

mates [19] as well as other more detailed studies that tracked patients’ progress through the

hospital [15].

One of the important parameters in the model is ω, which represents the fraction of asymp-

tomatic patients. Several studies point to the importance of modeling transmissions by asymp-

tomatic individuals, who may never be aware that they were transmitting the virus. However,

point estimates on the fraction of individuals that experience asymptomatic infection vary

greatly from context to context.

In our models we adopted an asymptomatic rate of 40% based on point estimates observed

in multiple peer-reviewed manuscripts from different COVID-19 populations around the

world [20, 21]. This assumption allows us to obtain worst-case estimates on the prevalence of

infections in the general population given that, in the absence of widespread testing of asymp-

tomatic individuals, the asymptomatic patients are generally undetected.

In our modeling and analysis, we explicitly consider the possibility that only a small fraction

of the true incidence of infections are detected as COVID-19 cases and reflected in the

reported case counts and deaths. One such example that points to a large undetected fraction

of cases is [22], indicating that 86% of the early infections in China were undocumented, or in

other words the “actual” cases in a population may be more than 7 times the detected cases.

The same study also offers a rate of transmissions by asymptomatic individuals at 55% of the

transmission rate by symptomatic individuals, which we reflect in the force of infection, λ(t)
shown in Fig 3. Subsequently several other papers have offered additional understanding on

the role of asymptomatic infections in transmission and its prevalence in different contexts [2,

20, 21, 23–25]. We use these papers along with the actual data on new cases and deaths in Ari-

zona to obtain point estimates for model parameters. We also devise an initialization algorithm

to identify initial values of the compartments in the model.

The ordinary differential equations (ODE) that define the system dynamics are given by

Eqs (1) through (10).

S0ðtÞ ¼ � bt lðtÞSðtÞ ð1Þ

E 0ðtÞ ¼ bt lðtÞSðtÞ � z EðtÞ ð2Þ

I 0aðtÞ ¼ zo EðtÞ � g I aðtÞ ð3Þ

I 0pðtÞ ¼ z ð1 � oÞ EðtÞ � dI pðtÞ ð4Þ
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I 0sðtÞ ¼ d I pðtÞ � g I sðtÞ ð5Þ

H0
ðtÞ ¼ g c I sðtÞ � mHðtÞ ð6Þ

C0ðtÞ ¼ g ð1 � r � cÞ I sðtÞ � n CðtÞ þ m�HðtÞ ð7Þ

B0ðtÞ ¼ n ð1 � uÞ CðtÞ � aBðtÞ ð8Þ

R0
ðtÞ ¼ g I aðtÞ þ g rI sðtÞ þ m ð1 � �ÞHðtÞ þ aBðtÞ ð9Þ

D0ðtÞ ¼ n u CðtÞ ð10Þ

We assume a time dependent force of infection equal to βtλ(t), where

lðtÞ ¼
0:55IaðtÞ þ IpðtÞ þ IsðtÞ þ 0:05½HðtÞ þ CðtÞ þ BðtÞ�

N � DðtÞ
: ð11Þ

The λ(t) term can be thought of as the probability that an arbitrary individual is infectious

at a given time, t.
This expression is motivated by the fact that asymptomatic individuals transmit the disease

at a reduced rate as discussed above, and COVID patients with severe or critical infections

who are typically receiving care in the hospital (i.e., compartments H, C and B) are relatively

well isolated via institutional infection control measures. Hence, they only transmit at a rate

that is equal to 5% of the presymptomatic or symptomatic patients.

Studies that point to the high infectiousness of presymptomatic patients [27, 28] imply that

infections are mostly driven by patients in these compartments. Hence, we assume that pre-

symptomatic and symptomatic patients transmit the disease at the same rate.

We model a time-dependent transmission rate, βt, denoted by the subscript t to represent

the time dependency. This term represents the average rate of contact between susceptible and

(symptomatic-equivalent) infectious people multiplied by the probability of transmission

given contact. The rate at which individuals become exposed to the virus at time t is strongly

driven by the term, βt. A good way of thinking about the impact of non-pharmaceutical inter-

ventions such as social distancing, stay-at-home orders, school closures, wearing masks, etc. is

through the term βt, and how the different interventions impact either (i) the average number

of infectious individuals that susceptible individuals contact, or (ii) the probability of transmis-

sion given contact.

Note that an increase in either of these two values would lead to an increase in the effective

transmission rate at a given time, which will then increase the rate at which susceptible indi-

viduals get exposed to the virus. Keeping the same overall transmission rate the same while

increasing the average rate of contacts requires that the probability of transmission given

contact be reduced from through measures that reduce the probability of transmission given

contact with an infectious individual. Such measures may involve hand washing practices,

wearing masks, keeping 6+ ft apart, etc. As the interactions between individuals are expected

to increase after the stay-at-home orders are lifted, the importance of such measures should be

more rigorously emphasized.

The model parameters and point estimates for them obtained from the literature are pro-

vided in Table 1. Our approach of initializing the compartments and fitting the transmission
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rate βt and the mortality rate at the ICU, υ, uses publicly available data on case counts and

COVID-19 related deaths in Arizona. In our fitting procedure, we allow for the transmission

rate, βt to change in response to significant events or policy changes, such as non-pharmaceuti-

cal interventions being enacted or lifted in Arizona, as we explain below.

1.3 Initialization of compartments

We first present a methodology to initialize the model in a manner that is independent of the

transmission rate, β. In particular, we consider the data on the cumulative number of con-

firmed cases in Arizona, where the first reported cases of community transmission were on

March 4, as shown in Fig 1. We use these data to obtain the number of new cases on each day.

The average reporting delay on COVID-19 is about 6 days in Arizona. Given that our model

indicates an incubation period of 5 days and average time to seek testing (when it is available)

is about 3 days after symptom-onset, we obtain presumed exposure dates for the reported new

cases on each day (i.e., 14 days before a case is confirmed). A visual that shows this logic is

shown with the blue bars (reported new cases over time) and the orange bars (numbers even-

tually detected, shown on the presumed exposure dates) in Fig 4. Note that the orange bars

show the number of individuals exposed to the virus on the given day, who are then eventually

detected by testing.

As discussed above, a large portion of the individuals exposed to the virus on a given day

are never detected due to the fact that (i) a significant portion of these individuals never

develop symptoms; and (ii) some symptomatic individuals are never tested, their infections are

attributed to another influenza-like illness, or their case is missed due to false negative results

in COVID-19 tests. To account for the large rate of undetected infections, we have devised an

intuitive approach using an X-factor initialization scheme where we multiply the number of

eventually detected-exposed individuals by the X-factor to estimate the underlying overall

exposures on a given presumed exposure day. Note that this is a relatively crude method of

obtaining an “average” number of exposures on each day, ignoring the large number of uncer-

tainties that are involved in the observations of daily case counts. As a result, we note that the

prediction intervals we note below may somewhat be underestimated. In subsequent work, we

have developed methods that recognize that the number of case counts resulting from a given

number of exposures would be random (rather than a deterministic relationship like the one

we are using here). In particular, we randomly generate exposures on randomly generated

Table 1. Point estimates used for model parameters and sources.

Description Parameter Value Sources

Time to infectiousness z−1 3 days [4, 6, 8, 9]

Presymptomatic duration δ−1 2 days [3–7].

Asymptomatic infectious period γ−1 6 days [16, 17]

Mild infection recovery time γ−1 6 days [16, 17]

Severe infection recovery time μ−1 7 days [14, 26]

Critical infection to death ν−1 8 days [15, 19]

Additional days to recover after ICU α−1 4 days [19]

Fraction of asymptomatic infections ω 40% [20, 21]

Fraction of mild symptomatic infections ρ 81% [14]

Fraction hospitalized on regular bed ψ 17.5% [14]

Fraction of hospitalized progressing to ICU ϕ 20% [18]

Mortality among ICU patients υ 50-60% data fit

https://doi.org/10.1371/journal.pone.0242588.t001

PLOS ONE COVID-19 healthcare demand projections

PLOS ONE | https://doi.org/10.1371/journal.pone.0242588 December 2, 2020 8 / 23

https://doi.org/10.1371/journal.pone.0242588.t001
https://doi.org/10.1371/journal.pone.0242588


exposure dates based on observed data, but we have observed that such approaches did not

make a significant impact on the performance of the initialization algorithm.

The X-factor determination in this scheme is highly correlated to the degree to which the

testing procedures are able to detect the infections in the system. Given our assumption that

40% of all infections are asymptomatic, the minimum X-factor that is aligned with our model-

ing assumptions is 1.67, since these individuals are almost never tested and confirmed due to

the fact that they do not exhibit symptoms to prompt testing. At the upper end, our model

indicates that about 12% of infections have severe or critical infections, requiring them to seek

healthcare. This implies that the maximum X-factor that would be aligned with our model is

about 8, since nearly all individuals seeking care in Arizona for COVID-like symptoms are

tested for COVID-19. In Fig 4, the grey points depict exposures in a scenario using X-factor

of 4.

The X-factored exposures on presumed exposure days are then fed into our SEIRD model,

keeping the transmission rate to zero. We obtain an approximate continuous time function by

interpolating over these presumed exposures, called W(s). Fig 5 shows the approximated rate

of exposures over time in X-factor of 4 scenario between March 4 and March 29 in Arizona;

the black dots are the daily presumed exposures also shown in Fig 4.

We then numerically evaluate the convolution

E½NiðtÞjWðsÞ; 0 � s � t� ¼
Z t

0

WðsÞfiðt � sÞds ð12Þ

to obtain the expected number in compartment i 2 fI a; I p; I s;H; C;B;R;Dg at time t,
where fi(τ) denotes the probability that an individual would be in compartment i τ time units

after exposure to the virus. The fi(�) functions for each compartment in the model can be

obtained by simulating the above stated model with one exposed individual and transmission

rate of zero. Alternatively, we could have discretized time and calculated the estimated number

in each bin at a desired time, given the presumed exposures in each day prior to that point. For

example, the process of estimating the number in the symptomatic compartment on a given

day t would involve taking the presumed exposures in each day prior to that date, calculating

the expected number that will be in the symptomatic compartment by day t out of those

Fig 4. Reported new cases and presumed exposure dates.

https://doi.org/10.1371/journal.pone.0242588.g004
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presumed exposures, and summing over all of the days prior to date t. The convolution essen-

tially performs this calculation on a continuous time basis. As an example, Fig 6 shows the

fraction at the hospital, fHþCþBð�Þ versus time.

The solution to the ODEs is unique given a set of initial values for the number in each com-

partment at time zero. Using the above initialization logic, we calculate the number that we

expect to see in each compartment on a chosen presumed exposure day, using all of the data

on new cases reported on the presumed exposure days prior to this point, and using the num-

ber of presumed exposures on that day to initialize the E compartment. We are then -almost-

ready to simulate the model starting from that day and observe the number in each compart-

ment to obtain projections.

1.4 Fitting transmission rate and mortality

In our study, we initialize the compartments on March 30 (i.e., this calendar day is our t = 0)

and use the actual data on presumed exposures (under any assumed X-factor scenario) starting

Fig 5. The W(s) function for the X-factor of 4 scenario, obtained by inflating the daily new cases.

https://doi.org/10.1371/journal.pone.0242588.g005

Fig 6. fHþCþBðtÞ under assumed parameters.

https://doi.org/10.1371/journal.pone.0242588.g006
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from March 31 until May 24 to fit the transmission rate, βt. Note that the presumed exposure

date of May 24 corresponds to the actual reporting date of June 7, which is the last data point

that we use in our results in this manuscript. We tried a number of different initialization

dates, and the results on the transmission rate fit were comparable. We divided the time

between March 31 and May 24 for which we have presumed exposures data into three periods

correlating to dates of significant changes in Arizona public policy and activities related to

NPIs including business closures and stay-at-home orders. We fitted three possibly different β
values to each period, resulting in a piece-wise constant transmission rate structure. In particu-

lar, we assumed constant β values between March 31 to April 15 (which we refer to as b̂1 , rep-

resenting early adjustment to the stay-at-home order enacted on March 30), April 16 to May

10 (which we refer to as b̂2 , representing stabilization of public response to the stay-at-home

order) and May 11 through May 24 (which we refer to as b̂3 , representing reopening of some

businesses and activities including personal care services on May 8, dine-in restaurants on

May 11, and the expiration of the stay-at-home order on May 15). We assume that b̂3 is the

best available transmission rate estimate explaining the exposures beyond May 24 (since at the

writing of this manuscript no changes in the non-pharmaceurical interventions have been

announced) and use that value to generate the projections below for exposure dates later than

May 24.

We use Wolfram Mathematica 12 to obtain a numerical solution to the ODEs and obtain a

parametric function that describes the number of susceptibles in the system given the initial

population of 7,278,717 (population of Arizona) and the assumed loading scenario described

by the X-factor used when initializing the compartments. We then use the X-factored pre-

sumed exposures to obtain the corresponding number of susceptibles, which is equal to the

initial number of susceptibles in the population minus the cumulative number of exposed indi-

viduals, and use a nonlinear model fit procedure to estimate b̂1, b̂2 and b̂3. As an example, Fig

7 shows the model fit along with the 95% prediction intervals under a 4X scenario. In addition,

we plot the model predicted and 4X presumed exposures in Fig 8.

In addition to fitting the transmission rate, β, we use the cumulative number of COVID-

19 related deaths in Arizona to fit the mortality rate among the ICU patients. Note that in

our model, we assume that all patients who die will do so in the ICU, which ignores the

deaths that occur outside the hospital. At the time of the writing of this manuscript, Arizo-

na’s healthcare capacity, beds, and ICU have been sufficient to care for COVID-19 patients.

Fig 7. 95% prediction bands for susceptibles; red dots show presumed susceptibles under 4X scenario.

https://doi.org/10.1371/journal.pone.0242588.g007
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Therefore, to our knowledge, Arizona has not experienced significant reported deaths out-

side the hospitals due to an inability for patients to access critical care services. There is,

however, ongoing debate about whether COVID-19 related deaths are under-reported in

Arizona and nationwide.

Given our assumption for this modeling exercise that deaths are primarily occurring in the

ICU, for this analysis we assumed that the information on the reported deaths is relatively

accurate; hence, we do not amplify the reported deaths when fitting the death rate υ. Fig 9

shows the cumulative number of deaths that the model predicts under a 4X loading scenario.

Note that under the 1.67X loading scenario, the ICU death rate produced by the model fit pro-

cedure was on the order of 1.24. That is, the assumption of 88% detection rate was not aligned

with the point estimates we used in the model to predict the reported death rates. Given that

there is widespread belief that COVID-19 deaths are underreported, we understand this find-

ing to be in support of the idea that only a fraction of the infections are detected, and thus

reported in the official case counts. In the next section, we present projections for 1.67X, 4X,

and 6X loading scenarios to provide a range of future projections for cases, hospitalizations,

and deaths.

Fig 8. 4X presumed exposures from data, and predicted exposures with the fitted β values under 4X.

https://doi.org/10.1371/journal.pone.0242588.g008

Fig 9. Model predicted cumulative number of deaths between 3/31 and 6/7 with 95% prediction intervals; red dots

are the reported COVID-19 deaths for the period in Arizona.

https://doi.org/10.1371/journal.pone.0242588.g009
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2 Results

We provide projections on the number of deaths, number of people hospitalized, and total

infections for a number of cases that differ in X-factor and the transmission rate over time. We

first start with the benchmark cases of 1.67X, 4X and 6X loading scenarios simulated under the

assumption that the transmission rate stays at the fitted b̂3 for exposure dates beyond May 24.

It is useful to observe the dynamics for a relatively long horizon of 500 days, as given in Fig 10.

Day 1 in this simulation is March 31, where we initialize our model and run it with the β
and υ values that we fitted using the X-factored data on new cases and deaths after this point

(i.e., 55 points of backcasted presumed exposures and 69 days of data on deaths). We define

herd immunity as the point at which wide community spread is suppressed due to the large

proportion of individuals in the population with immunity. Given the large initial susceptible

population that we use for the model (i.e., 7,278,717) herd immunity is reached around late

October at the currently fitted transmission rate. This figure demonstrates that policies that

were initially enacted in March to limit close person-to-person contacts were effective in

reducing transmission during April and early May, but also preserved a high pool of suscepti-

bles in the general public to fuel future outbreaks under conditions where NPIs are not effec-

tively implemented.

While visualization of the epidemiological curves is useful to gain insights into the long-

term behavior and other concerns such as peaks and herd immunity, it is more informative to

focus on shorter-term projections since it is unlikely that β remains constant over a very long

period of time due in real-world conditions due to fluctuations with regard to NPI measures

taken by individuals and public health officials.

The baseline plots given in Fig 11 through Fig 14 show the total infected and hospitaliza-

tions as well as exposures and deaths under the 1.67X, 4X and 6X loading scenarios with fitted

β and υ. The fitted values in each scenario are shown in the plot legends. Recall that to fit the

mortality rate in each scenario, we kept the data on reported deaths intact and fitted the value

of υ to the data. Note that the fitted υ value of 0.50 for the 4X case results in a mortality rate of

2.5% among symptomatic individuals. For the 1.67X scenario, this resulted in a fitted υ value

of 1.23, meaning that the 1.67X scenario did not generate sufficient number of patients in the

ICU to explain the reported deaths in Arizona. Hence, we used an υ value of 0.99 for the 1.67X

runs. This result shows that 1.67X scenario, which essentially represents a case where all of the

symptomatic individuals were detected by the testing effort, was overly optimistic and fell

Fig 10. Susceptible, infected and recovered, 4X loading with fitted β and υ.

https://doi.org/10.1371/journal.pone.0242588.g010
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severely short of explaining the observed deaths in Arizona over time. However, this case still

serves a significant practical purpose, since it demonstrates that the actual X-factor in the sys-

tem is higher than 1.67, and gives a lower bound on the projections that one may develop

based on the available data. In fact, this case was highly useful in our conversations with the

Fig 11. 1.67X exposures inferred from actual data (red dots) and projected by the model.

https://doi.org/10.1371/journal.pone.0242588.g011

Fig 12. Cumulative number of deaths; actual data (red dots) and projected by the model.

https://doi.org/10.1371/journal.pone.0242588.g012

Fig 13. Total infected projected by the model with fitted β and υ.

https://doi.org/10.1371/journal.pone.0242588.g013
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public health experts in the State, to guide their testing efforts and reflect a reasonable picture

of the epidemic during the early stages.

In comparison, the fitted upsilon for the 6X scenario was 0.33 since this scenario assumed a

higher undetected rate and loaded more patients at the ICU. An alternative approach would

have been to inflate the death numbers to account for the observation that deaths related to

COVID-19 may be underreported. We do not use this approach in our projections in order to

maintain an evidence-based conservative set of estimates on the death toll of the epidemic.

Fig 14 shows the projected hospitalizations (the sum of the numbers in compartments H, C,

and B) along with the available hospital data between April 9 and June 7. Again, these data are

obtained from the ADHS data dashboard, where the census of inpatient, ICU, and emergency

department (ED) bed usage are provided separately. Note that in our model, we do not have a

separate ED compartment, so we plotted the hospital data from the ADHS website in two

ways: one without the numbers from the ED and one with the numbers from the ED. We note

that a significant portion of the patients in the ED on each day may be discharged and sent

home to recover rather than being admitted to an inpatient bed. As shown in Fig 14 the pro-

jected hospitalizations fall within the 1.67X and 4X scenarios in both of our treatments of ED

data.

The model projections show that it is reasonable to expect a slowly increasing number of

patients in the hospital in the short term (i.e., late May to mid June) with subsequent rapid

growth of hospitalization rates with increased community transmission as NPI policies were

lifted on May 15. This increase in cases is due to the large number of susceptible individuals in

the population resulting, in part, to the effectiveness of NPI policies in place from March 30 to

May 15.

2.1 Projections under a favorable summer effect

At the time of the writing of this manuscript, there was significant debate about the impact of

higher summer temperatures in large regions of Arizona on the transmission rate of COVID-

19; there was no consensus in the peer-reviewed literature. This conversation about possible

temperature effects was important since some local policymakers were raising the possibility

that a heat-mediated summertime transmission decline could justify lifting NPI policies imple-

mented during the relatively cooler spring months. A so-called summer effect would include a

potentially suppressive effect on virus survivability in the extremely elevated temperatures and

UV radiation of the desert Southwest. Simultaneously, the extreme summer heat in Arizona’s

Fig 14. Hospitalized patients projected by the model with fitted β and υ.

https://doi.org/10.1371/journal.pone.0242588.g014
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population centers also creates a behavioral effect, changing patterns of indoor and outdoor

activity in Arizona’s desert environment. In essence, Arizona’s summer effect behaviorally

mimics the winter effect in more temperate regions, as people seek heat relief in indoor envi-

ronments. Baker et al.’s [28] published in May 2020 indicates that nonpharmaceutical control

measures may moderate the pandemic-climate interaction through susceptible depletion. In

other words, human behavior can dominate any climate effect at this early stage of the pan-

demic, which clearly deviates from the behavior observed for endemic infections.

Our experience in Arizona confirms the findings in this paper; the transmission rate

observed from data was more shaped by the NPIs in effect than by the weather. At the timing

of this study, however, given the uncertainty about a potential summer effect, particularly on

virus survivability, we found the following analysis to useful to demonstrate the sensitivity of

outbreak dynamics to the transmission rate β when presenting our results to public health offi-

cials. The scenarios demonstrate the impact of different levels of favorable summer effects on

projected hospitalizations.

In particular, we have simulated four scenarios with no summer effect, 25% decrease in

transmission rate on 5/29, 25% transmission rate on 6/12, and a 50% decrease on 6/12 and cal-

culated the projected hospitalizations in each case. The projections under these cases were use-

ful for public health officials in the State to appreciate the fact that given all the debate with

respect to a favorable summer effect, it was likely that hospital resources in Arizona during the

summer of 2020 will be significantly constrained. These projections are provided here to dem-

onstrate how we used such scenarios to communicate these issues, rather than an expectation

that these scenarios are epidemiologically relevant or supported by data or studies on potential

summer effects.

In Fig 15, we plotted the projected 1.67X hospitalizations under four different scenarios

with respect to the summer effect. We plotted the projected hospitalizations for a longer hori-

zon to show the impact of a favorable summer effect on transmission rates. We chose to use

the 1.67X scenario for this purpose since the current hospitalization data seems to be closer to

the 1.67X projections. The plot shows the tradeoff between an early summer effect versus a

later but more significant summer effect. The figure also demonstrates the impact of a 25% to

50% reduction in the transmission rate as well as the impact of the timing of the summer effect

in further flattening the curve.

Fig 15. Hospitalization projections under favorable summer effect scenarios for 1.67X.

https://doi.org/10.1371/journal.pone.0242588.g015
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2.2 Initiating non-pharmaceutical interventions

The current estimation procedure applied to the current epidemiological data as of June 7

results in a significant increase in the transmission rate starting from May 11, which we use as

the transmission rate estimate to obtain baseline projections as shown in Fig 11. Of note, May

11 was the date on which restaurants were allowed to resume dine-in operations statewide.

This baseline reflects the observed data from the state health department reporting system at

the present time during the response. We note that there are frequent data reporting correc-

tions and so the current estimation targets could potentially change. The model includes mul-

tiple changes in transmission rates correlating with policy implementations. When NPIs were

initiated, including bar closures and restaurant restrictions in the urban centers on March 17

and the statewide stay-at-home order on March 30, transmission rates were reduced. When

NPI policies were lifted, including the resumption of dine-in restaurant service on May 11 and

the end of the stay-at-home order on May 15, transmission rates increased.

It is worthwhile to consider the impact of initiating NPIs once more in an effort to return to

the transmission rate estimated by our model during Arizona’s stay-at-home order. We ana-

lyze the reduction in the number of infections and the number of hospitalized patients that

may result from the reinitiation of NPIs at different points in time, starting from June 8. Recall

that the latest data point we used in this analysis is June 7 data on cumulative confirmed

COVID-19 cases and deaths, so June 8 represents the earliest point in time that the NPIs could

be reinitiated. We do not specify any specific NPIs to achieve this reduction in transmission.

Rather, we use the prior estimates in transmission parameter β as a measure of lowered trans-

mission under heightened policy implementation.

To represent the patient care load imposed on Arizona’s hospitals, we consider the area

under the total infections and hospitalizations curves, in a manner similar to the calculation of

“illness inventory” or utilization in the system over time. We consider five dates that NPIs can

be initiated: June 8, June 15, June 22, June 29, and July 6 and obtain the following improve-

ment metric in comparison to the baseline case of no NPIs, which assumes that the transmis-

sion rate stays constant at the b̂3. The results are qualitatively similar, so to provide some

conservative estimates, we use 1.67X for this analysis. Hence, we use b̂1 ¼ 0:226931,

b̂2 ¼ 0:182606, b̂3 ¼ 0:256557, û ¼ 0:99. At the indicated NPI initiation times, we revert the

transition rate to the lowest under NPI, which is b̂2 ¼ 0:182606.

First, it is useful to observe the total infections (including asymptomatic individuals,

presymptomatic individuals, symptomatic individuals and hospitalized patients) under the

baseline and the five intervention time options over the next several months under these

assumptions to compare the behavior under these different scenarios. We note that we are not

presenting this figure to provide projections, but rather provide a visual reference to explain

the difference in long-run behavior that NPIs, through the reductions in transmission rate

implies. In Fig 16 we see that the NPIs result in significantly different infection patterns as a

result of the reduction in transmission rates. While this simulation represents a highly optimis-

tic scenario with respect to the impact of NPI reinitiation on the viral transmission rate, this

analysis clearly shows that initiation of NPIs can provide significant relief on the healthcare

resource demands that the pandemic presents, even in the setting of elevated baseline infection

rates with a large susceptible population.

We have indicated that this analysis presents an optimistic scenario with respect to the

impact of the re-initiation of NPIs on the transmission rate due to several reasons. First, indi-

vidual behavior with regard to NPIs including masking and physical distancing varies due to

individual beliefs and adherence to recommended actions. Second, some population segments
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experience systemic inequity including inadequate access to supply chain and economic

resources to acquire protective equipment (e.g. face masks) and hygiene resources (e.g. hand

sanitizer) to afford measures of protection. Third, individuals experiencing systemic resource

inequities are least able to avoid public contact and practice physical distancing due to fragile

employment status in front-line jobs. Fourth, the high asymptomatic rate and presymptomatic

transmission patterns coupled with low viral testing rates and extremely limited contact trac-

ing capacity statewide has limited the ability of the public health system to contain outbreaks

even in the setting of optimal NPI adherence by individuals in the community.

To quantify the improvement that can be expected from the re-initiation of NPIs on a given

date, we consider the following percent reduction metric, which compares the areas under

each curve over time. That is,

rk
mðtÞ ¼ 1 �

R t
0
Nk

mðtÞdtR t
0
NmðtÞdt

; ð13Þ

where the superscript k denotes the NPI initiation date options and superscript m can be total

infections, hospitalized patients or deaths. We calculate the reduction metrics for 1.67X how-

ever, the results are similar qualitatively under 4X and 6X.

Table 2, which provides the percent reductions in total infections, shows that initiating

NPIs results in significant reductions in total infections. For example, initiating NPIs on June

22 would imply a reduction of 72% in the total infections in Arizona by the beginning of

Fig 16. Total infections under the baseline and five NPI initiation date options for 1.67X.

https://doi.org/10.1371/journal.pone.0242588.g016

Table 2. Percent reductions observed in the total infections by the indicated dates for each NPI initiation date

option.

Percent reduction in total infections with NPI initiations

by date NPI on 6/8 NPI on 6/15 NPI on 6/22 NPI on 6/29 NPI on 7/6

7/1/20 24% 13% 4% 0% 0%

8/1/20 65% 57% 48% 38% 27%

9/1/20 82% 77% 72% 65% 58%

10/1/20 84% 80% 76% 71% 65%

11/1/20 82% 78% 74% 69% 64%

12/1/20 78% 74% 70% 66% 61%

https://doi.org/10.1371/journal.pone.0242588.t002
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September. A similar observation can be made from Table 3; initiation of NPIs on June 22

would also imply 68% reduction in hospitalizations.

Another important insight we gain from the results is the impact that timing of the NPIs

makes. In both tables, we see that the reductions by July 1 for the initiation dates of June 29

and July 6 are 0%, since those cases have the same behavior as the baseline 1.67X case. In gen-

eral, supposing that June 8 would be the earliest that one would trigger an NPI from the time

of this modeling exercise, delaying the initiation of NPIs by one week results in about a 5%

change in the reductions that we observe in the total infections, hospitalizations and deaths.

This assessment model may provide an estimate for the public health burden of each week of

delaying policy enactment or individual practice of NPIs.

Another percent reduction metric that one could look at is the maximum number of

patients hospitalized under each case. Since the start of the epidemic, the peak hospital

resources required to care for COVID-19 patients has been an important concern among pub-

lic officials indicating the need to flatten the curve. Initiating NPIs on June 8, June 15, June 22,

June 29 and July 6 result in respectively 88%, 86%, 84%, 81% and 77% reductions in the maxi-

mum number of patients hospitalized (i.e. the peak of each curve). Considering the limitations

in the hospital and particularly ICU resources, including expert healthcare personnel, to pro-

vide safe and effective care for seriously ill COVID-19 patients as well as patients with critical

conditions unrelated to COVID-19, we note that these resource utilization reductions result-

ing from NPI policy enactment may make a significant difference in population health

outcomes.

In addition to the percent reductions in the areas under the total infections and hospitalized

curves, we present in Table 4 the percent reductions in the number of deaths by the dates indi-

cated in the first column. Even without considering any negative effects of exceeding hospital

care capacity (which is likely to happen without the initiation and widespread adoption of

Table 3. Percent reductions observed in the hospitalizations by the indicated dates for each NPI initiation date

option.

Percent reduction in hospitalizations with NPI initiations

by date NPI on 6/8 NPI on 6/15 NPI on 6/22 NPI on 6/29 NPI on 7/6

7/1/20 14% 5% 1% 0% 0%

8/1/20 58% 49% 39% 28% 17%

9/1/20 79% 74% 68% 61% 52%

10/1/20 84% 80% 75% 70% 64%

11/1/20 83% 79% 74% 70% 64%

12/1/20 79% 75% 71% 67% 62%

https://doi.org/10.1371/journal.pone.0242588.t003

Table 4. Percent reductions in deaths by the indicated dates for each NPI initiation date option.

Percent reduction in deaths with NPI initiations

by date NPI on 6/8 NPI on 6/15 NPI on 6/22 NPI on 6/29 NPI on 7/6

7/1/20 10% 4% 0% 0% 0%

8/1/20 54% 44% 34% 23% 14%

9/1/20 78% 72% 66% 58% 49%

10/1/20 84% 80% 75% 69% 63%

11/1/20 83% 79% 75% 70% 65%

12/1/20 80% 76% 72% 67% 62%

https://doi.org/10.1371/journal.pone.0242588.t004
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NPIs) on patient health outcomes, we see that reductions in deaths resulting from the initia-

tion of NPIs is on the order of 70%. Again, our model demonstrates that one week’s delay in

the initiation of NPIs corresponds to a 4% to 10% difference in the reductions in deaths.

Further examination of the trends associated with the timing of NPI initiation indicates

that the most significant reductions following the successful initiation of an effective NPI is

realized within the first two months of policy change. This observation reflects the nature of

infection spread in the community for a viral illness with exponential growth potential, as

observed with COVID-19. Just as exponential growth experiences a long initiation period in a

population prior to sharp rises in case counts, exponential decline in case counts occurs rela-

tively quickly in the population when the transmission routes are attenuated by NPIs, followed

by a longer period of more gradual decline that reflects the gradual onset period of the epide-

miological curve. It is important to note that the projected reductions in total infections, hospi-

talizations, and deaths with NPI initiation presume widespread community uptake of any

intervention. Poor public adherence to NPI intervention policies are unlikely to result in sig-

nificant attenuation of viral spread, as policy alone without broad public action is powerless in

a pandemic.

3 Discussion

In this paper we have proposed a methodology for modelling and projecting the spread of the

COVID-19 epidemic in Arizona by considering publicly available data from March 4 (first

date with a confirmed COVID-19 case with community spread in Arizona) to June 7. This

work is focused on using mathematical modeling techniques to understand the localized fea-

tures of infection and disease transmission in the early phases of an epidemic, in the absence of

extensive available data, as well as exploring the impacts of possible scenarios for implement-

ing control measures through public policy. The description of this work illustrates the ways

that epidemiological modeling practices are critically important to the work of public policy-

making to promote public health and safety in a pandemic. We note that this model iteration

was initially constructed beginning in April at the time of a statewide stay-at-home order, and

refined after the stay-at-home order was lifted. This timeframe of the model iteration process

allowed for clear observation of the dynamic transmission rates in response to public policy

implementation and individual adoption of NPI behaviors, and served as a tool to assist public

officials in constructing and implementing policy decisions related to NPIs.

There are several limitations to our analysis. It is important to note that our SEIRD model-

ing approach did not take into account many factors that play an important role in the dynam-

ics of disease such as heterogeneous contact transmission network, the characteristics of the

population (e.g. age, comorbid health conditions, racial and ethnic disparities in access to test-

ing and treatment), the possibility of partial immunity or no immunity from SARS-CoV-2

infection and the availability of testing and contact tracing. At the time of this report, Arizona

maintained one of the lowest per capita testing and contact tracing rates of any state in the

country. Therefore, it is likely that significant underdetection and thus underreporting of mild

and asymptomatic cases may impact calculations of hospitalization and death rates. In order

to accommodate this limitation, we used plausible parameters for SARS-CoV-2 based on cur-

rent evidence. As the evidence related to SARS-CoV-2 and COVID-19 continues to develop,

these values are likely to be updated as more comprehensive data become available.

In future work, we look forward to testing this model more broadly against data from other

states beyond Arizona in an effort to validate this approach for other public health policy mak-

ing jurisdictions. In addition, we plan to test this modeling approach more narrowly by apply-

ing it to county-specific data in Arizona in order to assess the retrospective accuracy given a
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more homogeneous population sample of a single county as opposed to the highly heteroge-

neous population sample represented by the full state of Arizona. We anticipate that this type

of comparative work may inform best practices for early-phase projection modeling in future

epidemic conditions. Establishing best practices for early projection modeling can, in turn,

provide improved timely inputs for policymakers with more clear expectations and under-

standing about the scope and limitations of models in highly uncertain conditions like the cur-

rent COVID-19 pandemic.

Our work illustrates how a system dynamics model can be very useful for making early-

phase inferences about how the pandemic impacts may change in response to policy and indi-

vidual behavior decisions about implementation of different disease mitigation measures.
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