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Abstract

Recent microarray studies of mouse and human osteoblast differentiation in vitro have identified
novel transcription factors that may be important in the establishment and maintenance of
differentiation. These findings help unravel the pattern of gene-expression changes that underly
the complex process of bone formation. 
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Osteoblasts, the bone-forming cells, have the unique function

of producing and then mineralizing the bone matrix.

Although substantial progress has been made in under-

standing the molecular basis of osteoblast differentiation

and function, many aspects remain unknown. Osteoblasts

differentiate from their mesenchymal precursors in a

complex process that is orchestrated by the timely activa-

tion of specific transcription factors that regulate the

expression of certain genes and thus define the osteoblast

phenotype. The genes encoding two of these transcription

factors, Runx2/Cbfa1 and Osterix (Osx), have been identi-

fied as master controllers of the osteoblastic lineage, and

the absence of either one results in a complete lack of a

mineralized skeleton [1-3]. Many other transcription

factors have been shown to regulate osteoblast function,

including homeobox proteins: MSX1, MSX2, DLX3, and

DLX5; members of the AP1 family; C/EBP �, CBFB, Twist

and, more recently, effectors of the �-catenin/Wnt signal-

ing pathway (reviewed in [4-6]). As new transcription

factors that regulate osteoblasts are discovered and the

complexity of the osteoblast-differentiation program

becomes more apparent, we can see that our current

picture of this process is partial, and a unified view of the

interplay and timing of the different transcriptional regulators

is still elusive. 

Genome-scale analysis of osteoblast
differentiation 
Microarray analysis has recently been applied by several

investigators in an attempt to further understand the molecular

programs that define osteoblast differentiation. Several cel-

lular models have been used, including committed

osteogenic precursors of murine and human origin [7-10],

immortalized human cells at various stages of differentiation

[11], and uncommitted mesodermal progenitor cells [12-16].

The variety of cell sources and models underscore a potential

difficulty with comparing studies that use this approach. A

bone-forming cell goes through many phases in its lifetime,

from early commitment to organic-matrix production, min-

eralization and apoptosis or terminal differentiation into an

osteocyte, and its gene-expression profile varies widely

depending upon the differentiation stage. Changes in gene

expression must therefore be interpreted in a way that takes

into consideration the cell context and differentiation phase. 

A second limitation of the current microarray methods

stems from the need to use a stimulator to induce osteoblast

differentiation in vitro. In the classic murine calvaria

(cranial vault) cell model, ascorbic acid and �-glycerolphos-

phate are used to induce matrix production and mineraliza-

tion. Other models, in particular human osteoblasts, require



‘stronger’ stimulators, such as bone morphogenetic protein-2

or dexamethasone, which have specific and often diverse

modulatory effects on osteoblast gene expression, thus com-

plicating the distinction between effects of the stimulator

and changes due to osteoblast differentiation. As a paradigm

for this type of study, we will focus on the recent work of Qi

et al. [12], who used a unique model of human osteoblasts.

Novel transcription factors involved in
osteoblast differentiation 
The cell model used by Qi et al. [12] is based on mesenchy-

mal progenitor cells isolated from the marrow of human

donors. These mesenchymal progenitor cells can be

induced towards the osteoblast lineage by incubation with

dexamethasone in the presence of ascorbic acid and

�-glycerolphosphate. Using a commercially available

microarray, the authors compared the profile of genes

expressed in undifferentiated mesenchymal progenitor cells

(baseline) to those induced in the presence of the stimula-

tors over a seven-day time course. As a critically important

validation step, genes previously proven to be hallmarks of

differentiated osteoblasts, including osteocalcin, type I colla-

gen, RUNX2, MSX2 and alkaline phosphatase, were found

to be up-regulated with time in culture after osteogenic stim-

ulation. The extent of up-regulation of many of these genes

was only marginal, however, and some did not even meet the

criteria of significant change, which was set at greater than

two-fold increase relative to the baseline. This result high-

lights another major limitation of the method: given that the

expression of proven master genes may not change dramati-

cally, as in this case, what is the correct threshold for decid-

ing whether a change in mRNA abundance is significant?

More to the point, is a change in mRNA levels a real index of

the importance of a gene in cell function? 

Despite these limitations, microarray data do provide impor-

tant novel information. Among the genes found to be differ-

entially expressed (greater or less than two-fold) in the study

by Qi et al. [12], 41 encoded transcription factors, many of

which were not previously known to be involved in

osteoblast differentiation, yet they were found to co-cluster

in expression profile with osteoblast-specific transcription

factors. Table 1 lists the transcription factors most abun-

dantly regulated during osteoblast differentiation in the

study by Qi et al. [12]. A number of little-characterized zinc-

finger proteins were upregulated throughout the process of

osteoblast differentiation, including many Znf family

members (Znf9 is associated with myotonic dystrophy [17],

and Znf74 with DiGeorge syndrome; DiGeorge syndrome is

characterized by the absence or hypoplasia of the thymus

and parathyroid glands, resulting in hypocalcemia, heart

defects, short stature and craniofacial deformities [18]).

ZNF133, ZNF143 and ZNF177 exhibited the most robust up-

regulation throughout the seven-day time course, peaking at

levels 3.07-, 3.08- and 5.77-fold that of baseline, respectively.

In contrast, ZNF6 and EGR1 were markedly down-regulated.

Interestingly, the roles of these zinc-finger proteins have not

been studied in bone, although their potential importance

for bone-forming cells was heralded by the identification of

OSX, another zinc-finger protein that is critical to osteoblast

function, which acts downstream of RUNX2/CBFA1 [1].

Other structurally related zinc-finger family members, SP1

and SP3, are also emerging as strong regulators of osteoblast

genes [19,20], thus highlighting the critical role of this class

of transcriptionally active factors in osteoblast commitment

and differentiation. The finding that members of the zinc-

finger protein family are crucial to the process of osteoblast

differentiation represents an important contribution origi-

nating from gene array studies. 

Several of the mammalian Sox genes, encoding homeobox-

containing transcription factors related to the SRY sex-

determining gene, are involved in regulating chondrocyte

(cartilage-forming cell) differentiation and function during

endochondral ossification. Qi et al. [12] show that SOX-4

and SOX-22 are also upregulated during osteoblast differen-

tiation from mesenchymal progenitor cells. SOX-4 is of par-

ticular interest since it is expressed in hypertrophic

chondrocytes (cartilage-forming cells) at the zone of mineral-

izing cartilage and in osteoblasts. Further, SOX-4 expression

in the skeletal tissue is modulated by parathyroid hormone,
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Table 1

Transcription factors most abundantly regulated during
osteoblast differentiation

Gene Full name Fold change

Increased

DGSI DiGeorge syndrome critical region gene 7.10

ZNF177 Zinc-finger protein 177 5.77

NCOR2 Nuclear receptor co-repressor 2 4.92

CRABP1 Cellular retinoic acid binding protein 1 4.29

IRX2A Iroquois-class homeobox protein 3.84

NR1H2 Nuclear receptor subfamily 1, group H, member 2 3.65

GATA1 Globin transcription factor 1 3.40

POU2F1 POU domain, class 2, transcription factor 1 3.16

MAD4 Mad4 homolog 3.08

ZNF143 Zinc-finger protein 143 (clone pHZ-1) 3.08

ZNF133 Zinc-finger protein 133 (clone pHZ-13) 3.07

SHOX2 Short stature homeobox 2 3.01

Decreased

MYC v-Myc homolog 5.00

ZNF6 Zinc-finger protein 6 3.57

CA150 Transcription factor CA150 3.33

TCEB1 Transcription elongation factor B (Elongin C) 3.23

The data are from the microarray study of Qi et al. [12] and fold change
describes the relative expression of the given factor in osteoblasts relative
to expression in the mesenchymal progenitor cells.



a critical regulator of calcium and bone metabolism [21].

Up-regulation of SOX-4 has also been reported by two other

microarray studies of osteoblastogenesis [13,16].

Homeobox transcription factors - in particular MSX1,

MSX2, DLX3, DLX5, ALX4, SHOX and HOXD13 - coordi-

nate skeletal patterning and modulate the mature function

of osteoblasts. Additional homeobox factors identified by Qi

et al. [12] as being up-regulated during differentiation of

osteoblasts from mesenchymal progenitor cells include

IRX2A, POU2F1, SHOX2 and HOXB6. The Iroquois class of

homeobox proteins, IRX1 and IRX2, are highly expressed

during digit formation in mouse embryos [22]; IRX2 is also

expressed in the vertebrae and developing skull, and

although it is not specific for the skeleton, it is up-regulated

(more than 3.8-fold) during osteoblastogenesis [12]. The

idea of a role for the Iroquois homeobox genes in bone for-

mation is strengthened by the observation that IRX3 expres-

sion increases during osteoblast differentiation [8]. Another

intriguing factor is SHOX2 (short stature homeobox 2),

which is up-regulated three-fold and has a similar expres-

sion profile to that of its homolog, SHOX, which is associ-

ated with skeletal abnormalities in the sex-chromosome

disorder Turner syndrome [23].

Interestingly, the work of Qi et al. [12] also reveals that a

number of hematopoiesis-associated transcription factors

are markedly upregulated during osteoblastogenesis. In

addition to HOXB6, the expression of GATA1, GATA3 and

the Kruppel-like factor KLF1 increases during osteogenic

differentiation, thus offering new clues as to the interaction

between the hematopoietic and mesenchymal lineages. As

further proof of this link, four transcription factors associ-

ated with DiGeorge syndrome were found to be up-regu-

lated during osteoblastogenesis. Apart from ZNF74, noted

above, DGSI (seven-fold increase), PNUTL1 and PNUT2

(2.49 and 2.29-fold increase, respectively) all are upregu-

lated in the human mesenchymal progenitor cell differenti-

ation model. Given the association of DiGeorge syndrome

with hypoparathyroidism and the attendant skeletal abnor-

malities, it is likely that these four transcription factors may

be important modulators of parathyroid hormone signaling

in bone. 

In summary, the use of genome-wide approaches to identify

genes involved in the differentiation of osteoblasts provides

a snapshot of this cell’s inventory of transcription factors.

But, extracting a biological function from this inventory

offers an even greater challenge (Figure 1). In fact, if one

compares the results of the different microarray analyses

published so far, one will see that rarely do two studies

produce similar results; the use of different arrays, different

methods of data analysis, different cell models and stimula-

tors and, last but not least, different criteria for defining a

change as significant, all contribute to this large variability.

While a wealth of new information can be gathered by

genome-wide approaches, a systematic molecular analysis of

the genes identified by these methods is mandatory if we

are to fully understand the real biological role of the newly

identified ‘osteoblast’ genes. 
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Figure 1
Transcriptional control of osteoblastogenesis. The transcription factors
RUNX2, OSX, MSX2, DLX5 and DLX6 play critical roles in coordinating
the differentiation from a mesenchymal progenitor cell into a fully
differentiated osteoblast. On the basis of the changes in relative
abundance of mRNAs and the occurrence of mutants with phenotypes
that affect bone formation, a family of zinc-finger proteins (ZFPs) and the
factors SHOX2, IRX2A, POU2F1, SOX-4, SOX-22 and DGSI are new
likely candidates to be modulators of the progression through the
osteoblast lineage from mesenchymal progenitor cells, although the
precise step(s) at which they act is not currently known. See text for
further details. 
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