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Abstract

Humans are notoriously bad at understanding probabilities, exhibiting a host of biases and

distortions that are context dependent. This has serious consequences on how we assess

risks and make decisions. Several theories have been developed to replace the normative

rational expectation theory at the foundation of economics. These approaches essentially

assume that (subjective) probabilities weight multiplicatively the utilities of the alternatives

offered to the decision maker, although evidence suggest that probability weights and utili-

ties are often not separable in the mind of the decision maker. In this context, we introduce a

simple and efficient framework on how to describe the inherently probabilistic human deci-

sion-making process, based on a representation of the deliberation activity leading to a

choice through stochastic processes, the simplest of which is a random walk. Our model

leads naturally to the hypothesis that probabilities and utilities are entangled dual character-

istics of the real human decision making process. It predicts the famous fourfold pattern of

risk preferences. Through the analysis of choice probabilities, it is possible to identify two

previously postulated features of prospect theory: the inverse S-shaped subjective probabil-

ity as a function of the objective probability and risk-seeking behavior in the loss domain. It

also predicts observed violations of stochastic dominance, while it does not when the domi-

nance is “evident”. Extending the model to account for human finite deliberation time and

the effect of time pressure on choice, it provides other sound predictions: inverse relation

between choice probability and response time, preference reversal with time pressure, and

an inverse double-S-shaped probability weighting function. Our theory, which offers many

more predictions for future tests, has strong implications for psychology, economics and arti-

ficial intelligence.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0243661 December 14, 2020 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ferro GM, Sornette D (2020) Stochastic

representation decision theory: How probabilities

and values are entangled dual characteristics in

cognitive processes. PLoS ONE 15(12): e0243661.

https://doi.org/10.1371/journal.pone.0243661

Editor: Jason Anthony Aimone, Baylor University,

UNITED STATES

Received: June 22, 2020

Accepted: November 24, 2020

Published: December 14, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0243661

Copyright: © 2020 Ferro, Sornette. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The authors received no specific funding

for this work.

https://orcid.org/0000-0002-2088-4259
https://doi.org/10.1371/journal.pone.0243661
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243661&domain=pdf&date_stamp=2020-12-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243661&domain=pdf&date_stamp=2020-12-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243661&domain=pdf&date_stamp=2020-12-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243661&domain=pdf&date_stamp=2020-12-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243661&domain=pdf&date_stamp=2020-12-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243661&domain=pdf&date_stamp=2020-12-14
https://doi.org/10.1371/journal.pone.0243661
https://doi.org/10.1371/journal.pone.0243661
http://creativecommons.org/licenses/by/4.0/


Introduction

Randomness is a fundamental component in most human affairs, from economics and politics

to medicine and sports. Yet, people often make poor and inconsistent decisions when con-

fronted with it. The rational normative recipe of Expected Utility Theory [1] has shown major

limitations in accounting for how strongly people misperceive probabilities and uncertainty

[2–4], leading to the notion of bounded rationality [5] and a long list of behavioral biases and

fallacies. Several attempts [6–12] have been made to explain such fallacies, replacing the objec-

tive probabilities of events with “decision weights”, but still retaining a sort of expectation

principle, where the attractiveness of an event is decomposed into the product of (subjective)

probability and (subjective) value. Numerous evidence [13–18] however suggest that the two

are not independent; for example, people tend to overestimate the probability of an event if the

associated outcome is bad. Rank-Dependent Theories [9–11] partially take into account the

effect of value on probability, such that decision makers tend to overweight only events with

‘extreme’ consequences. However, their axiomatic structure prevents them to account for

observed violations of stochastic dominance [19]. Operationally, estimating the subjective

probability and utility as two separate entities is subjected to the joint-hypothesis problem [20]

leading to severe limitations for real-life applications.

The above-cited frameworks are deterministic in nature, postulating that the best option

will always be chosen. When tested against empirical data, a probabilistic component is needed

[21] to account for observed “noise” and “inconsistencies” [22, 23]. We can distinguish two

classes of probabilistic theories of decision-making: random utility maximization (RUM)

models and stochastic decision processes. The former, introduced by Thurstone [24] assumes

that the “perceived” utility of an option is a random variable, written as the sum of a “true”

fixed utility and a random disturbance, encoding the deviation from rational behaviour. Deb-

reu [25] proves the existence of a utility function representing a stochastic preference relation

with a minimal set of assumptions. McFadden [26] describes the evolution of RUM models

over the past decades, linking it to the Luce choice axiom (LCA) [27], a very useful assumption

enforcing desirable properties such as independence from irrelevant alternatives and strong

stochastic transitivity. However, several empirical studies [28–33] show how humans do not

always conform to such structure, the most famous example being the “red bus/blue bus”

problem [34].

The second class of models assumes that the utility of alternatives is fixed, but the process

leading to a decision is inherently stochastic. Regarding choice in uncertain environment, the

most famous model is decision field theory (DFT) [35], where a stochastic process (Brownian

motion) is assumed to mimic the fuzzy and hesitant deliberation activity of human mind. The

theory takes inspiration from the Ratcliff Drift-diffusion models (DDMs) [36–38], which have

shown to well describe choices and reaction times in perceptual decision-making tasks (for

example, discriminating a motion direction). Differently from RUM models, these theories

can account for the fact that human decision making happens in finite time, and explain how

such deliberation time–as well as time pressure–affects choice probability.

In almost all theories, the “true” utility of a gamble or its index of worth is obtained by com-

bining probabilities and outcomes in a (subjective) expectation, irrespective of the probabilistic

model adopted (additive random disturbance or drift-diffusion process). As a result, all these

frameworks carry some problematic aspects of expected utility theory, the most prominent

(and oldest) being embodied in the St. Petersburg paradox [39], where an infinite expectation

value of the gamble would imply infinite willingness to pay, while in reality many people

would pay at most a small amount [40]. Although Expected Utility was designed to solve such

paradox, a simple modification of the gamble, often called Super St. Petersburg paradox [41],
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reintroduces the problem: if the lottery provides outcome 22n
– rather than 2n –with probabil-

ity 1
2n= , the Bernoullian expected utility of the gamble (logarithmic utility function) diverges

again. For any unbounded utility function, there will always be a Super Super St. Petersburg

paradox.

When shifting from the normative perspective of decision theory (telling what people should

do)—where expected utility proves best—to a descriptive perspective (reporting what people

actually do), it is worthwhile to investigate alternative mechanisms of value formation in human

mind that are different from the class of generalized expectation approaches mentioned above.

Indeed, from a semantic perspective, separating probability and outcome seems quite odd,

since any probabilistic statement must contain explicitly or implicitly information about

“value”. In other words, a probability number quantifies the likelihood of a concrete event that

is specified, and this event carries an explicit value or implicit assessment of worth or impact.

For instance, when conceiving the likelihood of a natural disaster, one cannot help not thinking

of the potential associated destruction and losses of lives, which are therefore implicitly con-

nected to a cost. When thinking of the probability of the election of some political candidate,

one cannot avoid envisaging the social, economic and financial consequences, which carry an

implicit value judgement. Generally, whatever the event, it carries either a direct value or an

indirect value assessment, even if not fully formalized in the mind of the probability assessor.

Therefore, the way in which outcomes and probabilities interact in human mind seems to be

much more entangled than represented by the simple factorization prevalent in utility theories

and their generalizations in behavioral economics and psychology. The intermingled nature of

probabilities and values have been reported by Lopes [42] and is highlighted in the above-cited

experiments [13–18], which demonstrate the effect of outcomes on perceived probability.

Our contribution

Here we propose a new framework for describing human decisions under risk, based on a rep-

resentative stochastic process–in the same spirit of drift-diffusion models–but with a notable

difference: outcomes and probabilities are not merely multiplied to form an index of worth,

rather they combine in a non-symmetric and non-separable way, as dual characteristics of an

event. The difference will be evident when presenting the model into details, but the core con-

cept is the following. In drift-diffusion models, as in DFT and race models, outcomes and asso-

ciated probabilities of gambles are combined in a unique entity, a mathematical expectation,

that then plays the role of a drift component of the stochastic process representing the deci-

sion-maker. The decision is triggered when the process reaches a threshold, called decision cri-

terion, usually related to the time available for making a choice (the closer the threshold to the

starting point, the faster the process will reach it). In our framework, probabilities and out-

comes play a structurally different role; a decision occurs when the diffusive particle is

absorbed at the end-point of an interval associated with a given event, whose distance is solely

determined by the event’s probability. The existence of n events is thus represented by n
absorbing end-points at the end of n arms in a starfish configuration along which the Brown-

ian particle diffuses. The n arms have different lengths controlled by the probabilities of the

associated events. In this representation, it is natural to conceptualize the values or utilities of

the outcomes by adding drifts characterizing each arm of the starfish, the larger the value of an

event, the larger the drift that biases the random walk towards the corresponding end-point.

Notice that this mapping respects the positivity of the probabilities associated with the arms’

lengths, while the drifts can be attractive or repulsive to reflect gains and losses, respectively.

More concretely, consider several outcomes A,B,C. . ., each understood to occur with prob-

abilities pA,pB,pC,. . . Our key idea is that the mind imagines consciously or unconsciously
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some bundles of random paths wandering around in some abstract space, where the alterna-

tive outcomes A,B,C. . . are identified as distinct domains (absorbing boundaries) in this space.

The distance between domain representing outcome, say, A and the initial position of the par-

ticle is inversely proportional to pA, while the bias responsible for the attraction of the particle

to the boundary, is proportional to the outcome A. The probability for the diffusing particle to

be absorbed by a particular domain is then primarily interpreted as a measure of attractiveness

of the associated event, as in DFT; at the same time, a conditional absorption probability can

be interpreted as a subjective value-distorted probability, as we will see below.

Thanks to the mutual interaction between perceived probabilities and perceived value of

outcomes embedded in the starfish geometry with drifts, our model predicts the famous four-

fold pattern of risk preferences [43]. To get an intuition on why this is the case, we derive two

previously postulated features of prospect theory [43]: the inverse S-shaped subjective proba-

bility as a function of the objective probability and risk-seeking behaviour in the loss domain.

However, these two entities are not exactly those described by prospect theory, because they

are not separable. Rather, they can be inferred and rationalized by studying how the predicted

choice probability depends on events’ outcomes and probabilities. Without added assump-

tions, our model conforms naturally to Luce choice axiom [27], enforcing strong stochastic

transitivity for pairwise choices. It also predicts violations (as well as observance) of stochastic

dominance, in agreement with empirical data [44].

Moreover, generalizing the model to account for time pressure and finite decision times, it

provides other empirically confirmed predictions: the inverse relation between choice proba-

bility and response time [45], preference reversal through time pressure [46, 47], and an

inverse double-S-shaped probability weighting function [48]. Also, note that while usual drift-

diffusion models have non-trivial and somehow artificial generalizations beyond binary

choices [49], our representation remains essentially locally uni-dimensional for an arbitrary

number of available options.

Notwithstanding its predictive power, given its simplicity, the present version of our model

has limitations. Because of Luce choice structure: i) it would predict a non-deterministic

choice for a decision between two simple sure outcomes (thus we restrict our choice set, as

Luce does); ii) it cannot predict observed violations of independence from irrelevant alterna-

tives [31–33] (similarity effect, attraction effect, compromise effect). Furthermore, the pro-

posed stochastic representation is more of an allegory that should not be taken at literally

meaning that the human brain imagines all possible random paths wandering around in some

abstract space for several outcomes A, B, C. . ., for instance as a result of limited human work-

ing memory. Our framework is proposed as a first minimal complexity model or null-model

of human risky choice, which provides the baseline for further elaboration and improvements.

Indeed, our present model is characterized essentially by only two tuning parameters (com-

pared for instance to the seven parameters of DFT). In the future, we will present extensions of

the model obtained by relaxing some assumptions.

In summary, motivated by: i) empirical evidence for “interaction” between probability and

value [13–18]; ii) empirical evidence for intrinsically probabilistic human choice [50]; iii) suc-

cess of drift-diffusion models in describing human behaviour in several tasks, we present a

new probabilistic decision theory that combines probability and value in a non-separable way.

Despite its simplicity, it provides straightforward derivations at a more microscopic level of

several known structures that have been documented empirically in human decision theory.

The rest of the article is structured as follows: in Section Model we introduce the theoretical

model, first without time constraints and then generalizing. In Section Results, we outline the

main predictions of our theory. Section Discussion summarizes and concludes.
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Model

Stage 1: “Infinite time” Stochastic Representation Decision Theory (SRDT)

This sub-section presents the simplest version of our model, i.e. without considering the role

of (finite) time for human decision-making.

Formulation of the stochastic representation of lotteries. In the simplest possible situa-

tion, a decision maker (DM) has to make a choice between playing two binary lotteries:

L1 ¼ foA; p; oB; 1 � pg or L2 ¼ foC; q; oD; 1 � qg ð1Þ

If the DM chooses lottery L1 (resp. L2), she will receive amount oA (resp. oC) with probabil-

ity p (resp. q), and oB (resp. oD) with probability 1-p (resp. 1-q). The amounts can be negative,

corresponding to losses.

As mentioned in the introduction, our model is conceptually analogous to drift-diffusion

models, including decision field theory (DFT), i.e. a stochastic process is assumed to represent

the human deliberation activity leading to a decision; choice is triggered when the process

reaches a certain threshold. Fig 1 shows how the above binary choice is represented in DFT: if

the process (Brownian particle in the simplest case) reaches the upper boundary (resp. lower

boundary) first, then lottery L1 (resp. L2) is chosen. The drift component of the motion is

related to the difference between expected-like utilities of the lotteries

d ¼ EUðL1Þ � EUðL2Þ

EUðL1Þ ¼ pðpÞuðoAÞ þ pð1 � pÞuðoBÞ

EUðL2Þ ¼ pðqÞuðoCÞ þ pð1 � qÞuðoDÞ

ð2Þ

where u and π are the so-called utility and probability functions, respectively.

In our framework, an alternative way of value formation is assumed, keeping in mind the

numerous evidence [13–18] showing relevant interaction between probability and value per-

ception. We start from a plausible representation of the lotteries’ objective probabilities, as per-

ceived by the decision maker. Typically, humans find easier to understand probabilities in

terms of frequencies [51]. Therefore, we propose to model their cognition via the occurrence

of favorable random walk paths that hit some target, an absorbing boundary in this case. In

other words, we view the cognitive processes leading to the “feeling” or “understanding” of

probability as imagining a bundle of random walkers wandering about, and the perception of

the actual occurrence of the event as the arrival of random walkers in some boundaries or

some domains. This representation allows one to give substance and meaning to what is the

perception of probability, equal to the fraction of “successful” paths, in the standard frequentist

approach of probability theory [52].

Once the lotteries’ objective probabilities are encoded into some absorption probabilities,

we introduce lotteries’ outcomes and account for: i) their intrinsic utility; ii) their effect on per-

ceived probability. The simplest incarnation of this twofold effect is to introduce an outcome-

dependent force (derived from a potential energy) that biases the random walk, producing a

value-distorted understanding of probability. This construction leads to an effective influence

between probabilities and outcomes; such reciprocal interaction will result in a distorted per-

ception of these two entities by the decision-maker, that in turn determines her decision

preferences.

Put differently, instead of compressing all the lottery information into an expectation-like

index of worth, we “unpack” a lottery by introducing an absorbing branch for each of its out-

come-probability pairs. As a consequence, the topology of the space where the stochastic
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process wanders will depend on the specific choice setup. This condition resonates with the

fact that, in many situations, utility maximization is computationally intractable [53].

Operationally, we represent choosing between L1 and L2 with a Brownian particle undergo-

ing a continuous random walk [54] that starts at the crossing (taken as the origin) between 4
segments, 2 per lottery, as shown in Fig 2 (to be compared with one segment used in DFT, as

shown in Fig 1 along the y-axis, while the x-axis is the time of deliberation). Pictorially, the

decision-maker is identified with the Brownian particle itself, whose stochastic path simulates

the deliberation act taking place while evaluating the possible alternatives. Each branch

encodes information about one lottery outcome—through a potential energy tilting the

branch—and its associated probability of occurrence, through the branch length ending with

an absorbing boundary. A (perhaps more intuitive) analogous discrete random walk represen-

tation is shown in S2 Fig.

Fig 1. DFT-representation of binary choice. If the process reaches the upper boundary (resp. lower boundary) first,

then lottery L1 (resp. L2) is chosen. The drift component of the motion is related to the difference between expected-

like utilities of the lotteries. Time elapsed along the x-axis (“number of sample” denotes “time”), leading to directed

paths along it.

https://doi.org/10.1371/journal.pone.0243661.g001

Fig 2. Stochastic representation of the decision process between lotteries L1 = {oA,p;oB,1−p} and L2 = {oC,q;oD,1

−q}. Branches 1a/b (resp. 2c/d) represent the outcomes of L1 (resp. L2) and their related probabilities. The difference

between the continuous and dashed lines represent the energy potential associated with the constant forces {u(oA),u
(oB),u(oC),u(oD)} exerted on the Brownian particle along each segment {1a, 1b, 2c, 2d} respectively. The thick bars at the

end of each branch depict the absorption boundary conditions. The segment lengths {a, b, c, d} are determined by the

objective probabilities {p, 1-p, q, 1-q}. The probability of choosing lottery L1 (resp. L2) is given by the probability of

being absorbed along branch 1a or 1b (resp. 2c or 2d).

https://doi.org/10.1371/journal.pone.0243661.g002
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When the process is restricted to represent only one lottery, the probability to be absorbed

at the end of one branch can be interpreted as the value-distorted subjective probability of the

associated outcome (see sub-section “Subjective Probability”). In the presence of two (or

more) lotteries, the probability to be absorbed at the end of one branch of a given lottery gives

a contribution to the total probability that this lottery is chosen. The probability of choosing

lottery L1 (resp. L2)—denoted by P(L1) (resp. P(L2))—is thus given by

PðL1Þ ¼ Pð1aÞ þ Pð1bÞ; PðL2Þ ¼ 1 � PðL1Þ ¼ Pð2cÞ þ Pð2dÞ ð3Þ

where PðkZk
Þ denotes the probability for the particle to be absorbed by the wall located at dis-

tance ηk on branch kZk
, for k = 1,2 with ηk =12{a,b} and ηk =22{c,d}. In words, the probability of

choosing, say, lottery L1 is given by the sum of two terms: the probability of being absorbed

along branch 1a – representing (oA,p) - plus the probability of being absorbed along branch 1b,

representing (ob,p).

To quantify the meaning of an outcome oA, we assume the existence of a preference or

value function u(oA), endowed with the minimal standard properties of being non-decreasing

and concave on the gain side to represent risk aversion (see sub-section “Risk-seeking behavior

for losses” for the loss side). Then, the form of the potential energy acting on the Brownian

particle along a branch with outcome oA is taken as linear, with a slope proportional to u(oA),

as represented by dashed lines in Fig 2. This corresponds to a constant force acting on the

Brownian particle along each segment. The sign of the energy potential is such that the greater

is an outcome, the higher is the attraction toward the corresponding branch end point.

This representation has the advantage of remaining essentially one-dimensional, the

motion on each segment being governed by a simple partial differential equation. For example,

the probability density p(x,t) of the particle at position x and time t on branch 1a (of length a)

evolves according to the following Fokker-Planck equation [55, 56]

@pðx; tÞ
@t

¼ uðoAÞ
@pðx; tÞ
@x

þ
D
2

@2pðx; tÞ
@x2

pða; tÞ ¼ 08t ðabsorbing boundaryÞ

pð0; tÞ ¼ f ðtÞ ðprobability mass from other branchesÞ

ð4Þ

8
>>><

>>>:

where u(oA) is the constant drift acting on the particle, D is the so-called diffusion coefficient

and the two boundary conditions account respectively for the absorbing wall at distance a
from the origin,

and f(t) represents the probability of the random walker incoming at the origin from other

branches. Note that Eq (4) is just one possible way to look at the problem, i.e. solving a diffu-

sion process on each branch independently and then matching the flux to ensure conservation

of probability mass. However, as shown in S1 Appendix, we did not proceed this way: rather,

we first solve the absorption problem in the case of only two branches (i.e. a one dimensional

Brownian motion between two absorbing walls), and then show how it can be generalized to

an arbitrary number of branches.

Simple dimension analysis of Eq (4) shows that D sets the scales for the impact of the out-

come values compared with the probabilities in the value formation process: (i) taking very

large D’s amounts to neglecting the influence of outcome values; (ii) small D’s make outcome

values dominant in the construction of preferences.

Explicit expressions for the decision probabilities. As shown in Fig 2, the probability P
(L1) (resp. P(L2)) for the decision maker to choose lottery L1 (resp. L2) is represented by solving

Eq (4) for each of the four branches with the matching condition of the conservation of the

probability of presence of the Brownian particle when crossing the junction point at the origin.
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Using the theory of random walks and diffusion processes [57], we obtain (see S1 Appendix

for derivation)

PðL1Þ ¼
UðL1Þ

UðL1Þ þ UðL2Þ
; PðL2Þ ¼ 1 � PðL1Þ ¼

UðL2Þ

UðL1Þ þ UðL2Þ
ð5Þ

with

UðL1Þ ¼
~U pðoAÞ þ

~U 1� pðoBÞ ¼
uðoAÞ

1 � e
� 2uðoAÞ

pD

þ
uðoBÞ

1 � e
� 2uðoBÞ
ð1� pÞD

ð6Þ

and

UðL2Þ ¼
~U qðoCÞ þ

~U 1� qðoDÞ ¼
uðoCÞ

1 � e
� 2uðoCÞ

qD

þ
uðoDÞ

1 � e
� 2uðoDÞ
ð1� qÞD

ð7Þ

Expression (5) recovers the ratio scale representation of Luce’s choice axiom for binary

choice [27], with effective utilities given by (6) and (7). This implies the so-called strong sto-

chastic transitivity for pairwise choices: PfL1 ;L2g
ðL1Þ � :5 and PfL2 ;L3g

ðL2Þ � :5 imply that

PfL1 ;L3g
ðL1Þ � max½PfL1 ;L2g

ðL1Þ; PfL2 ;L3g
ðL2Þ�. Note that the solution of Eq (4) for N alternatives

generalizes into

PNðLjÞ ¼
UðLjÞ

XN

i¼1

UðLiÞ

ð8Þ

where PN(Lj) is the probability of choosing lottery Lj among the N available lotteries and the

UðLiÞ‘s are generalized utilities given by expressions of the form (6) and (7). As stated in the

introduction, because of the Luce choice structure, our theory would predict a non-determin-

istic decision when the choice is between two sure outcomes (e.g. L1 = {9,1} vs L2 = {10,1}).
Therefore, following Luce [27], we assume that no such task is present into the choice set.

As can be seen from (6) and (7), the utility UðLÞ of a given lottery is given by the sum of

two terms, each representing the attractiveness of an outcome-probability pair, which cannot

be decomposed in a simple product of utility and subjective probability, as in expected utility

theories. In contrast, probabilities and utilities combine and interact in a non-trivial way, with

D quantifying the relative importance of value with respect to probability assigned by the DM.

This becomes evident when taking the asymptotic limits of, e.g., P(L1) (in the presence of

another lottery L2 offered as the second option):

lim
D!0

PðL1Þ ¼
uðoAÞ þ uðoBÞ

uðoAÞ þ uðoBÞ þ uðoCÞ þ uðoDÞ
; ifuðoiÞ > 08i

lim
D!1

PðL1Þ ¼

1

1 � p
þ

1

p
1

1 � p
þ

1

p
þ

1

1 � q
þ

1

q

ð9Þ

In our framework, a decision maker characterized by D!0 (resp. D!1) is influenced

only by outcome values (resp. probabilities), while for finite D his decision derives from an

entangled mixture of both. Note that the limit for D!0 depends on the sign of the utilities: for
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example, if u(oB) and u(oD) are negative, the asymptotic behavior of the choice probability is

PðL1Þ!D�1

uðoAÞ þ juðoBÞje
� 2juðoBÞj
ð1� pÞD

uðoAÞ þ juðoBÞje
� 2juðoBÞj
ð1� pÞD þ uðoCÞ þ juðoDÞje

� 2juðoDÞj
ð1� qÞD

ð10Þ

This shows an intrinsic difference in perception between gains and losses, an asymmetry

that we discuss further in sub-section “Probability-distorted effective utility”.

Stage 2: Finite time SRDT

Rationale. Many empirical studies (see [58]) have shown how people do not always

choose the best option, but the one that gives a fair trade-off between utility and “cost”. A deci-

sion is in general a stressful operation, and humans have finite computational resources, so

even when there is no explicit time constraint for making a choice, low-effort heuristics

become attractive as soon as they provide satisfactory outcomes. Thus, the time dimension in

decision-making cannot be neglected, as static theories of decision-making (including RUM

models) do. Next sub-section extends the previously presented model to account for finite

time deliberation.

Theoretical extension. Eq (5) provided the choice probabilities P(L1) and P(L2) for a

binary choice between lotteries L1 and L2 assuming infinite available time to make a decision.

We are now interested in calculating the choice probability, say P(L1), conditioned on occur-

ring at some time t�T, denoted by P(L1|T). In other words, P(L1|T) is the probability to be

absorbed by one of the outcomes of L1, given that the particle is absorbed somewhere before

time T. This condition mimics either an explicit time limit (time pressure) or an implicit one,

due to accuracy-effort trade-off. Formally, for the binary choice representation in Fig 2, P(L1|

T) is given by

PðL1jTÞ ¼ Pð1ajTÞ þ Pð1bjTÞ ¼
ZT

0

dtJ1aða; tÞ þ
ZT

0

dtJ1bðb; tÞ ð11Þ

where Jη(x,t) is the probability current on branch η at position x and time t. Given the structure

of the problem, a closed form expression of Jη(x,t) is hard to obtain. However, a very good

approximation of the integrals in (11) is given by the Laplace-transform ~Jðx; sÞ of the probabil-

ity current

~J x; s ¼
1

T

� �

¼

Zþ1

0

dtJðx; tÞe� t
T ffi

ZT

0

dtJðx; tÞ ð12Þ

where s is the conjugate variable of time. Therefore, combining Eqs (11) and (12), P(L1|T) is

approximately given by (see S1 Appendix for derivation)

PðL1jTÞ ffi
~U pðoAjTÞ þ ~U 1� pðoBjTÞ

~U pðoAjTÞ þ ~U 1� pðoBjTÞ þ ~U qðoCjTÞ þ ~U 1� qðoDjTÞ
; PðL2jTÞ ¼ 1 � PðL1jTÞ ð13Þ
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with

~U pðojTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðoÞ

D

� �2
þ 2

DT

q

e�
uðoÞ
Dp sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðoÞ

Dð Þ
2
þ 2

DT

q

p

0

@

1

A

ð14Þ

It is easy to check that when there is no time constraint (T!1) Eq (13) retrieves the usual

asymptotic choice probabilities in (5).

Results

Fourfold pattern of risk preferences

The fourfold pattern of risk preferences [43] is one prominent example of the inadequacy of

Expected Utility to describe observed human behaviors. It is experimentally observed that peo-

ple are: i) risk-averse when gains have moderate probabilities or losses have small probabilities;

ii) risk-seeking when losses have moderate probabilities or gains have small probabilities. In

Table 1, we report an example of such behavior. Prospect theory, thanks to the interplay of

value function and probability weighting, is able to describe it.

To show how our theory can account for such pattern, consider the following decision tasks

ðAÞ L1ðpÞ ¼ f100€; p; 0€; 1 � pg or L2ðpÞ ¼ f100p€; 1g

ðBÞ L3ðpÞ ¼ f� 100€; p; 0€; 1 � pg or L4ðpÞ ¼ f� 100p€; 1g
ð15Þ

Where the probability p2[0,1]. Assume that the decision-maker is characterized by the util-

ity function uðoÞ ¼ 1� e� ro

r for o2R with constant absolute risk aversion (CARA) −u@/u0 equal to

the constant r, which is everywhere concave, continuous and differentiable. The decision prob-

abilities are given by

PðL1ðpÞÞ ¼
~U pð100Þ þ ~U 1� pð0Þ

~U pð100Þ þ ~U 1� pð0Þ þ
~U 1ð100pÞ

PðL3ðpÞÞ ¼
~U pð� 100Þ þ ~U 1� pð0Þ

~U pð� 100Þ þ ~U 1� pð0Þ þ
~U 1ð� 100pÞ

ð16Þ

with P(L2(p)) = 1—P(L1(p)) and P(L4(p)) = 1—P(L3(p)).

In Fig 3, referring to the example in Eq (15), we show the predicted probability of choosing

L1 in task (A) (Fig 3A) and L3 in task (B) (Fig 3B) as a function of p, for fixed diffusion coeffi-

cient D and different values of r. The fourfold pattern is correctly predicted: in Fig 3A, P
(L1(p))�0.5 for small p (risk-seeking, possibility effect) and P(L1(p))�0.5 for large p (risk-

averse, certainty effect). The situation is reversed in Fig 3B. Note that, despite the fact that our

model is structurally different from Expected Utility, a more concave utility function, i.e.

Table 1. Example of the fourfold pattern of risk attitudes.

Gains Losses

High probability (certainty effect) {100€,0.95;0,0.05}�{95,1} {−100€,0.95;0,0.05}�{−95,1}

Risk-Averse Risk-Seeking

Low probability (possibility effect) {100€,0.05;0,0.95}�{5,1} {−100€,0.05;0,0.95}�{−5,1}

Risk-Seeking Risk-Averse

https://doi.org/10.1371/journal.pone.0243661.t001
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higher r, leads to greater risk-aversion in the gain domain. However, r is not an absolute indi-

cator of risk-aversion as in EU, since the ultimate choice probabilities will depend also on the

values of D and T (when time constraints are considered). Interestingly, our model predicts

also that greater risk-aversion for gains corresponds to greater risk-loving for losses, suggesting

a positive correlation (some evidence for such correlation is reported in [59]).

By further inspection of Fig 3A, we see that something weird happens: the choice probabil-

ity P(L1(p)) does not go to 0.5 as p!0. But this should actually be expected, because L1 and L2

in Eq (15) become identical in this limit. This is due to the fact that the contribution to the

choice probability from outcome 100, ~U pð100Þ, does not go to 0 as p goes to 0. Thus, there is

still a probability to be absorbed along that branch. Conversely, when p is exactly 0, as in L2,

there is no branch corresponding to such outcome. As next subsection will explain, this

amounts to an infinite overweighting of small probabilities. Technically, this problem is

known as a singular perturbation limit [60], where, informally, “the solutions of the problem

at a limiting value of the parameter are different in character from the limit of the solutions of

the general problem” [61]. In this case, the singular perturbation is characterised by the follow-

ing inequality

lim
p!0

~U pðoÞ ¼ uðoÞ 6¼ ~U 0ðoÞðif uðoÞ > 0Þ ð17Þ

Such singularity is removed once we include finite time constraints, i.e. by imposing that

the decision cannot take an infinite time. Indeed, replacing the effective utilities in Eq (6) with

the time-constrained ones in Eq (14), the contribution to the choice probability of the proba-

bility p outcome satisfies the following limit

lim
p!0

~U pðojTÞ ¼ 0 if T <1 ð18Þ

Eq (18) means that, when the probability of an outcome goes to 0, the corresponding proba-

bility to be absorbed along that branch also goes to 0, not contributing to the choice probability

of the related lottery. Let us stress that we do not impose a “small” value of T to get rid of the

singularity; T can be arbitrarily large, but finite.

The probability of choosing L1(p) in Eq (15), given that the decision occurs before T<1,

reads

PðL1ðpÞjTÞ ¼
~U pð100jTÞ þ ~U 1� pð0jTÞ

~U pð100jTÞ þ ~U 1� pð0jTÞ þ ~U 1ð100pjTÞ
ð19Þ

Fig 3. Fourfold pattern of risk attitudes: Choice probabilities as a function of outcome probabilities (Eq (15)). (a) P(L1(p)) for task (A); (b) P(L3(p)) for task

(B). In this example we set D = 10 and scan different values of the CARA coefficient r.

https://doi.org/10.1371/journal.pone.0243661.g003
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Fig 4 shows the choice probability in Eq (19) for different values of r and fixed T. The gain-

side of the fourfold pattern of risk preferences is now correctly described; differently from Fig

3A (first line of Eq (16)), P(L1(p)|T)!0.5 as p!0, as it should.

Let us now investigate the role of the other parameters, the diffusion coefficient D and the

time constraint T. As said in Section “Explicit expressions for the decision probabilities”, D is a

kind of “utility-numeraire”, determining the relative impact of the outcome values compared

with the probabilities in the value formation process. The role of T is more subtle: as we will

see in the next subsection, a smaller T implies more underweighting (resp. overweighting) of

small (resp. high) outcome probabilities. Figs 5 and 6 show the choice probabilities in Eq (16)

for different values of D and T, respectively. On the gain-side (Fig 5A), as D decreases, the

strength of preferences increases and the preference reversal point between risky and safe lot-

tery shifts to the right (risk-seeking for a wider range of p’s). On the loss-side (Fig 5B), decreas-

ing D shifts the curve upward and leftward, implying stronger risk-seeking preferences for a

wider range of p’s.
Focusing now on Fig 6, we see that, through the underweighting (resp. overweighting) of

small (resp. high) probabilities, a smaller T destroys both the possibility effect on the gain-side

(no risk-seeking behavior for low p) and the certainty effect on the loss-side (no risk-seeking

behavior for high p). In general, a smaller T implies greater risk-aversion, as we will discuss in

subsection “Preference reversal with time pressure”.

Fig 4. Fourfold pattern of risk attitudes (gain-side): Time-constrained choice probabilities as a function of

outcome probabilities (Eq (19)). Differently from Fig 3A (first line of Eq (16)), P(L1(p)|T)!0.5 as p!0, as it should.

In this example we set D =10, T = 2000 and scan different values of the CARA coefficient r.

https://doi.org/10.1371/journal.pone.0243661.g004

Fig 5. Fourfold pattern of risk attitudes: Time-constrained choice probabilities for different values of D (Eq (19)). (a) P(L1(p)|T) for task (A); (b) P(L3(p)|

T) for task (B). In this example we set r = 4, T = 1000.

https://doi.org/10.1371/journal.pone.0243661.g005
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As stated at the beginning of the Section, in prospect theory, the fourfold pattern of risk

preferences is usually explained in terms of the combined effects of probability weighting and

a convex-concave value function. The next three subsections show how, although in our

model these two constructs are not separable, it is still possible to identify them as conse-

quences rather than postulates, offering an additional intuition on why our theory can explain

such patterns. Specifically, the study of how value and time constraints affect probability per-

ception is discussed in subsections “Subjective Probability without time-contraints” and “Real-

istic Inverse double-S-shaped probability weighting function”. Conversely, the effect of

probability on value perception is analyzed in subsection “Probability-distorted effective

utility”.

Subjective probability without time-contraints. Eq (5), together with (6) and (7), show

the resulting form of the decision probabilities without time-constraints for the binary risky

choice (1). From here, we now focus on studying the predicted probability perception of the

Decision-maker (DM), say, of outcome oA of lottery L1. A convenient way to extract such

information is to look at the probability of absorption along branch 1a, conditional on being

absorbed along any branch pertaining to L1

pðpÞ≔Pð1ajL1Þ ¼
~U pðoAÞ

~U pðoAÞ þ
~U 1� pðoBÞ

~U pðoAÞ≔
uðoAÞ

1 � e

� 2uðoAÞ

pD

; ~U 1� pðoBÞ≔
uðoBÞ

1 � e

� 2uðoBÞ

ð1 � pÞD

ð20Þ

π(p) can be interpreted as the amount of attention devoted to outcome oA when the DM is

looking at lottery L1. Several authors [62, 63] have established connections between subjective

probability and similar psychological notions. Indeed, the fact that π(p) defined in (20) repre-

sents a meaningful measure of subjective probability is supported by its asymptotic limits as a

function of D:

lim
D!1

pðpÞ ¼ p

lim
D!0

p ðpÞ ¼
uðoAÞ

uðoAÞ þ uðoBÞ
; if uðoAÞ; uðoBÞ > 0

ð21Þ

Fig 6. Fourfold pattern of risk attitudes: Time-constrained choice probabilities for different values of T (Eq (19)). (a) P(L1(p)|T) for task (A); (b) P(L3(p)|T)

for task (B) (the inset shows the choice probabilities for high-values of p). In this example we set r = 4, D = 10.

https://doi.org/10.1371/journal.pone.0243661.g006
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For D!1, outcome values (potential energies) become negligible compared with the sto-

chastic component and the probability perception is unaltered, so that the subjective probabil-

ity is equal to the objective one. In contrast, for D!0, the decision maker does not pay

attention to the probabilities and focuses solely on the payoffs, interpreting their likelihood

only as a function of their magnitude. As for Eq (9), a simple interpretation of the D!0 limit

is possible only when both utilities are positive. For u(oA) and u(oB) negative, the expression

becomes

pðpÞ !
D�1

juðoAÞje
� 2juðoAÞj

pD

juðoAÞje
� 2juðoAÞj

pD þ juðoBÞje
� 2juðoBÞj
ð1� pÞD

ð22Þ

Eq (22) implies that when negative utilities are involved, the decision maker, even in the

D!0 limit, takes into account the event probabilities.

For finite non-zero D, an interesting value-distortion of probability perception arises: Fig 7

shows π(p) vs p for different
uðoBÞ

uðoAÞ
and D values. Our theory thus derives the empirical inverse S-

shape of subjective probability as a function of objective probability, for instance used in stan-

dard Prospect Theory by Tversky and Kahneman [11], indicating that human beings tend to

overestimate rare events and underestimate high probability events. More specifically, π(p)�p
(resp. π(p)<p) for p�p� (resp. p>p�), where p� is the inflection point of π(p) given by p� ¼

uðoAÞ
uðoAÞþuðoBÞ

@2pðpÞ
@p2 jp¼p� ¼ 0

� �
. Our theory predicts that the asymmetry in the distortion of π(p) for

p!0 and p!1 is controlled by
uðoAÞ
uðoBÞ

: the larger this ratio is, the larger is the subjective distortion

for small p’s compared with large p’s.

There is empirical evidence that changing lottery payoffs changes inflection points. In [64],

for each individual, the authors perform the elicitation of two probability weighting functions

p�S ðpÞ and p�L ðpÞ for gambles involving small and large losses. The idea is that, when consider-

ing lotteries like

L ¼ f� 1000€; 0:1; � 10€; 0:9g

L0 ¼ f� 1000000€; 0:1; � 10000€; 0:9g
; ð23Þ

it is possible that the probability 0.1 is not weighted in the same way, because of the different

magnitude of the consequences and because of the “distance” between the lottery outcomes.

Note that Rank-dependent models (e.g. CPT) predict that π(0.1) is the same in both lotteries,

Fig 7. Value-distorted subjective probability π(p) given by expression (20): (Left) fixed u(oA) = u(oB) = 30, D is varied. As D grows, π(p)!p; (right) fixed

D = 20 and u(oB) = 30, u(oA) is varied. As u(oA) grows, the inflection point p� ¼ uðoAÞ

ðuðoAÞþuðoBÞÞ
shifts toward the right while the curve shifts upward. Varying u(oB)

gives symmetrical behaviors.

https://doi.org/10.1371/journal.pone.0243661.g007
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since L and L0 are comonotonic. On average, the authors find that small probabilities (�0.33

for small losses and�0.5 for large losses) are overweighted (indicating pessimism). The usual

inverse-S shape thus holds over both small and large losses, but the inflection point shifts to

the right over large losses.

While deriving or recovering the empirical inverse S-shape, our formulation of the subjec-

tive probability is fundamentally different from those used in existing decision theories, such

as the Prelec II weighting function [65] parametrized to account for some assumed probability

distortion, which is supposed to be intrinsic to the DM and can be determined by calibration

of the results of a number of standard tests and questions presented to the DM [66]. These sub-

jective probabilities are considered independent of the values of the outcomes to which the

probabilities are associated. We have previously argued and also referred to empirical evidence

that there is no such thing as an outcome without value. Even a question as far from every life

on the probability of life on Mars, say, carries, depending on the DM, religious, scientific, and

cultural values and possibly more. In our framework, the subjective probability (20) is influ-

enced by the outcome values and represent the contribution of each outcome in a lottery to

the choice of that lottery by the DM. Thus, our theory suggests that it is ill-conceived to

attempt characterizing the subjective probabilities of DM. Our approach allows us to formulate

a general hypothesis that subjective probabilities are value-dependent, which deserve empirical

investigations. In existing decision theories, the subjective probabilities are multiplied by the

utilities of the associated events to form a measure of worth and then the choice probability

“layer” is added on top. In our theory, subjective probabilities are instead encapsulated into

decision probabilities, the former determining the latter. Our model can thus be viewed as a

natural generalisation beyond the standard factorisation of probabilities and values to form

value preferences.

At this stage, the definition of subjective probability as a relative absorption probability (Eq

(20)) may seem somewhat counterintuitive, notwithstanding the fact that it correctly retrieves

the objective event probability in the D!1 limit. We would like to stress that our mathemati-

cal formulation of the subjective probability is fundamentally different from that in expected

utility theories. In Expected utility, as described by Savage [67], the assumption of separation

between preferences and beliefs is crucial for the elicitation of subjective probability. However,

as stated in the introduction, the simultaneous estimation of utility and subjective probability

is subjected to the joint hypothesis-testing problem [20], and many methods have been devised

to circumvent such issues [68, 69]. Here, in contrast, the subjective estimation of the likelihood

of an event depends on the associated magnitude. Consequently, in our model, the subjective

probability is actually implied by the utility function, and thus two separate functions cannot

be really identified. Our definition of subjective probability should be treated as a way to

extract how the choice probability depends on the outcome probabilities, and to get an intui-

tion on why our model is able to explain the fourfold pattern of risk preferences. Concretely,

one would just need to estimate the utility function (together with the parameters D and T),

and the corresponding “belief function” comes as a result. The next subsection presents an

analysis of the subjective probability when time or “energy” constraints are considered.

“Realistic” inverse double-S-shaped probability weighting function. Al-Nowaihi and

Dhami [48] report that a theory of choice should be able to describe the following two stylized

facts: i) overweighting low probability events and underweighting high probability ones; ii)

neglecting extremely low probability events and considering as certain extremely probable

events. The first fact is essentially captured by an inverse S-shaped probability weighting func-

tion, as derived in Eq (20). The second one is referred by Kahneman and Tversky [43] as an

editing phase: “the simplification of prospects can lead the individual to discard events of

extremely low probability and to treat events of extremely high probability as if they were
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certain”. Clearly, this resonates with the idea that the DM has limited computational resources

and, even when there is no explicit time limit, the processing cost acts as such.

To account for both patterns i) and ii), Al-Nowaihi and Dhami axiomatically construct a

composite probability weighting function, shown in Fig 8, obtained by the concatenation of

three different Prelec functions, for a total of 6 parameters (see Eq 6.2 in [48]). A DM with

such probability function underweights (ignores) very low probabilities events – p2[0,p1] –

and overweights (considers as certain) extremely probable events - p2[p3,1] –reflecting stylized

fact ii). Within the middle range p2[p1,p3], the function has an inverse-S shape, addressing

stylized fact i).

Although the proposed probability weighting function addresses the previously mentioned

stylized facts, it has six parameters and may seem ad-hoc and artificial. Our framework, on the

other hand, predicts the desired shape, resulting from the superposition of two effects: finite-

time deliberation and value distortion. Indeed, referring to the previously derived value-dis-

torted subjective probability (20) for outcome oA of lottery L1 in (1), the time-dependent gen-

eralization is (approximately) given by

pðpjTÞ ffi
~U pðoAjTÞ

~U 1� pðoBjTÞ þ ~U pðoAjTÞ
ð24Þ

with ~U pðojTÞ given in Eq (14). In Fig 9, we plot π(p|T) for different values of T, fixing u(oA) =

u(oB) = D = 10 for illustrative purpose. We can see how the value-distortion and the finite time

deliberation play opposite effects: for high values of T, one can observe an inverse S-shape, due

to the influence of value on probability perception (as in Fig 7). For low values of T, the influ-

ence of time pressure becomes dominant, resulting into a S-shaped probability weighting. For

intermediate values of T (in the example T = 0.3, black star-dotted line), the superposition of

these two “forces” results in an inverse double S-shaped probability weighting, similar to the

one in Fig 8.

In summary, our framework predicts the probability weighting function postulated in [48]

with only 2 parameters–D and T- and offers a more microscopic explanation for such observed

behavior, in terms of competition between value-distortion and finiteness of computational

resources. Let us stress that the time constraint in our model is not necessarily meant as an

external time pressure, but it can also be conceived as an internal time pressure, because of

Fig 8. An example of a composite Prelec function postulated in [48]. The DM underweights extremely low

probabilities [0,p1] and overweights extremely high probabilities [p3,1]. For p2[p1,p3], the DM overweights low

probabilities [p1,p2] and underweights high probabilities [p2,p3].

https://doi.org/10.1371/journal.pone.0243661.g008
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energy constraints and efficiency-accuracy tradeoff. Therefore, at this stage, we are not claim-

ing that an explicit time-pressure is needed to recover an inverse double-S curve.

“Probability-distorted” effective utility. In the previous sub-section, we have studied

how the outcome values alter the probability perception of the DM. Here, we study the effect

of probability on value perception. Eq (5) has introduced the effective utilities ~U pð:Þ, which are

transformed from the utilities u(.) via a non-trivial nonlinear operation involving the outcome

probabilities. This corresponds to the dual of the value-distorted probability π(p) given in

expression (20) in the form of a value perception ~U pð:Þ influenced by probability. Fig 10 shows

the transformed utility function ~U pð:Þ as a function of the original one u(.) for different values

of Dp≔
pD
2

.

The interaction between probabilities and values transforms an initially risk-averse (con-

cave) utility function u(.) into a convex risk-seeking utility on a sub-interval of the loss

domain, predicting the existence of a reference point to discriminate between behavior toward

Fig 9. Predicted time-dependent subjective probability (20) for different values of T (oA = oB = D = 10). For high

(resp. low) values of T, the value-distortion (resp. finite time deliberation) effect dominates. For intermediate values of

T, an inverse double S-shaped probability function is predicted, similar to the one postulated in [48].

https://doi.org/10.1371/journal.pone.0243661.g009

Fig 10. Transformed utility function ~U~
pð:Þ (20) as a function of the original one u(.) for different values of

Dp≔
pD
2 . The distortion is significant for negative u and for small positive u (i.e. small u compared to Dp) and is all the

stronger, the smaller is ju=Dp
j: The transformed utility flattens out for large negative u. ~U~

pð:Þ approaches u

asymptotically for large positive values ð~U~

pð:Þ ! uÞ.

https://doi.org/10.1371/journal.pone.0243661.g010
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gains and behavior toward losses, as postulated in prospect theory. We stress here that this

comes as another prediction of the theory without any parameter adjustment or added ingre-

dients. In particular, it is not a phenomenological assumption put in the theory, for instance as

in Prospect Theory.

To illustrate this effect quantitatively, let us consider again the utility function uðoÞ ¼ 1� e� ro

r

for o2R. The corresponding transformed utility function ~U pðoÞ given by expression (20) reads

~U pðoÞ ¼
ð1 � e� roÞ=r

1 � exp � 1

rDp
ð1 � e� roÞ

n o ;with Dp≔
pD
2

ð25Þ

Fig 11 shows ~U pðoÞ of Eq (25) for different values of Dp(r = 1). The presence of an inflection

point o�r ðDpÞ implies a risk-averse concave portion for o > o�r ðDpÞ and a convex risk-taking

behavior for o < o�r ðDpÞ (in particular for losses). Therefore, transformation (20) and (25) pre-

dict a risk taking behavior on the loss side even when starting with a utility function that is

everywhere concave, in agreement with the outlined predictions on the fourfold pattern of

risk-preferences [43].

Decision tasks like those in Eq (15) are classic examples where the weak risk-aversion rela-

tion, denoted by Rw, can be applied:

L2RwL1 , E½L2� ¼ E½L1�and L1is a degenerate lottery ð26Þ

meaning that L2 is riskier than L1. More general relations [70] have been suggested to formalize

risk-aversion, such as the so-called strong risk-aversion (or second-order stochastic domi-

nance) Rs:

LRsL
0 , L ¼ L0 þ � where �is a white noise ð27Þ

Within expected utility, these two definitions of risk-aversion coincide [70, 71], but, in gen-

eral, when departing from the expectation structure, the two relations differ [72] and need to

be studied separately. An example for strong risk-aversion is the following:

L5 ¼ f0€; 0:75; 2€; 0:25g or L6 ¼ f0€; 0:5; 1€; 0:5g ð28Þ

Fig 11. Transformed utility ~U~
pðoÞ (25) for different values of Dp≔

pD
2 ðr ¼ 1Þ. Black star points indicate the location

of the inflection points o�r ðDpÞ, where the function changes the sign of its concavity.

https://doi.org/10.1371/journal.pone.0243661.g011
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According to (27), L5 is riskier than L6; our framework, using for example r = 1 as before,

predicts the correct pattern for the majority of D’s:

PðL6Þ � PðL5Þ8D � 1 ð29Þ

In summary, without added assumptions, our theory predicts what has been postulated for

instance by prospect theory, with a concave part of the value function for gains and a convex

part for losses. These properties derive naturally from the stochastic representation of proba-

bilities in the presence of values.

However, the way in which the above-presented transformed utility determines choice pref-

erences is different from usual decision models; in expected utility, the concavity of utility

function implies risk aversion through Jensen’s inequality [73]. Here, due to the non-linear

form of ~U pðoÞ, it is in general not easy to derive analogous simple constraints for the model

parameters.

More generally, we stick with the notion of an (initially concave) utility for the following

reason: utility is a well-defined concept in choice under certainty [74], where diminishing mar-

ginal utility indicates less and less increase in “happiness” as wealth increases. In Expected Util-

ity, the concept of diminishing marginal utility and risk-aversion are fundamentally entangled:

there cannot be one without the other. On the other hand, in generalized theories like Rank-

Dependent Utility Theory, as shown in [75], it is possible for a decision-maker to be risk-seek-

ing with a concave utility function, provided the probability weighting is sufficiently “optimis-

tic”. Therefore, the concept of diminishing marginal utility and risk-aversion are decoupled to

same extent. Analogously, our model hypothesis is that the utility function, when in the con-

text of choice under certainty, has some form (e.g. the CARA function used in the manuscript),

expressing (or not) diminishing marginal utility. Then, as soon as there is some uncertainty,

due to the interaction between probability and value, the utility becomes “distorted”, and

assumes a form like the one in Eq (25), allowing to exhibit risk-seeking behavior for losses.

Stochastic dominance

First order Stochastic Dominance [76] is a property that decision theorists usually are not will-

ing to give up, as it essentially encodes the reasonable behaviour that “more is better”. A ran-

dom variable (gamble) L1 has first-order stochastic dominance over gamble L2 if P(L1�o)�P
(L2�o)8o and for some o P(L1�o)>P(L2�o), where {o} is the set of possible outcomes. How-

ever, people often violate it when presented with choices like

L1 ¼ f96€; 0:90; 14€; 0:05; 12€; 0:05g or L2 ¼ f96€; 0:85; 90€; 0:05; 12€; 0:10g ð30Þ

Even if L1 stochastically dominates L2, most people choose L2. Popular decision models like

rank-dependent utility theory [10] and cumulative prospect theory [11] cannot account for

this pattern. Within our framework, this is explained when DM exhibit relatively low values of

D, such that the decision is “value-oriented” and the DM does not pay sufficient attention to

the probabilities. For this particular gamble, assuming linear utility function, P(L2)�0.65 for

small values of D, quite close to the fraction 70% of people choosing L2 experimentally found

by Birnbaum and Navarrete [77]. Note that our model does not predict any violation when the

dominance is “evident’”, as in the following examples

ðAÞ L1 ¼ f1€; 0:5; 3€; 0:5g or L2 ¼ f1€; 0:5; 2€; 0:5g ! PðL1Þ � PðL2Þ8D

ðBÞ L3 ¼ f11€; 0:5; 12€; 0:5g or L4 ¼ f10€; 1; 0€; 0g ! PðL3Þ � PðL4Þ8D
ð31Þ
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It is clear that L1 dominates L2 in (A) and L3 dominates L4 in (B), and people choose accord-

ingly. Fig 12 shows the predicted probability to choose L1 in task (A) (Eq (31)) for different val-

ues of D and T. As expected, for small values of the diffusion coefficient D, the choice becomes

more deterministic. The (explicit or implicit) time constraint T plays a similar role.

Several descriptive theories [78, 79] allowing violations in cases like (30) predicted unrea-

sonable behaviour in tasks like (31), essentially because two outcomes with the same objective

probability were forced to have the same subjective one [80]. Our framework, thanks to the

non-separable form of the lotteries’ attractiveness, avoids this problem and confirms its signifi-

cant predictive power.

Predictions from finite time SRDT

This Section presents further predictions of our theory when generalized to account for finite

decision time.

Inverse relation between choice probability and response time. Several studies (e.g.

[45]) report that there is an inverse relation between the probability to choose an option and

the (mean) decision time to choose that option (see Fig 13). Intuitively, the more “difficult” the

choice (e.g. two lotteries with similar expected values), the more time it will take to decide, and

Fig 12. Probability to choose the dominant option L1 in Eq (31). In the example, a linear utility function was

assumed. For smaller values of both D and T, the choice becomes more deterministic.

https://doi.org/10.1371/journal.pone.0243661.g012

Fig 13. Mean time to choose an action as a function of the probability to choose that option. A standardized (z-

score) scale is used for response times, as in [35]. The data are from [45].

https://doi.org/10.1371/journal.pone.0243661.g013
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the choice probability will be around .5, because the optimal decision is not obvious. By con-

struction, our theory predicts such phenomenon, since:

E½TjChooseL1� ¼
E½T�

PfL1;L2g
ðL1Þ

ð32Þ

where E[T] is the mean decision time to choose any option and E[T|ChooseL1] is the mean

time to choose option L1.

Preference reversal with time pressure. Experimental studies [46, 47, 81–83] investigat-

ing decision making under time pressure have shown that choice probabilities change as a

function of the time limit imposed by the experimenter. Specifically, the probability of choos-

ing an option can shift from below .50 to above .50 (or vice versa) depending on time pressure.

In [46], the main result is that the fraction of subjects choosing low risk gambles increased

from below .50 (low time pressure) to above .50 (high time pressure). Therefore, subjects

essentially became more risk-averse as the time available to make a decision decreases. Our

framework is able to predict such pattern. Consider a choice of the form:

L1 ¼ f180€; 0:5; 20€; 0:5g vs L2 ¼ f180€; 0:5; 30€; 0:25; 15€; 0:25g ð33Þ

where E[L1]<E[L2], but Var(L1)<Var(L2), so L2 gives on average a greater payoff, but is riskier.

Assume for simplicity a linear utility function u(x) = x. In Fig 14 we can see clearly that P(L1|

T) goes from below .5 to above .5 as time pressure increases (i.e. time available decreases),

reflecting the tendency found in [46] of increasing risk-aversion as a function of time pressure.

Note that while Decision Field Theory needs to assume an asymmetric starting point for the

random walk in order to capture a preference reversal, our theory essentially predicts this pat-

tern without adjusted additional parameters.

Discussion

We have presented a simple and efficient “stochastic representation” framework that describes

the human decision-making process as inherently probabilistic. It is based on a representation

of the deliberation process leading to a choice through stochastic processes, the simplest of

which is a random walk. Differently from random utility theory (external noise added to the

rational utility and probability representation as a calibration procedure), our stochastic repre-

sentation framework relies on a plausible description of the (assumed) intrinsic stochasticity of

Fig 14. Probability to choose the low-risk gamble L1 as a function of time pressure. The shorter the available time

(i.e. the higher the time pressure), the higher the probability to choose the low-risk gamble. The time units here are

arbitrary and just illustrative, since they depend on the diffusion coefficient D.

https://doi.org/10.1371/journal.pone.0243661.g014
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the human choice process. Our proposed approach does not disentangle probability and value

as in expected utility theories, rather it allows interaction between them in a non-trivial way.

Despite its simplicity, the model provides straightforward derivations at a more microscopic

level of several known structures that have been documented empirically in human decision

theory. Our theory also provide a number of novel predictions.

Here, only structural properties have been presented through simple examples, which are

not sufficient to falsify the theory. At this stage, the parsimony of its formulation and the

wealth of obtained properties, which are in qualitative or semi-quantitative agreement with

empirically observations, makes our theory interesting to further explore. We plan to use more

sophisticated procedures to test our model against the major decision theories, based on cross-

validation methods: parameters are first estimated from one part of an experiment, and then

these same parameters are applied to a separate part of the experiment and the predictions are

evaluated. Note that we cannot use the usual Wilks likelihood-ratio test [84] because in general

the models will not be nested, but other methods are possible, such as the Vuong test [85] and

Information Criteria (AIC [86] and BIC [87]).

The current formulation is not meant to be “the” definitive framework (if it would exist)—

since as already mentioned it presents some limitations, such as those deriving from Luce

choice axiom—but a baseline to construct more elaborate models, keeping in mind the trade-

off between parsimony and explanatory power.

In general, we are aware that testing alternative ways of value formation is very difficult,

because of the measurement problem in economics [88]. Indeed, we cannot really measure the

“degree of happiness” of the decision-maker, but we have to infer it–adopting one particular

model—through her choices. This adds an additional layer of complexity with respect to other

hard sciences, such as physics or chemistry. On the other hand, contribution of this type may

help to devise more effective ways to elicit preferences, deepening our understanding of deci-

sion processes. In addition, further theoretical and empirical work may lead to modifications

of the presented theory, where the expected utility hypothesis (separability of probability and

value) can be seen as a particular case of a more complex structure, where probability and

value do interact to some extent in the decision maker’s mind.

Supporting information

S1 Fig. Discrete random walk analogue of a one-dimensional drifted Brownian motion in

presence of two absorbing boundaries.

(TIF)

S2 Fig. Random walk analogue of the continuous stochastic representation of choice

between two binary lotteries. The transition probabilities are different for each segment, in

order to correctly represent the different outcome-dependent potentials, while the distance of

the absorbing states from the centre is different in each branch, to encode the different lottery

probabilities.

(TIF)

S1 Appendix. Analytical derivation of absorption probabilities.
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