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Cancer cells commonly have metabolic abnormalities. Aside from altered glucose and amino acid metabolism, cancers cells often
share the attribute of fatty acid metabolic alterations. However, fatty acid metabolism related-gene set has not been systematically
investigated in gliomas. Here, we provide a bioinformatic profiling of the fatty acid catabolic metabolism-related gene risk signature
for the malignancy, prognosis and immune phenotype of glioma. In this study, a cohort of 325 patients with whole genome RNA-
seq expression data from the Chinese Glioma Genome Atlas (CGGA) dataset was used as training set, while another cohort of 667
patients from The Cancer Genome Atlas (TCGA) dataset was used as validating set. After confirmed that fatty acid catabolic
metabolism-related gene set could distinguish clinicopathological features of gliomas, we used LASSO regression analysis to
develop a fatty-acid metabolism-related gene risk signature for glioma. This 8-gene risk signature was found to be a good
predictor of clinical and molecular features involved in the malignancy of gliomas. We also identified that this 8-gene risk
signature had high prognostic values in patients with gliomas. Correlation analysis showed that our risk signature was closely
associated with the immune cells involved in the microenvironment of glioma. Furthermore, the fatty acid catabolic
metabolism-related gene risk signature was also found to be significantly correlated with immune checkpoint members B7-H3
and Tim-3. In summary, we have identified a fatty acid metabolism-related gene risk signature for malignancy, prognosis, and
immune phenotype of glioma; and our study might contribute to better understanding of metabolic pathways and further
developing of novel therapeutic approaches for gliomas.

1. Introduction

Abnormality of metabolism is the hallmark of cancer, and
identification of the metabolic weaknesses of cancer cells
has prompted new therapeutic approaches toward tumor
treatments [1]. For example, increased glucose metabolism
has been frequently seen as a characteristic of cancer cells
[2]. Except for glucose metabolism, altered fatty acid
metabolism in cancer cells has received increasing attention
recently [3]. Fatty acid is the cornerstone of cell membrane
formation, energy storage, and signaling molecule produc-
tion in carcinogenesis; thus targeting at the pathway of
fatty acid metabolism might inhibit rapid proliferation of
the cancer cells [4].

In this study, we focus on one of the fatty acid
metabolism-related gene sets – the catabolic metabolism of
fatty acid gene set in gliomas. Gliomas are the most prevalent
and malignant primary brain tumors in adults, and glioblas-
toma (GBM) is the most common and devastating type
among all grades of glioma. Despite of the novel therapy of
GBM, patients with GBM only have a median overall survival
time of 14.6-16.7 months in clinical trials [5]. Metabolic
profiling analysis of gliomas might contribute to better
understanding of molecular pathways and further developing
of novel therapies in gliomas [6]. For example, bioinformatic
profiling had demonstrated a glucose metabolism-related
risk signature and an amino acid metabolism-related risk
signature were closely associated with malignancy and
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prognosis of glioma [7, 8]. Through mass spectrometry, lipi-
domic signatures were also found to be approaches for classi-
fication of gliomas [9]. However, the role of the fatty acid
metabolism-related gene set in glioma still remains unclear.

In our study, we firstly identified that the fatty acid
catabolic metabolism-related gene set had the ability to dis-
tinguish clinicopathological features of gliomas. Then, we
generated a fatty-acid catabolic metabolism-related gene risk
signature in CGGA dataset, and further validated in TCGA
dataset. We observed that our risk signature was associated
with molecular features of gliomas and could serve as an
independent prognostic factor for both all grade gliomas
and GBM. Lastly, we also found that this risk signature was
closely related to tumor infiltrating lymphocytes, which indi-
cated an potential association between fatty acid metabolism
and immune phenotype of gliomas. We believe that our
results might provide a new insight for understanding the
metabolic mechanism of gliomas.

2. Methods and Materials

2.1. Data Collection. The whole genome RNA-seq expression
data and clinical information of 325 glioma patients from
CGGA dataset (http://www.cgga.org.cn) were used as the
training set [7, 8]. RNA-seq data and clinical information
from TCGA dataset (http://cancergenome.nih.gov) were
used as validation set [10, 11]. After dropping the samples
with severely incomplete data (e.g. lack of critical clinical
information such as overall survival time and IDH status),
the eventual size of validation set was 667.

2.2. Bioinformatics Analysis. Fatty acid catabolic metabolism-
related gene set (GO_FATTY_ACID_CATABOLIC_PRO-
CESS), consisted of 73 genes in total, was extracted from
Molecular Signatures Database v6.2 (http://www.broad.mit
.edu/gsea/msigdb/) [7]. Most variable genes of the gene set,
determined by their median absolute deviation (MAD), were
selected for further consensus clustering [12]. Consensus
clustering was carried out in R programming language
(http://cran.r-project.org) for detecting the fatty acid cata-
bolic metabolism-related glioma subgroups of the training
set. The optimal number of the glioma clusters was deter-
mined by quantitative stability evidence in an unsupervised
analysis. For evaluating the correlation between risk signa-
ture and the immune phenotype of glioma, the ESTIMATE
package of R programming language was conducted to
calculate the immune score which represented the infiltra-
tion of immune cell in the microenvironment of glioma
[13]. The association between immune cells and glioma
risk signature was analyzed by Gene Set Variation Analysis
(GSVA) in R programming language as described by Zhang
and colleagues [14, 15].

2.3. Statistical Analysis. Screened by univariate Cox regres-
sion analysis in the training set, 46 genes with prognostic sig-
nificance (p< 0.05) in fatty acid catabolic metabolism-related
gene set were selected for Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis [16, 17].
The generalized linear model produced by LASSO regression

analysis was further analyzed with 10-fold cross validation in
order to generate the minimum cross validated error. Based
on the cross validation, 8 genes with their regression coeffi-
cients (Coef) were eventually achieved. Then the risk score
for each patient in the training set and validation set was cal-
culated by the following formula:

Risk ⋅ score = exprgene1 × Coef gene1 + exprgene2
× Coef gene2+⋯+exprgene8 × Coef gene8

ð1Þ

All patients in the training set and validation set were
then separated into high or low risk group according to
the median risk score. Survival analysis based on the risk
score was evaluated by Kaplan-Meier survival curve by
using R programming language. Univariate and multivariate
survival analysis was performed by using Cox proportional
hazards model in R programming language. Other main sta-
tistical analysis including Student’s t-test, chi-square test,
and Pearson’s test were all performed in R programming
language. Statistical significance was considered at the level
of p < 0:05.

3. Results

3.1. Classification of Gliomas Based on Fatty Acid Catabolic
Metabolism-Related Gene Set. The gene expression profiling
of the 73 fatty acid catabolic metabolism genes obtained from
the training set was used as variables of consensus cluster-
ing. The result of consensus clustering indicated that 325
patients in the training set could be classified into two
robust clusters with clustering stability increasing between
k = 2 to k = 10 (Figures 1(a)-1(d), Figure S1). Kaplan-Meier
survival analysis showed that patients with gliomas in
cluster1 had a significantly poorer prognosis than in cluster2
(Figure 1(e)). Furthermore, differences in clinicopathological
features between these two clusters were also found.
Cluster1 had a strong correlation with older age at diagnosis
(median age: 45, p < 0:001), classical or mesenchymal
subtypes (66.85%, p < 0:001), glioblastoma phenotype
(63.54%, p < 0:001), IDH wildtype (75.14%, p < 0:001), and
1p/19q non-codeletion (87.29%, p < 0:001; Table S1). By
contrast, cluster2 mainly represented younger age at
diagnosis (median age: 39, p < 0:001), proneural or neural
subtypes (86.92%, p < 0:001), lower grade phenotype
(80.77%, p < 0:001), IDH mutation (86.15%, p < 0:001), and
1p/19q non-codeletion (68.66%, p < 0:001, Table S1). Our
results indicated that fatty acid catabolic metabolism-related
gene set was involved in the malignancy of gliomas and
strongly correlated to prognosis.

3.2. Identification of an 8-Gene Risk Signature Associated with
Fatty Acid Catabolic Metabolism. Through univariate Cox
regression analysis, 46 fatty acid catabolic metabolism-
related genes with prognostic significance (p < 0:05) were
selected for further analysis in the training set. To identify
the gene risk signature associated with fatty acid catabolic
metabolism, these 46 genes were undergone the LASSO
regression analysis. After cross validation, LASSO regression
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Figure 1: Continued.

3Disease Markers



analysis generated 8 genes (ABCD1, ACADSB, CEL, CPT2,
GCDH, NUDT19, PCCA, PEX13) in total as active covariates
to calculate the risk score (Figure 2 and Table 1). The sig-
nature risk score of each patient in the training set and
validating set was then calculated with the LASSO regression
coefficients and expression value of these 8 genes through
formula (1) mentioned above.

3.3. 8-Gene Risk Signature Distinguished the Clinicopathological
Features of Gliomas. After calculating 8-gene risk signature
score of each patients, we observed that higher risk scores were
found in glioblastoma than lower grade gliomas (p < 0:001), in
classical and mesenchymal subtypes than other subtypes
(p < 0:001), in IDH wildtype than IDH mutation (p < 0:001)
in the CGGA dataset (Figures 3(a)-3(c)). Similar distributional
pattern of the risk score was also observed in TCGA dataset
(Figures 3(e)-3(g)). Receiver operating characteristic (ROC)
curves in both CGGA and TCGA datasets showed risk signa-
ture could serve as a good predictor for grade, IDH status and
molecular subtypes of gliomas (Figures 3(d)-3(h)). Then, we
classified the patients in training set into high risk group and
low risk group by using median signature risk score as the
cutoff value. Patients in high risk groups were linked to older
age at diagnosis (median age: 47.5, p < 0:001), classical or
mesenchymal subtypes (73.45%, p < 0:001), glioblastoma
phenotype (70.37%, p < 0:001), IDH wildtype (75.31%,
p < 0:001), and 1p/19q non-codeletion (93.96%, p < 0:001,
Table S2). By contrast, patients in low risk groups were
associated with younger age at diagnosis (median age: 39,
p < 0:001), proneural or neural subtypes (85.89%, p < 0:001),
lower grade phenotype (81.60%, p < 0:001), IDH mutation
(77.91%, p < 0:001) and 1p/19q non-codeletion (70.51%,
p < 0:001, Table S2). In TCGA dataset, we also observed
that patients in high risk group were correlated with older
age at diagnosis (median age: 54, p < 0:001), classical or
mesenchymal subtypes (65.19%, p < 0:001), IDH wildtype

(64.74%, p < 0:001), and 1p/19q non-codeletion (96.32%,
p < 0:001, Table S2); while patients in low risk group had a
strong correlation with younger age at diagnosis (median
age: 40, p < 0:001), proneural or neural subtypes (97.31%,
p < 0:001), lower grade phenotype (99.70%, p < 0:001), IDH
mutation (93.36%, p < 0:001) and 1p/19q non-codeletion
(53.29%, p < 0:001, Table S2). These results indicated that
the 8-gene risk signature associated with fatty acid catabolic
metabolism could distinguish the malignancy of gliomas.

3.4. Prognostic Value of 8-Gene Risk Signature in All Grade
Gliomas and Glioblastoma. In the CGGA dataset, Kaplan-
Meier survival analysis revealed that patients in high risk
group (n = 162) had a significantly poorer prognosis
compared with patients in low risk group (n = 163; median
OS: 10.5 vs 37.1 months; p < 0:001; Figure 4(a)). In TCGA
dataset, patients in high risk group (n = 333) were also found
to have much shorter overall survival times than patients in
low risk group (n = 334, median OS: 15.5 vs 24.3 months;
p < 0:001; Figure 4(d)). After taking important clinical and
molecular factors (including age, gender, WHO grade, IDH
status, chemotherapy and radiotherapy) into account,
univariate and multivariate Cox analysis further demon-
strated that this risk score was an independent prognostic
factor of prognosis in CGGA dataset (Table 2). Cox propor-
tional hazard model also found risk score could serve as an
independent prognostic factor in TCGA dataset (Table 2).
When focusing on the GBM phenotype, we also observed
that patients in high risk group (n = 72) had a shorter OS
than patients in low risk group (n = 72) of GBM phenotype
in CGGA dataset(median OS: 8.5 vs 11.5 months; p < 0:001;
Figure 4(b)). Results in TCGA dataset further validated the
prognostic value of the risk signature in GBM phenotype
(Figure 4(e)). In addition, the progression-free survival time
of the high risk group was much shorter than low risk group
in both CGGA and TCGA datasets (Figures 4(c)-4(f)). These
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Figure 1: Classification of gliomas based on fatty acid catabolic metabolism-related gene set in CGGA dataset. (a) and (b) Consensus
clustering matrix of 325 CGGA samples for k = 2 and k = 3. (c) Consensus clustering CDF for k = 2 to k = 10. (d) Relative change in area
under CDF curve for k = 2 to k = 10. (e) Kaplan-Meier survival analysis of two clusters classified by consensus clustering in the training set.
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results indicated that our 8-gene risk signature associated
with fatty acid catabolic metabolism had high prognostic
value in both all grade gliomas and glioblastoma.

3.5. Correlation of the Gene Signature and Immune
Phenotype of the Gliomas. To investigate the role of 8-gene
risk signature in the immune phenotype of gliomas, we used
GSVA method to calculate the immune score and immune
cell populations of glioma samples in the CGGA dataset
and TCGA dataset. Through Pearson correlation test, the gene
signature was found to be closely associated with immune
score (R = 0:624), activated CD4+ T cells (R = 0:501), mono-
cytes (R = 0:545), macrophages (R = 0:621), and activated
NK cells in CGGA dataset (R = 0:490, Figure 5(a)). Similarly,

we observed the risk score had a strong correlation with
immune score (R = 0:640), activated CD4+ T cells (R = 0:678),
monocytes (R = 0:583), macrophages (R = 0:651), and activated
NK cells in TCGA dataset (R = 0:581, Figure 5(b)).
Furthermore, our gene signature also showed a moderate cor-
relation with CD8+ T cells in both datasets(CGGA, R = 0:455;
TCGA, R = 0:492). In addition, the 8-gene risk signature was
found to be positively correlated with immune checkpoints
related molecules including CD274, CD276, HAVCR2, LAG3,
and PDCD1 through Pearson correlation test (Figure S2a-b).
Among them, CD276 (also known as B7-H3; CGGA, R =
0:56; TCGA, R = 0:72) and HAVCR2 (also known as Tim-3;
CGGA, R = 0:47; TCGA, R = 0:53) had a significant
correlation with 8-gene risk signature. These results
indicated that the 8-gene risk signature associated with fatty
acid catabolic metabolism might have a strong correlation
with altered immune microenvironment of the gliomas.

4. Discussion

Altered cancer metabolic processes such as glucose metabo-
lism and amino acid metabolism are the hallmarks of cancers
[18]. Metabolomic signatures can provide a better under-
standing of the molecular pathways of gliomas and offer great
potentials for developing novel therapeutic approaches in
glioma treatments [6]. For example, metabolic pathways
including cysteine metabolism, nucleotides metabolism and
2-hydroxyglutarate have been demonstrated to be helpful
for classification of gliomas [19, 20]. Myo-inositol, an impor-
tant osmolyte and substrate in phosphatidylinositol lipid
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Figure 2: LASSO regression analysis of all genes with high prognostic values generated 8 genes as active covariates to evaluate the prognostic
value. Red points represent log(lambda) value and gray bars represent confidence intervals of the cross-validated error. Top horizontal
numbers represent number of all the genes involved in each Lasso regression fitting methods. Left vertical dotted line represents the
log(lambda) value with minimum error, whereas the right vertical dotted line represents the largest log(lambda) value with 1SD of the
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Table 1: Univariate Cox regression analysis and LASSO regression
coefficients of 8 genes generated by LASSO regression analysis.

Gene HR 95% CI p value
LASSO regression

coefficient

ABCD1 1.422 1.323~1.528 <0.0001 0.09507427

ACADSB 0.6162 0.5537~0.6857 <0.0001 -0.16186716

CEL 1.476 1.275~1.709 <0.0001 0.06987048

CPT2 1.304 1.208~1.408 <0.0001 0.04503572

GCDH 0.7325 0.6504~0.825 <0.0001 -0.03428093

NUDT19 1.431 1.327~1.543 <0.0001 0.03613675

PCCA 0.5153 0.4348~0.6107 <0.0001 -0.12505459

PEX13 1.675 1.468~1.911 <0.0001 0.13984067

CI, confidence interval; HR, hazard ratio.
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Figure 3: 8-gene risk signature distinguished the clinicopathological features of gliomas. (a)-(c) Distribution of the 8-gene risk signature in
CGGA patients with different grades, subtypes and IDH status. (d) ROC curves of grade, IDH status, and subtype with risk signature in the
CGGA datasets. (e)-(g) Distribution of the 8-gene risk signature in TCGA patients with different grades, subtypes and IDH status. (h) ROC
curves of grade, IDH status, and subtype with risk signature in the TCGA datasets (∗∗∗p < 0:05).ROC, receiver operating characteristic; AUC,
area under curve; IDH, isocitrate dehydrogenase.
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Figure 4: Prognostic value of 8-gene risk signature in CGGA and TCGA dataset. (a)-(c) Kaplan-Meier Survival curves of the 8-gene risk
signature for all grade gliomas and GBM in CGGA dataset. (d)-(f) Kaplan-Meier Survival curves of the 8-gene risk signature for all grade
gliomas and GBM in TCGA dataset. OS, overall survival; PFS, progression-free survival; GBM, glioblastoma.
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family, was also found to be associated with glioma grade
[21]. Previous studies have also identified an amino acid
metabolism-related gene risk signature and a glucose
metabolism-related gene risk signature both have high prog-
nostic value in glioma through bioinformatic analysis [7, 8].
Nevertheless, the role of the fatty acid metabolism-related
gene set in glioma still remains unclear.

To date, this is the first study introducing a fatty acid
catabolic metabolism-related gene risk signature for the
malignancy of gliomas and the survival of patients with
gliomas. After confirmed that 73 fatty acid catabolic
metabolism-related genes had the ability to distinguish the
key clinicopathological features of gliomas in both CGGA
and TCGA datasets, we built a fatty acid catabolic
metabolism-related gene risk signature through LASSO
regression analysis. Lower grade gliomas (LGG, WHO grade
II and III) have a preferentially better clinical and prognostic
characteristics compared with higher grade gliomas (HGG,
WHO grade IV) [22]. IDH status and TCGA molecular sub-
types(classical, mesenchymal proneural and neural) were key
features for classification and prognosis of glioma [11, 23].
Using our risk signature, patients in higher risk group tend
to be associated with the higher grade, the more invasive
TCGA molecular subtypes (classical and mesenchymal)
and IDH wide type, which represented worse prognosis.
By contrast, the lower grade, the less invasive TCGA sub-
types (proneural and neural subtype) and IDH mutation
were preferentially associated with patients in lower risk
group. Furthermore, several oncometabolites have been
confirmed to be the accumulated metabolic products of IDH
mutation. For example, the abnormal glucose metabolite
2-hydroxyglutarate was a metabolic biomarker in gliomas

and was useful in classification of gliomas [24]. However,
the association between fatty acid metabolite and IDH
mutation still remains unclear and our risk signature
might provide some clues in this researching field. In sum-
mary, our results indicated that fatty acid catabolic metab-
olism might be involved in the progression of gliomas.

To further explored the potential role of fatty acid
catabolic metabolism in gliomas, we evaluated the correla-
tions between our risk signature and immune cell popula-
tions. Previous studies have demonstrated that tumor
infiltrating lymphocytes(TILs), especially the CD4+ T cells
and CD8+ T cells, are correlated with clinical prognosis in
gliomas [25, 26]. Our study found fatty acid metabolic gene
risk signature was highly associated with CD4+ T cells and
moderately correlated with CD8+ T cells, which indicated
that patients of higher risk tend to have an unfavorable TILs
pattern as previously demonstrated: lower level of CD8+ T
cells combined with higher level CD4+ T cells [26]. In addi-
tion, our risk signature was also strongly correlated with
innate immune cells including monocytes, macrophages,
and NK cells, which might be consistent with previous
studies that tryptophan metabolic adaptations in GBM were
associated with evasion of innate immune system by tumors
cells [27]. Our findings indicated that fatty acid catabolic
metabolism-related gene risk signature might, to some
extent, involve in the altered immune microenvironment of
the gliomas. Furthermore, we evaluated the correlation of
our gene risk signature and common immune checkpoint
members. B7-H3 and Tim-3, the novel targets of immuno-
therapy against solid tumors [28, 29], both showed close
association with risk signature. Clinical trials of anti-B7-H3
(NCT02475213) and anti-Tim-3 (NCT02817633) are

Table 2: Univariate and multivariate Cox regression analysis of the clinical features and risk score for overall survival in CGGA and TCGA
datasets.

Univariate analysis Multivariate analysis
Variables HR 95% CI p value HR 95% CI p value

Training set CGGA RNA-seq cohort (n = 325)
Age 1.038 1.023~1.054 <0.0001 0.9992 0.9832~1.0155 0.9239

Gender 1.1701 0.8291~1.651 0.371 1.2047 0.8257~1.7576 0.3340

Grade 0.1697 0.1167~0.2469 <0.0001 0.5155 0.3203~0.8295 0.0063

IDH status 4.285 2.971~6.181 <0.0001 0.9195 0.5404~1.5643 0.7568

Chemotherapy 1.233 0.8736~1.74 0.234 0.9005 0.6223~1.3030 0.5782

Radiotherapy 0.4056 0.2839~0.5795 <0.0001 0.3655 0.2471~0.5406 <0.0001
Risk score 5.118 3.913~6.695 <0.0001 4.0044 2.7634~5.8028 <0.0001
Validation set TCGA RNA-seq cohort (n = 667)
Age 1.067 1.057~1.077 <0.0001 1.0283 1.0142~1.0425 <0.0001
Gender 1.236 0.9566~1.596 0.105 1.3371 0.9729~1.8377 0.0734

Grade 0.11 0.08377~0.1444 <0.0001 0.6047 0.4021~0.9095 0.0157

IDH status 9.775 7.365~12.97 <0.0001 2.7861 1.7093~4.5413 <0.0001
Chemotherapy 0.4079 0.274~0.6073 <0.0001 0.6478 0.4238~0.9903 0.0391

Radiotherapy 2.121 1.532~2.937 <0.0001 0.9892 0.5870~1.6670 0.9675

Risk score 4.172 3.503~4.969 <0.0001 1.7382 1.0577~2.8567 0.0292

Gender (female and male); Grade (WHO grade IV and III, II); IDH status (wildtype and mutant); Risk score (low and high); Chemotherapy (treated and
untreated); Radiotherapy (treated and untreated). CI, confidence interval; HR, hazard ratio; IDH, isocitrate dehydrogenase.
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Figure 5: Correlation of the 8-gene risk signature and immune microenvironment of the gliomas. (a) Heat map shows the association of risk
scores and immune cells in CGGA datasets. (b) Heat map shows the association of risk scores and immune cells in TCGA datasets.

12 Disease Markers



carrying on, and our study showed the fatty acid catabolic
metabolism-related gene risk signature might be a possible
metabolic marker of the immunotherapy for gliomas.

In our fatty acid catabolic metabolism-related signature,
the protein encoded by ABCD1 is one of the superfamily of
ATP-binding cassette transporters and is involved in the
catabolic metabolism of very long chain fatty acid. ABCD1
is associated with altered white matter microvascular perfu-
sion [30] and may contribute to the cell differentiation with
parallel to tumorigenesis [31]. In previous study, ABCD1
transcript levels were overexpressed in breast cancer [32].
The protein encoded by CPT2 is a nuclear protein trans-
ported to the mitochondrial membrane. CPT2 plays a critical
role in regulation of fatty acid oxidation [33] and might
promote carcinogenesis in liver cancer by leading hepatocel-
lular carcinoma to lipid-rich environment [34]. PCCA,
encoding the mitochondrial enzyme Propionyl-CoA carbox-
ylase, was also found to be altered in gastric and colorectal
cancer [35]. Relationship of gliomas and other proteins
encoded by the genes of our risk signature remains unclear
and needs further researches. In summary, our fatty acid
metabolic gene risk signature model may provide new
insights into the carcinogenesis and therapeutic approaches
of gliomas.

5. Conclusion

In conclusion, we identified a fatty acid catabolic metabolism-
related gene risk signature for the malignancy, prognosis and
immune phenotype of gliomas, and our study might provide
better understanding of fatty acid metabolic role in glioma
carcinogenesis and in glioma immune phenotype.
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