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Abstract: Pneumocystis pneumonia (PCP) is an opportunistic infection that occurs in humans and
other mammals with debilitated immune systems. These infections are caused by fungi in the genus
Pneumocystis, which are not susceptible to standard antifungal agents. Despite decades of research
and drug development, the primary treatment and prophylaxis for PCP remains a combination of
trimethoprim (TMP) and sulfamethoxazole (SMX) that targets two enzymes in folic acid biosynthesis,
dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), respectively. There is
growing evidence of emerging resistance by Pneumocystis jirovecii (the species that infects humans) to
TMP-SMX associated with mutations in the targeted enzymes. In the present study, we report the
development of an accurate quantitative model to predict changes in the binding affinity of inhibitors
(Ki, IC50) to the mutated proteins. The model is based on evolutionary information and amino acid
covariance analysis. Predicted changes in binding affinity upon mutations highly correlate with the
experimentally measured data. While trained on Pneumocystis jirovecii DHFR/TMP data, the model
shows similar or better performance when evaluated on the resistance data for a different inhibitor
of PjDFHR, another drug/target pair (PjDHPS/SMX) and another organism (Staphylococcus aureus
DHFR/TMP). Therefore, we anticipate that the developed prediction model will be useful in the
evaluation of possible resistance of the newly sequenced variants of the pathogen and can be extended
to other drug targets and organisms.

Keywords: Pneumocystis pneumonia; Pneumocystis jirovecii; folate biosynthesis; drug resistance;
QSAR; amino acid covariance; amino acid coevolution

1. Introduction

Pneumocystis pneumonia (PCP) is a potentially lethal fungal infection affecting patients with an
incompetent immune system, including patients with AIDS, autoimmune disorders, and after organ
transplantation, as well as other morbidities requiring medically induced suppression of the immune
system. The cause of PCP in humans is Pneumocystis jirovecii, which like other fungi in the genus
Pneumocystis, do not respond to the commonly used anti-fungal therapies. A combination therapy,
consisting of trimethoprim and sulfamethoxazole (TMP-SMX), which targets the folate biosynthesis
pathway at 2 enzymatic steps, remains the primary option for the treatment and prophylaxis of PCP.

J. Fungi 2016, 2, 30; doi:10.3390/jof2040030 www.mdpi.com/journal/jof

http://www.mdpi.com/journal/jof
http://www.mdpi.com
http://www.mdpi.com/journal/jof


J. Fungi 2016, 2, 30 2 of 10

In addition to concerns about the toxicity of the TMP-SMX treatment [1] and low tolerance to
sulfa-based drugs in some patients [2], there is growing evidence of the emerging resistance of the
fungi associated with the acquired mutations in the targeted enzymes. Earlier studies simply reported
sequence variants found in P. jirovecii DHPS and DHFR suggesting the development of resistance
upon exposure to the drug [3,4]. Later, as the number of PCP patients unresponsive to TMP-SMX
increased and the corresponding strains of the pathogen were sequenced, it became possible to draw
statistically significant associations and estimate possible risks of resistance upon prior exposure to the
drug [5–11]. Finally, in vitro enzymatic assays and PjDHPS/PjDHFR heterologous systems based on
the respective knockouts in Saccharomyces cerevisiae enabled the measurement of the kinetic parameters
of these enzymes with the wild type sequence and identified mutations [12–17].

Recently, a new quantitative model has been suggested to estimate the effect of missense mutations
on drug resistance [18]. The model is based on a massive experiment with Escherichia coli treated with
amoxicillin, followed by the sequencing of mutations in beta-lactamase (TEM-1) and measurement
of the corresponding enzymatic activity [19]. It has been shown that the model used to predict drug
resistance based on a combination of individual position specific amino acid probabilities with the
amino acid co-variance scores outperforms SIFT [20], PolyPhen2 [21], and a set of methods predicting
the effect based on the estimated change in stability of the mutated proteins (I-Mutant [22], MUpro [23],
and PoPMuSiC [24]) [18]. Co-variance scores reveal pairwise concerted changes of amino acids at
different positions within a protein sequence and may represent “epistatic” interactions between the
residues. Both position specific probabilities and co-variance scores are derived from the multiple
sequence alignments (MSA). In this published model, co-variance scores are computed using one of
the most advanced methods in the field of protein co-evolution analysis, Direct Coupling Analysis
(DCA), which employs approaches from statistical thermodynamics to delineate direct and transient
co-variance relationships between residues at different positions in the protein [25]. However, the
complexity of the DCA method brings certain limitations to applicability of the presented quantitative
drug resistance model. It requires extensive multiple sequence alignments, deals with well-defined
domains only, cannot process multi-domain proteins and sequences longer than 500 amino acids, and
is very computationally intensive [18,25,26]. For example, when evaluating the DCA-based model
on TEM-1 data, only a fraction of mutations were considered, specifically, those that fell in the Pfam
domain and represented single mutations [18].

We have recently developed a new tool for the amino acid co-variance analysis, CoeViz [27] that
overcomes most of the limitations listed above for DCA. In particular, CoeViz is not limited by the
protein domains nor the large size of the MSA, can handle proteins of any length in a practical time
frame, and generates co-variance scores using three metrics: Mutual Information (MI), Chi-squared
(χ2), and Pearson correlation (r). The tool accounts for phylogenetic bias in the MSA and also provides
an alternative way of adjusting the scores for MI using the average product correction (APC [28]).

In this work, we have built a new model to evaluate the effect of mutations on resistance to drugs.
In contrast to the DCA-based model, our approach considers the entire protein sequence and estimates
the relative effect of mutations compared to the reference sequence. Moreover, our model can compute
the effect of multi-position variants by considering them simultaneously. The new model was trained
on the kinetics data of the PjDHFR inhibition by TMP and was further evaluated using experimental
data for a different inhibitor targeting PjDHFR (OAAG324 [17]) as well as inhibition data for PjDHPS,
Staphylococcus aureus DHFR, to estimate generalization of the model to different drugs, drug targets,
and organisms.



J. Fungi 2016, 2, 30 3 of 10

2. Materials and Methods

2.1. Formulation of the Quantitative Model

It has recently been suggested to use the difference in protein “phenotype” (fitness function)
between the mutant and a wild type sequence as the estimate of drug resistance elicited by mutations
(Equation (1), [18]).

∆Φ (ai → b) = Φ (a1, . . . , ai−1, b, ai+1, . . . , aL)−Φ (a1, . . . , ai−1, ai, ai+1, . . . , aL), (1)

where ∆Φ (ai → b) is a change in protein function (drug resistance or enzymatic activity in the context
of this work) upon mutation of amino acid a to b at position i in the protein sequence of length L.
Protein function Φ can be further defined by the two groups of parameters, derived from the individual
positions (ΦIND) and pairwise “epistatic interactions” of amino acids (ΦEPI), Equations (2) and (3).

ΦIND (a1, . . . , aL) =
L

∑
i=1

ϕi (ai) (2)

ΦEPI (a1, . . . , aL) = ∑
1≤i≤j≤L

ϕij
(
ai, aj

)
(3)

where ϕi(ai) is a single site term and ϕij(ai,aj) defines “epistatic coupling” between positions i and j.
They are derived from joint pairwise probabilities observed in the MSA, refer to [18] for further details
in their definition. Then, the change in protein function upon mutation at position i can be defined as

∆ΦDCA (ai → b|a1, . . . , ai−1, ai+1, . . . , aL) = ϕi (b)− ϕi (ai) +
L

∑
j=1

[
ϕij
(
b, aj

)
− ϕij

(
ai, aj

)]
(4)

Equation (4) represents the model proposed by Figliuzzi and colleagues [18] to quantify the
mutation effect on a protein function. While it was estimated to outperform other existing methods for
the prediction of mutation effect in the given enzyme (TEM-1), there are at least two shortcomings
of this approach. First, the model considers single mutations only. It has not been applied to predict
the effect of multiple missense mutations in proteins. This seems to be counter-intuitive given that
the model has access to all pairwise coupling scores, so it could be extended to the estimates of
compensatory or stabilizing simultaneous mutations. Second, it considers both individual positions
and all pairwise epistatic interactions contributing equally to the scoring function. However, some
sites and residue couplings may be more important for protein function or structural stability than
the others.

We have developed a new model that considers all mutations found in a given strain
simultaneously and incorporates weights for each pair of comparisons. The corresponding weighted
models (∆ΦWIND and ∆ΦWEPI) to quantify the change in protein “phenotype” are defined as follows:

∆ΦWIND (A→ B) = ∑
i∈M

wi ϕi (bi) (5)
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∆ΦWEPI (A→ B|WT\A) = ∑
i∈M

∑
1 ≤ j ≤ L

j /∈ M

wij ϕij
(
bi, aj

)
− ∑

i∈M
∑

1 ≤ j ≤ L
j /∈ M

wij ϕij
(
ai, aj

)
+

 ∑
i, j ∈ M

i < j

wij ϕij
(
bi, bj

)
− ∑

i, j ∈ M
i < j

wij ϕij
(
ai, aj

)


(6)

where A is a set of amino acids at positions M that underwent mutations B; WT are amino acids
in the reference (wild type) sequence. ϕi (ai) is a similarity score for the amino acid ai, which is
taken from a dedicated position specific similarity matrix (PSSM), generated by PSI-BLAST [29], and
represents the likelihood of finding a given amino acid substitution at a given position); ϕij

(
ai, aj

)
is a joint probability of the amino acids at positions i and j derived from the MSA. wi is a weight for
an individual position i computed as 1—normalized Shannon entropy (S, Equation (7)), and wij is a
weight for epistatic interaction between the residues at positions i and j computed using one of the
co-variance metrics (MI, χ2, or r; see full definitions and final score transformations in [27]), all adjusted
for phylogeny bias in the MSA.

wi = 1− Si = 1− 1
log (20)

20

∑
j=1

pijlogpij (7)

where pij is the probability of the amino acid type j to occur at position i, derived from the MSA.
MSAs and associated PSSMs are generated using PSI-BLAST with three iterations against the NCBI nr
database. PSI-BLAST is parameterized to report 2000 sequences in the final MSA, but the model can
work with the fewer number of sequences.

To have “phenotype” scores (∆Φ) always positive and in the range [0,1], both models are
normalized using the logistic sigmoid function defined in Equation (8).

∆ΦN = 1− 1

1 + e−
∆Φ
10

(8)

The final model (∆ΦWDR) to estimate the change in drug resistance upon mutations in the targeted
protein is the product of normalized individual- and pairwise epistatic interactions-based models
(Equation (9)).

∆ΦWDR = ∆ΦNWIND × ∆ΦNWEPI (9)

2.2. Experimental Data

The quantitative model was trained and evaluated using kinetic data (Ki, IC50) for the following
drug targets and their mutants (Table 1).

Since the values of the kinetic parameters vary between mutants by 2–3 orders of magnitude,
all experimental data are log10 transformed. It is also more informative to operate with relative values
when comparing mutants to reference sequences. Hence, we converted the data to the relative change
in kinetics of inhibition (Equation (10)).

∆K =
log10K (Mut)− log10K (Re f )∣∣log10K (Re f )

∣∣ (10)
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where K is an experimentally measured kinetic parameter of inhibition (Ki or IC50) for the reference
(Ref) and mutated (Mut) protein.

Performance of the models is evaluated using the Pearson correlation coefficient. Given the
limited number of data points, all results are based on the jackknife resampling and reported in the
mean ± SD format.

Table 1. Experimental data used to build and evaluate the model for the estimation of drug resistance.

Organism Protein
(UniProt ID) Mutants Kinetic

Parameter Refs. Purpose (Drug/Inhibitor)

P. jirovecii DHFR
(Q9UUP5)

T14A, P26Q

Ki [17]
Train the model on one

target (TMP)

N23S
S31F
F36C
L65P

F36C, L65P
S37T
A67V

A67V, C166Y
R59G, A67V

V79I
S106P

S106P, E127G
T144A

T144A, K171E
D153V
I158V
C166Y
R170G

P. jirovecii DHFR
(Q9UUP5)

T14A, P26Q

Ki [17]
Evaluate on the same target,

different inhibitor
(OAAG324)

N23S
S31F
F36C
L65P

F36C, L65P
S37T
A67V

A67V, C166Y
R59G, A67V

V79I
S106P

S106P, E127G
T144A

T144A, K171E
D153V
I158V
R170G

P. jirovecii DHFR
(Q9UUP5)

S69F

Ki [16]
Evaluate on the same target,

artificially mutated
(TMP, OAAG324)

S37K, S69F
S37Q
S69N

S37Q, S69N
S37K, S69N
S37Q, S69F

S. aureus DHFR
(P0A017)

F99Y

IC50 [30]
Evaluate on the same target,

different organism (TMP)
H31N, F99Y
F99Y, H150R

L21V, N60I, F99Y

P. jirovecii DHPS
(L0P7Z1)

T519A

IC50 [13]
Evaluate on a different drug
target, different drug (SMX)

P521S
T519A, P521S
T519V, P521S
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3. Results

3.1. Choice of the Model

To choose a quantitative model that demonstrates the strongest correlation to experimental data,
we used kinetic data for the inhibition of PjDHFR variants with TMP [17]. This is the largest dataset
available for drug targets and their variants in P. jirovecii. The dataset contains 13 single variants and
6 double mutants of PjDHFR. Different models described in Methods were evaluated varying the
co-variance metrics for the ΦEPI component. Table 2 provides a summary of the evaluated models.

Table 2. Performance of the quantitative models in terms of Pearson correlation with experimental
data for PjDHFR (19 variants) inhibited by trimethoprim (TMP). *

Co-Variance
Metric ∆ΦIND ∆ΦEPI ∆ΦWIND ∆ΦWEPI ∆ΦNWIND ∆ΦNWEPI ∆ΦWDR

χ2 −0.67 ± 0.05 −0.53 ± 0.05 −0.62 ± 0.05 −0.29 ± 0.05 0.68 ± 0.04 0.29 ± 0.05 0.64 ± 0.04
MI −0.67 ± 0.05 −0.53 ± 0.05 −0.62 ± 0.05 −0.05 ± 0.05 0.68 ± 0.04 0.05 ± 0.05 0.70 ± 0.04

APC (MI) −0.67 ± 0.05 −0.53 ± 0.05 −0.62 ± 0.05 −0.28 ± 0.06 0.68 ± 0.04 0.28 ± 0.06 0.72 ± 0.05
r −0.67 ± 0.05 −0.53 ± 0.05 −0.62 ± 0.05 −0.20 ± 0.07 0.68 ± 0.04 0.20 ± 0.07 0.65 ± 0.05

* Models independent of co-variance metrics have constant results and included here for comparison.

The top performing model yielding r = 0.72 appears to be ∆ΦWDR that incorporates mutual
information-based metric adjusted with the average product correction (APC). Figure 1 illustrates
correlation between the experimental data and this model.
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Figure 1. Correlation between the scores produced by the ∆ΦWDR model and experimental kinetic
data for inhibition of PjDHFR variants by TMP. Ki values are log10 transformed and converted to a
change relative to inhibition kinetics of the reference PjDHFR.

3.2. Evaluation of the Model

We tested the generalization of the model using different inhibitors, mutations that were not the
result of drug treatment, the same drug target in a distant organism (fungal vs bacterial), another
drug/drug target pair in the same organism (P. jirovecii). Table 3 summarizes the results of the proposed
quantitative model.
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Table 3. Performance of the models on diverse datasets.

Target Inhibitor The Number of Mutations:
Single/Double/Triple ∆ΦWDR SIFT

PjDHFR OAAG324 12/6/0 0.60 ± 0.03 −0.22
1 PjDHFR->PcDHFR/HsDHFR TMP 3/4/0 0.41 ± 0.10 −0.48
1 PjDHFR->PcDHFR/HsDHFR OAAG324 3/4/0 −0.39 ± 0.16 −0.07

SaDHFR TMP 1/2/1 0.91 ± 0.12 −0.59
PjDHPS SMX 2/2/0 0.79 ± 0.18 ND 2

1 Mutations artificially introduced in PjDHFR to make its active site similar to either P. carinii or human DHFR.
2 SIFT predicted all mutations to be damaging with score = 0; r cannot be computed (SD = 0).

Queener and colleagues tested whether naturally occurring variants in PjDHFR, resistant to TMP
inhibition, would show similar resistance to other PjDHFR inhibitors by choosing another competitive
inhibitor, OAAG324, to evaluate [17]. Using the structure modeling of PjDHFR, they determined that
OAAG324 has a different binding mode to the enzyme than TMP, involving a different set of amino
acids at the active site. Experimental data indicated that the majority of the PjDHFR variants remained
sensitive to OAAG324 suggesting that mutations in the enzyme are naturally selected to compensate
for the pressure from a given inhibitor and may not necessarily be beneficial against other inhibitors
with a different binding mode. This is also reflected by our model, whose performance drops from
r = 0.72 to 0.60 for the same set of mutations, when switching from TMP to OAAG324.

The same group of authors went further and modified selected positions at the active site of
PjDHFR to make it more similar to the DHFR of P. carinii (a species that infects rats) or to that of the
human enzyme. Kinetic constants of inhibition were measured for the same two compounds, TMP and
OAAG324 [16]. These mutations do not represent natural selection under pressure of TMP, therefore
no high correlation between the model and experimental data was anticipated. Nevertheless, our
model showed moderate correlation for TMP (r = 0.41) and anti-correlation for OAAG324 (r = −0.39).

Of greater interest was whether the model could be applied to evaluate mutations that emerged
under the pressure of the same drug within a different organism and to a different pair of drug/drug
target. In both cases, our model showed strong correlation with the experimental data. Its prediction
of the change in resistance upon DHFR mutations in S. aureus after the TMP treatment [30] yielded
r = 0.91, whereas the predicted effect of mutations on resistance of PjDHPS after the SMX treatment [13]
correlated well with the experimental data (r = 0.79).

We could not compare the performance of our model with the DCA-based model due to multiple
obstacles: the published model has no implementation to use it online or as a stand-alone software;
it considers conserved domains only and relatively short sequences, while PjDHPS (UniProt ID:
L0P7Z1) is 742 amino acids long; it is not applicable to multi-position variants. We also could not
evaluate PolyPhen2 as the web-server was returning an error that all the specified UniProt IDs are not
part of the available version of UniProtKB. We did not evaluate the protein stability-based methods
for the prediction of mutation effects as (1) they were already shown to be not applicable to the drug
resistance data [18]; (2) the mutated enzymes are fully functional given that they are essential and the
sequenced resistant strains were viable. Therefore, we compared our model with SIFT. For variants
with multiple simultaneous mutations, a sum of individual SIFT scores was computed. As can be
seen from Table 3, SIFT is not appropriate for evaluation of resistance in drug targets conferred
through mutations.

4. Discussion

Pathogens facing selective pressure, such a drug therapy or prophylaxis treatment, are able to
develop resistance to the drug through the concerted mutations impeding the binding of an inhibitor
or alleviating its action while retaining the essential function of the targeted endogenous protein.
PCP exemplifies the problem of emerging resistance when the repertoire of therapeutics is limited.
With the advent of the targeted sequencing, it is now possible to quickly identify mutations in the
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resistant strain of the pathogen. However, the comparative evaluation of these variants on the drug
susceptibility is lagging. We have developed a quantitative model that accounts for both individual
changes and concerted mutations in the drug target to predict a protein’s resistance to an inhibitor.

Drug resistance, in general, and resistance to antifolates, in particular, may be conferred through
alternative mechanisms. In addition to compensatory mutations [12,31], pathogens may employ a
drug-targeted gene amplification [32,33], reduction of cell wall permeability to the drug or encoding
alternative forms of the targeted gene [34], or activation of the ATP-binding cassette (ABC) transporters
and multidrug resistance genes (MDR) to efflux drugs out of cell [35–37]. Obviously, the proposed
model cannot account for these strategies of resistance. Therefore, it most likely will not strongly
correlate with the minimal inhibitory concentrations (MIC) commonly used to evaluate the overall
drug resistance by a given pathogenic strain. MIC may be a complex function of the drug compensatory
mechanisms mentioned above, where mutations in the targeted protein may be important but are not
a major factor determining the overall resistance.

Other limitations of the proposed model include inability to quantify variants with insertions
and deletions, as well as other mutations unrelated to drug resistance; lack of strong correlation of
predictions to the kinetic data for inhibitors possessing a mode of action different than the one(s) a drug
target to which it has developed its resistance. Nevertheless, the model may help evaluate and compare
resistant strains with known variants in the targeted protein and facilitate predictions of possible
resistance conferred through concerted compensatory missense mutations. Such an approach would
be quite valuable in microbial systems like Pneumocystis, which do not have an in vitro cultivation
system that could be used for such predictions.

5. Conclusions

The presented quantitative model shows accurate performance in predicting the change in
resistance of the mutated proteins under the pressure of a drug treatment. In contrast to the existing
methods for evaluating the mutation effect, our model does not predict the damaging effect of the
mutation but rather estimates the fitness of the mutated protein to withstand exposure to an inhibitor
while maintaining a vital function in the organism. Contrary to other methods that consider one
mutation at a time, our model can evaluate multiple simultaneous mutations, which may represent
concerted compensatory changes in the protein. The model appears to be transferrable among distant
organisms and different drug targets. Tools such as this model contribute to our armamentarium
against the evolving defenses of microbial pathogens and should help in the earlier detection of these
evasive strategies. We envision at least two directions where the presented prediction model can be
utilized. (1) To quantitatively inform researchers and clinicians about the resistance level of sequenced
strains conferred through mutations to a given drug. (2) To predict possible mutations (and their rate)
a pathogen may acquire to compensate for the inhibitory effect of a drug.
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