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Abstract

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor with a poor prognosis. We aimed to
identify a new prognostic model of HCC based on differentially expressed (DE) immune genes.

Methods: The DE immune genes were identified based on an analysis of 374 cases of HCC and 50 adjacent non-
tumor specimens from the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, Lasso regression, and
multivariate Cox analysis were used to construct the model based on the training group. Survival analysis and the
receiver operating characteristic (ROC) curves were used to evaluate model performance. The testing group and the
entire group were subsequently used for validation of the model.

Results: A five-immune gene model consisted of HSPA4, ISG20L2, NDRGT1, EGF, and IL17D was identified. Based on
the model, the overall survival was significantly different between the high-risk and low-risk groups (P = 7.953e-06).
The AUCs for the model at 1- and 3-year were 0.849 and 0.74, respectively. The reliability of the model was
confirmed using the validation groups. The risk score was identified as an independent prognostic parameter and
closely related to the content of immune cells from human HCC specimens.

Conclusion: We identified a five-immune gene model that can be used as an independent prognostic marker for

HCC.
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Background

Hepatocellular carcinoma (HCC) is common malignancy
worldwide, being the third leading cause of cancer-
associated death globally. Its morbidity and mortality
continue to rise, causing more than 600,000 deaths an-
nually [1, 2]. The symptoms and signs of early HCC are
hard to notice, making its diagnosis often delayed, which
is partly related to the poor prognosis [3—-5]. In addition,
due to host variabilities, individuals with the same
pathological stage may still have significant differences
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in the overall survival (OS) [6]. Therefore, it is important
to identify relevant genes and develop a molecular model
that can better predict the prognosis of HCC.

In recent years, immunotherapy has become an im-
portant approach for HCC treatment [3]. A variety of
strategies including cancer vaccines, adoptive cellular
therapy, and immune checkpoint blockade (ICB) [7, 8],
have been explored. Several immune checkpoint inhibi-
tors, such as anti-PD-L1, anti-CTLA-4, and anti-PD-1
monoclonal antibodies, have displayed therapeutic ef-
fects for HCC [9, 10], both in the induction and main-
tenance of treatments [11, 12].

Previous studies have suggested that immune-related
genes (or immune genes) may be related to the
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prognosis and response of HCC patients to immuno-
therapy [13]. Dong et al. [14] have shown that high ex-
pressions of STAT5A, STAT5B, and STAT6 are
associated with improved prognosis in HCC patients. In
the current study, we aim to further identify a prognostic
model for HCC based on immune genes and to examine
its clinical significance.

Methods

Basic information

Clinical information and expression data were obtained
from The Cancer Genome Atlas (TCGA) database.
Cancer-related transcription factors (TFs) and immune
genes were available in the Cistrome database [15] and
the ImmPort database [16], respectively. After screening
of the cancer samples, we randomly divided the 343
tumor samples into the training and testing groups using
the “caret” package of R software (version 4.0.3).

Detection of the differentially expressed (DE) immune
genes

The Wilcoxon signed-rank test was applied to identify
DE genes and DE immune genes with R software. False
discovery rate (FDR) < 0.05 and Log,(fold change [FC]) >
1 were set as the cut-offs. The DE genes and immune
genes were presented in the volcano plot and heatmap
using the “gplots” package and “Pheatmap” package.

Function enrichment analyses of the DE immune genes

Gene Ontology (GO) analysis and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis
were analyzed with the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (v6.8)
and the “ClusterProfiler” R package, respectively. GO
terms, including cellular component, biological process,
and molecular function were considered significantly
enriched when Bonferroni correction < 0.001 and FDR <
0.05, and p.adjust <0.001 was set as the cut-offs for
KEGG terms. The “Pathview” package was used to de-
tect the dysregulated genes enriched in the pathways.

Consensus clustering analysis

For the analysis of the DE immune genes in HCC, tumor
samples from TCGA were divided into clusters using
the “ConsensusClusterPlus” package. Principal compo-
nent analysis (PCA) was applied to validate the reliability
of clustering with the “ggplot2” package. Survival ana-
lysis was performed to stratify the clusters using the
“survival” package.

Construction of a DE immune genes-TFs network

We constructed the DE TFs based on the DE genes and
cancer-related TFs. A co-expression network was estab-
lished with the WGCNA package. Scale free topology
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model and mean connectivity was used to screen the op-
timal soft threshold power. We set the abline at 0.95.
Subsequently, the optimal soft threshold power was used
to create an adjacency matrix. The interaction pairs were
identified when the weight score was more than 0.3.
Meanwhile, Spearman correlation analysis was per-
formed to estimate the correlation between DE immune
genes and DE TFs. Correlation coefficient > 0.6 and p <
0.001 were set as thresholds to find more robust inter-
action pairs. In addition, the protein-protein interaction
(PPI) network was established using the STRING data-
base and the hub genes were identified with the Cyto-
hubba plug-in. The qualified interactions were imported
to Cytoscape (v3.7.2) to construct the DE immune
genes-TFs network.

Establishment of a prognostic risk model

A risk model was developed with the training group, and
this model was established with published methodolo-
gies [17, 18]. Univariate analysis was performed with the
“survival” package, and the genes with p<0.05 were
identified as survival-related. Lasso regression was ap-
plied by the “glmnet” R package with the number of
lambda = 1000 to eliminate collinear or correlated genes.
Lambda.min was set as the cutoff point to bring mini-
mum mean cross-validated error, and qualified genes
were selected based on the lambda.min for further ana-
lysis. Subsequently, multivariate analysis was performed
to screen for the ultimate immune genes. Gene and pro-
tein expression levels were verified in the Oncomine
database (https://www.oncomine.org) [19] and Human
Protein Atlas (HPA) (https://www.proteinatlas.org/) [20].
In addition, the survival analysis of these genes was

Table 1 Clinical information of the 343 HCC patients in the
entire cohort

Clinical Traits Variable N (Total =343) Percentage (%)
Survival status Alive 220 64.1
Dead 123 359
Age (years) <60 157 458
> =60 186 54.2
Sex Female 110 321
Male 233 67.9
Grade G1 53 15.5
G2 165 481
G3 13 329
G4 12 35
Pathological stage Stage | 166 484
Stage Il 80 233
Stage Ill 94 274
Stage IV 3 09

HCC hepatocellular carcinoma


https://www.oncomine.org/resource/main.html
https://www.proteinatlas.org/
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Table 2 Grouping of the HCC patients
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Clinical Traits Variable Training Cohort Testing Cohort Entire Cohort
Survival status Alive 106 (33.8%) 104 (30.3%) 220 (64.1%)
Dead 66 (16.4%) 67 (19.5%) 123 (35.9%)

HCC hepatocellular carcinoma

conducted. Based on the resulting immune genes, a risk
score was calculated according to the following formula:

N
Risk score = Zi _, (Expression«Coef)

N and Coef represented gene number and coefficient
value, respectively. In the training cohort, we divided HCC
patients into high-risk and low-risk groups according to
the median of the risk scores. A low-risk score correlates
with good survival for HCC patients. A Kaplan-Meier

analysis was employed to compare the survival rates be-
tween the two groups. The “SurvivalROC” package was
applied to perform receiver operating characteristic
(ROC) analysis. It has been reported that an area under
the ROC (AUC) > 0.60 is considered suitable for predic-
tion. Risk curves and the heatmap of risk genes were also
utilized to assess this model. Besides, this model was vali-
dated by the testing group and the entire group using sur-
vival analysis, ROC analysis, risk curves, and the heatmap
of risk genes.
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The prognostic value of the risk model

The risk score and other clinical parameters, including
age, sex, histological grade, and the pathological stage,
were evaluated with univariate and multivariate Cox
analyses. Indicators were considered independent prog-
nostic factors for p < 0.05 in both analyses.

Correlation between the model and the clinical
parameters

To evaluate the clinical utility of the model, the correl-
ation between the risk score of the model and other clin-
ical parameters were analyzed. Patients were separated
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into two subgroups according to age (>=60 and < 60
years old), sex, pathologic grade (G1&2 for well-
differentiated versus G3&4 for poor-differentiated), and
stage (stage I&II versus stage III&IV).

Evaluation of immune cell infiltration

The CIBERSORT (R scrip v 1.03) was applied to calcu-
late the distribution of 22 types of infiltrating immune
cells between the normal and cancer tissues based on
the transcriptome profiles [21]. After calculation and fil-
tration with p <0.05, the proportions of different im-
mune cells were exhibited in a violin plot. Meanwhile, to
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explore the role of the model in the reflection of the im-
mune microenvironment in HCC patients, we down-
loaded the immune infiltrate data from Tumor Immune
Estimation Resource [22]. Subsequently, the correlation
between the risk score and the content of immune cells
was also assessed using the Pearson correlation coeffi-
cient test.

Results

Data download

Data for 374 tumors and 50 normal controls were down-
loaded from the TCGA data portal. Information of the
normal control samples and their corresponding tumor
samples are shown in Table S1. Three tumor samples
lacking clinical data and 28 tumor samples with follow-
up time less than 30days were excluded. Clinical
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information of the remaining 343 HCC patients is listed
in Table 1. We randomly divided the 343 tumor samples
into training and testing groups (Table 2). The workflow
of the study is shown in Fig. 1.

Detection of the DE immune genes

In total, 5388 DE genes (325 down-regulated and
5063 up-regulated) and 325 DE immune genes (59
down-regulated and 266 up-regulated) were identified
(Table S2 and Table S3), which are shown in the vol-
cano map and heatmap (Supplementary Figure la, b
and Fig. 2a, b).

GO and KEGG analyses of the DE immune genes
A total of 68 GO terms, comprising 14 molecular func-
tion terms, seven cellular component terms, and 47
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Table 3 The expression of five immune genes in HCC patients
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subgroups (Fig. 3e). We further compared the clinico-

Gene Mean (Normal)  Mean (HCC)  logFC FDR pathological characters of the three subgroups and found
EGF 0.0050615 0.24447286 5593952 1.57E-05 that there is a significant difference in pathologic stage
HSPA4 10409368 244210186 1230241 116624  and status (Fig. 3f).

IL17D 0.0544136 0.78016648 3.841742 2.18E-12

NDRG1 68347972 255636733 1903125 152611 Copstruction of a DE immune genes-TFs network

ISG20L2  2.8538117 6.7903827 1250603  237E-23 A total of 318 tumor-related TFs were available in the

HCC hepatocellular carcinoma

biological process terms, were detected. Also, 65
enriched pathways were discovered. The significantly
enriched GO terms “Inflammatory response”, “immune
response”, and “growth factor activity”, and the enriched
KEGG terms included “cytokine-cytokine receptor inter-
action”, “antigen processing and presentation”, “MAPK
signaling pathway” (Table S4 and Table S5). The top 10
GO terms and pathway terms are depicted in Fig. 2c and
Fig. 2d, respectively. The dysregulated genes in the top
10 pathways are shown in Supplementary Figure 2.

Consensus clustering analysis

The 343 HCC patients were clustered into three sub-
groups (Fig. 3a-c). PCA was further applied to demon-
strate the distinction of gene expression levels among
the three subgroups (Fig. 3d). However, survival analysis
showed no significant differences among the three

Cistrome database, among which 117 DE TFs (9 down-
regulated and 108 up-regulated) were detected (Table
S6). The volcano map and heatmap of the DE TFs are
presented in Supplementary Figure 1c and Supplemen-
tary Figure 1d. Six was chosen as the optimal soft
threshold power based on scale free topology model and
mean connectivity (Fig. 4a). A total of 10 genes were
identified to construct the co-expression network. Mean-
while, 81 positive DE immune genes-TFs pairs were de-
tected based on correlation analysis, involving 19 DE up-
regulated immune genes and 40 DE TFs (Fig. 4b).
Among them, six overlapping genes were identified, in-
cluding EZH2, DNMT1, NCAPG, LMNBI1, FOXM1, and
CENPA (Supplementary Figure 3a). Besides, we created
a PPI network and found 10 hub genes (Fig. 4c, d). Fi-
nally, we identified two common genes, namely EZH2
and DNMT1 (Supplementary Figure 3b). Both of them
are high-hazard genes, and their high expression reflects
poor survival (Fig. 4e-h).
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Construction of the model
At first, 39 immune genes were screened with univariate
Cox analysis (Fig. 5a). Seven suitable prognostic immune
genes were analyzed using Lasso regression (Fig. 5b and
c). Five of them were obtained, including HSPA4,
ISG20L2, NDRGI, EGF, and IL17D, all of which are high
hazard genes (Fig. 5d and e, Table 3). Analysis of gene
expression of these immune genes in the Oncomine
database revealed a high expression level of these genes
in HCC (Fig. 6a). Likewise, the protein expression level
of HSPA4, ISG20L2, and NDRGL1 is significantly higher
in HCC (Fig. 6b). Besides, these immune genes showed
association with poor survival of the patients (Fig. 6¢).
The risk score = (0.0412 x HSPA4 expression level) +
(0.0932 x ISG20L2 expression level) + (0.0062 x NDRG1
expression level) + (0.3969 x EGF  expression level) +
(0.0746 x IL17D expression level). All the HCC patients
were classified into a high-risk group (n =71) and a low-
risk group (n = 71) based on the median risk score. OS dif-
fers significantly between the two groups (P = 7.953e-06)
(Fig. 7a). The AUCs for the model at 1 and 3 years of
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overall survival are 0.849 and 0.74, respectively (Fig. 7b).
Besides, we assessed the risk scores of HCC patients and
examined their distribution in Fig. 7c. The survival status
of HCC patients is shown on the dot plot (Fig. 7d). The
heatmap shows the expression patterns of the prognostic
immune genes between the two groups (Fig. 7e).

Validation of the model

The risk score of each patient was determined in the
testing and entire groups and subsequently classified
into two subgroups. The survival curves are signifi-
cantly different between the high-risk and low-risk
subgroups in the two cohorts (p <0.05) (Fig. 8a and
¢). Furthermore, the AUCs at 1- and 3-year in the
testing cohort are 0.745 and 0.651, respectively (Fig.
8b), and those in the entire cohort are 0.797 and
0.682, respectively (Fig. 8d).

The prognostic value of the model
For the entire group, the risk score and the pathological
stage were found to be closely associated with OS (p <
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0.001) (Fig. 9a and b). These results suggest that the
model, as well as the pathological stage, are independent
prognostic factors. Interestingly, further comparison
demonstrated that the risk score is more accurate in pre-
dicting OS at one and 3 years, as compared with the
pathological stage (Fig. 9c and d).

Correlation between the model and the clinical
parameters

In the entire group, the values of several factors (EGF,
HSPA4, IL17D, ISG20L2, and the risk score) are posi-
tively related to the histological grade of HCC (p < 0.05)
(Fig. 10a—e). The expression level of IL17D was higher
in females than in males (p < 0.05) (Fig. 10f). Besides, as

NDRG expression increased, the value of the patho-
logical stage decreased (p < 0.05) (Fig. 10g).

Evaluation of immune cell infiltration

After calculation and filtration with p < 0.05, the propor-
tions of different immune cells between 3 normal and 69
cancer specimens resulted in a violin plot. We found
that the proportion of T cell gamma-delta and macro-
phages M1 in normal tissues was significantly higher
than that in cancer tissues, while the proportion of mac-
rophages MO in normal tissues is significantly lower
(Fig. 11). Besides, we found that the risk score is posi-
tively associated with the content of the immune cells,
including B cell, CD4" T cells, CD8" T cells, dendritic
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cells, macrophages, and neutrophils, in HCC samples
(p<0.05) (Fig. 12a-f). This indicates that the immune
gene model is reliable and can reflect the status of the
immune microenvironment in HCC patients.

Discussion

In this study, we identified an immune gene model that
can serve as an independent prognostic factor for HCC.
It is closely related to other clinical factors and the
tumor immune microenvironment of HCC. Also, GO
and KEGG analyses of the DE immune genes and the
network between the DE immune genes and TFs were
conducted, which may guide future research of HCC.

As described in the results, the five-DE immune gene
model consists of HSPA4, ISG20L2, NDRG1, EGF, and
IL17D. Due to the difference of these genes between
HCC and normal tissues, these genes may also have util-
ity in the early diagnosis of HCC. Additionally, all the
five DE immune genes may have the potential to be new
molecular targets for immunotherapy. HSPA4, also
known as Apg-2, is a member of the HSP110 family. It
is expressed in many organs [23] and can be induced by
various conditions, including oncogenic stress. Gotoh
et al. [24] demonstrated that HSPA4 is overexpressed in
HCC. Duzgun et al. [25] revealed that the overexpres-
sion of HSPA4 has correlated with worse OS in head
and neck squamous cell carcinoma and invasive carcin-
oma of the breast. NDRG1 has been demonstrated to be
a biomarker for metastasis and to indicate poor progno-
sis in HCC [26, 27], which is in line with our finding. Lu
et al. [28] found that NDRG1 is up-regulated in HCC
and may be used as a potential therapeutic target for
HCC. ISG20L2, as a target of miR-139-3p, has also been
found to be related to HCC prognosis [29].

In this study, we also established a risk score that can
serve as an independent prognostic variable. The risk
score correlates with the histological grade and the
pathological stage but seems to provide a better predic-
tion than the pathological stage. Tumor-infiltrating im-
mune cells are an important component of the tumor
microenvironment and are regarded as the “seventh
marker feature” of the tumor [30]. Previous reports have
shown that immune cellular infiltration is a vital factor
affecting the treatment efficacy as well as the prognosis
of HCC [31, 32]. Ma et al. [33] had reported that PD1
Hi CD8+ T cells correlate with poor clinical outcomes
in HCC. Ju et al. [34] had found that overexpression of
BRAP is correlated with poor prognosis and has a posi-
tive correlation with infiltrating immune cells. In our
study, it was found that the risk score is highly associ-
ated with the infiltration of immune cells. The result in-
dicates that the risk model may reflect the status of the
tumor microenvironment of HCC and further supports
the prognostic value of this risk model.
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In our analysis, the cellular component terms included
“extracellular space”, “extracellular region”, “cell surface”,
and “integral component of plasma membrane”. These
signify interactions between cancer cells and the tumor
microenvironment. The latter is important for tumor
proliferation, invasion, and metastasis. Also, biological
process terms included “inflammatory response”,
mune response”, and “growth factor activity”. It is well
known that HCC often occurs in the context of chronic
liver disease with cirrhosis [35, 36]. As for the KEGG
terms, cytokine-cytokine receptor interaction is an in-
flammatory pathway, which is highly associated with the
progress of HCC [37]. Antigen processing and presenta-
tion are also found to be enriched pathways in HCC
[38]. Besides, we identified the DE TFs and detected the
DE immune gene-TF pairs with high correlation. The
enriched functions and pathways, as well as highly re-
lated TFs, may be target for future studies.

The current study has some advantages. First, the
model was established using multiple algorithms and
verified with two validating groups. Second, the risk
score may be used to independently predict the progno-
sis of HCC. Third, the risk model may also reflect the
tumor immune microenvironment of HCC.

The limitations of this study are several. First, the
prognostic risk model was built based on the public do-
main databases, and not confirmed in real-world clinical
settings. Secondly, the identified DE immune genes and
TFs, as well as the enriched functions and pathways, re-
quire further research.

«:
1m-

Conclusion
We identified a five-immune gene model, which can be
used as an independent prognostic parameter for HCC.
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