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Abstract: The remarkable ability of microorganisms to develop resistance to conventional antibiotics
is one of the biggest challenges that the pharmaceutical industry currently faces. Recent studies
suggest that antimicrobial peptides discovered in spider venoms may be useful resources for the
design of structurally new anti-infective agents effective against drug-resistant microorganisms.
In this work, we found an anionic antibacterial peptide named U1-SCRTX-Lg1a in the venom of the
spider Loxosceles gaucho. The peptide was purified using high-performance liquid chromatography
(HPLC), its antimicrobial activity was tested through liquid growth inhibition assays, and its chemical
properties were characterized using mass spectrometry. U1-SCRTX-Lg1a was found to show a
monoisotopic mass of 1695.75 Da, activity against Gram-negative bacteria, a lack of hemolytic
effects against human red blood cells, and a lack of cytotoxicity against human cervical carcinoma
cells (HeLa). Besides this, the sequence of the peptide exhibited great similarity to specific regions
of phospholipases D from different species of Loxosceles spiders, leading to the hypothesis that
U1-SCRTX-Lg1a may have originated from a limited proteolytic cleavage. Our data suggest that
U1-SCRTX-Lg1a is a promising candidate for the development of new antibiotics that could help
fight bacterial infections and represents an exciting discovery for Loxosceles spiders.

Keywords: Loxosceles; venom; anionic antimicrobial peptides; antimicrobial resistance

Key Contribution: Loxosceles gaucho venom has an anionic antimicrobial peptide effective against
Gram-negative bacteria.

1. Introduction

Despite the great advances made on the field of antibiotic therapy since the early 20th century,
infectious diseases remain major causes of death in human population due to the great ability of
microorganisms to develop resistance to conventional antibiotics, compromising their effectiveness.
Because of this, it has become urgent to find novel sources of non-traditional antibiotics in order to
develop new drugs effective against pathogenic microorganisms [1].

In this regard, antimicrobial peptides (AMPs) emerge as promising candidates for the control
of infectious diseases due to their low resistance rates, potent activity, and unique mechanism of
action [2,3]. These endogenous molecules, which are mostly genetically encoded, constitute a primitive
immune defense mechanism present in the vast majority of living organisms: viruses, bacteria, plants,
insects, fishes, amphibians, and mammals [4]. This group of peptides exhibits a broad range of
biological properties, from the direct neutralization of cancer cells and invading pathogens such as
bacteria, fungi, viruses, and protozoan parasites, to the modulation of the immune response of the
host [5–7].
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The venom of spiders contains pore-forming peptides whose main purpose is to depolarize cell
membranes and damage the tissues of their prey [1]. However, some remarkable examples have
shown that these peptides also may play a role as genuine antimicrobials by protecting the spider
against the potential invasion of infectious organisms arising from the injection of venom into their
prey [8–10]. Consequently, in recent years, the idea of using AMPs discovered in spider venoms as
tools for the design of structurally novel drugs has received much attention from experts in the field
of biotechnology and the pharmaceutical industry [11], leading to the identification and study of
several of these molecules [12–18]. Among these peptides, Juruin shows a lack of hemolytic activity
against human blood cells [13], while LyeTx I and Lycosin-II display a weak hemolytic activity in high
concentrations [16,18]. In the case of CIT 1a, a negligible effect on cell viability was observed [14].

Brown spiders (the Loxosceles genus) are members of the select group of the world’s most
venomous spiders. Their bite causes a condition called loxoscelism and has two clinical manifestations:
cutaneous and systemic, which take place approximately in 83.3 and 16.7% of cases, respectively [19].
The first and most frequent manifestation is associated with necrotic skin lesions, which advance
gradually from the bite. On the other hand, at the systemic level, it is common to observe weakness,
fever, nausea and vomiting, hematuria, pruritic reactions, renal failure, jaundice hemoglobinuria,
and disseminated intravascular coagulation [20,21]. Due to the prevalence of loxoscelism as
a public health problem in several South American countries such as Argentina, Peru, Chile,
and Brazil, brown spider venoms have been studied in order to increase the knowledge about
the pathophysiology of loxoscelism [22]. Although the complete content of the venom is not
yet fully understood, many investigations have shown that it consists of a complex mixture of
proteins and peptides with a molecular mass profile in the range of 2 to 40 kDa. These components
have toxic and/or enzymatic activities and act synergistically [20–24]. To date, many brown
spider toxins have been described and their corresponding biochemical properties have been
characterized, providing key information about their great potential for biotechnological purposes
such as the design of pharmacological tools, diagnostic and immunotherapeutic reagents, cytotoxicity
inducers, and biopesticides [20,21,25]. Included among these molecules are phospholipases D [26–35],
astacins (metalloproteases) [36–41], hyaluronidases [42–46], serine proteases [44,47–50], translationally
controlled tumor protein (TCTP) [47,48,51], and inhibitor cystine knot (ICK) peptides [24,52,53].

Being aware of the antibiotic resistance problem, through the present work we aim to generate
data that may lead to the creation of new potential drugs effective against pathogenic microorganisms.
Furthermore, this work has the additional objectives of increasing the literature about AMPs from
Loxosceles spiders and setting up a basis for future studies directed to elucidate new modes of
action of these molecules. Herein, we present the characterization of a novel AMP isolated from
Loxosceles gaucho venom.

2. Results and Discussion

2.1. Purification of U1-SCRTX-Lg1a from the Venom of L. gaucho

The crude venom of L. gaucho was collected by electrostimulation. The first stage of
venom separation was performed by reversed-phase high-performance liquid chromatography
(RP-HPLC), which resulted in isolation of at least 32 different fractions that were analyzed in liquid
growth inhibitory assays using Escherichia coli SBS363, Micrococcus luteus A270, Aspergillus niger,
and Candida albicans MDM8. The antimicrobial activity occurred in the fraction 18 eluted with
retention times of 49.1–50.6 min (Figure 1), which was effective only against E. coli SBS363,
a Gram-negative bacterium. This fraction was further applied to the same C18 RP-HPLC column for the
purification of individual compounds. Among these, only one had a pronounced antibacterial activity:
U1-SCRTX-Lg1a (Figure 1). This name was established according to the nomenclature indicated by
King et al. [54]. The fraction was quantified based on absorbance at 205 nm and its final concentration
in 500 µL of ultrapure water was 23 µM (38 µg/mL).
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numbered peak (18) corresponds to the fraction that showed antimicrobial activity and was eluted at 
49.1–50.6 min. Fraction 18 was re-chromatographed on the same system and run from 26% to 46% 
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Lg1a fraction. 
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Figure 1. Purification of U1-SCRTX-Lg1a from the crude venom of L. gaucho by RP-HPLC. The acidified
venom sample was analyzed on a semi-preparative column Jupiter C18 with a linear gradient from
0% to 80% ACN in acidified water at a flow rate of 1.5 mL/min over 60 min. The numbered peak
(18) corresponds to the fraction that showed antimicrobial activity and was eluted at 49.1–50.6 min.
Fraction 18 was re-chromatographed on the same system and run from 26% to 46% ACN in acidified
water over 60 min. The peak indicated with an arrow corresponds to the U1-SCRTX-Lg1a fraction.

This finding represents an exciting new source of information for the production of antimicrobial
drugs and contributes to the limited existing literature on antimicrobial molecules from the venom
of Loxosceles spiders. This fact is quite surprising because the venom of these organisms has been
well-studied due to its medical importance and several of the toxins that compose it have been
characterized, providing new information about the pathophysiology of envenomation and the
biotechnological potential of these molecules [20,21]. However, so far there is only one report that
indicates that L. gaucho venom contains low-molecular-mass molecules with antimicrobial activity
against Pseudomonas aeruginosa. The study also mentions that the whole venom of this spider does not
influence the proliferation of P. aeruginosa, but increases its biofilm formation, as well as the production
of gelatinase and caseinase [55].

2.2. Antimicrobial Activity and Minimum Inhibitory Concentrations (MICs)

U1-SCRTX-Lg1a was assessed for antimicrobial activity against five species of Gram-negative
bacteria, three species of Gram-positive bacteria, one species of fungus, and two species of yeast
(Table 1). All Gram-negative bacteria species tested showed sensitivity to U1-SCRTX-Lg1a, which
was active at a concentration range between 1.15 µM (1.9 µg/mL) and 4.6 µM (7.6 µg/mL).
P. aeruginosa ATCC 27853 was the most sensitive to the fraction, with an MIC of 1.15 µM (1.9 µg/mL).
U1-SCRTX-Lg1a was not effective against Gram-positive bacteria, fungus, or yeast at the concentrations
investigated (Table 1).
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Table 1. Antimicrobial activity spectrum of U1-SCRTX-Lg1a.

Microorganism MIC (µM (µg/mL)) 1

Gram-negative bacteria
Escherichia coli SBS363 4.6 (7.6)
E. coli D31 4.6 (7.6)
Pseudomonas aeruginosa ATCC 27853 1.15 (1.9)
P. aeruginosa PA14 4.6 (7.6)
Enterobacter cloacae β-12 2.3 (3.8)

Gram-positive bacteria
Micrococcus luteus A270 ND
Staphylococcus aureus ATCC 29213 ND
Bacillus subtilis ATCC 6633 ND

Fungus
Aspergillus niger ND

Yeasts
Candida albicans MDM8 ND
Candida krusei IOC 4559 ND

MIC, minimum inhibitory concentration; ND, not detectable (antimicrobial activity not detected in the concentrations
assayed). 1 The MIC refers to the minimal peptide concentration without visible cell growth in liquid medium.

Interestingly, U1-SCRTX-Lg1a has lower MICs against the Gram-negative bacterial strains tested
than those of Lacrain, an AMP found in the body extract of centipede Scolopendra viridicornis previously
identified by our group [56]. On the other hand, compared to Gomesin, a potent host defense
peptide isolated from the hemocytes of the spider Acanthoscurria gomesiana [57], the U1-SCRTX-Lg1a
MICs against E. coli SBS363 and E. coli D31 are higher; however, it has a slightly more pronounced
antimicrobial effect against P. aeruginosa ATCC 27853 and Enterobacter cloacae β-12. It is worth
noting that P. aeruginosa PA14, a hyper-virulent burn wound isolated strain, was also sensitive
to U1-SCRTX-Lg1a.

Because of the antibacterial activity described, we believe that U1-SCRTX-Lg1a could have
Gram-negative specificity. Under this assumption, it can be said that this fraction has a great therapeutic
potential, considering that recently identified AMPs that were introduced into clinical practice
mainly display activity against Gram-positive bacteria while being ineffective against Gram-negative
organisms due to their use of multiple mechanisms that work synergistically to resist AMPs [58].

Nonetheless, it would be impelling to investigate other biological activities of this fraction in
order to have a clearer notion of all its biotechnological potential, since other molecules with several
properties are constantly reported in the literature. For example, spinigerin, a 25-amino acid peptide
obtained from the fungus-growing termite Pseudacanthotermes spiniger, exhibits antibacterial, antifungal,
and antiviral properties, and recently it was also found that spinigerin induces apoptosis-like cell
death in Leishmania donovani [59].

2.3. Hemolytic Activity

To determine the effect of U1-SCRTX-Lg1a on human erythrocytes at the antimicrobial
concentrations, its hemolytic activity was tested. After incubating red blood cells from a healthy
donor with the fraction up to a concentration of 137 µM for 3 h at 37 ◦C, no hemoglobin release was
observed, indicating that U1-SCRTX-Lg1a does not cause lysis of human erythrocytes within these
concentrations (Figure 2). These data suggest that the mechanism of action of U1-SCRTX-Lg1a does
not involve the disruption of cell membranes and that this fraction is not part of the group of toxins
responsible for the hemolytic properties ascribed to the whole venom of Loxosceles spiders [21].
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considerably, which indicates that U1-SCRTX-Lg1a did not affect HeLa cell viability even at a high 
concentration of 112.74 µM (Figure 3). This lack of cytotoxicity presented by the fraction against HeLa 
cells at the antimicrobial concentration range suggests a possible specificity of U1-SCRTX-Lg1a 
against bacteria, leading us to consider this as an indicator of its safety for the development of 
antibiotics for mammalian organisms. 

 

Figure 2. Hemolytic effects of U1-SCRTX-Lg1a on human erythrocytes. The concentration-response
curve of hemolytic activity of the peptide shows its extremely low toxicity even at the maximum
concentration tested (137 µM), which is very similar to the negative control (phosphate-buffered saline
(PBS)). The two arrows (red and blue) indicate the concentration range in which the fraction showed
antimicrobial activity. The results represent the mean ± standard deviation of three independently
developed experiments.

For antimicrobial molecules to be interesting for systemic applications, they must show low
toxicity against erythrocytes [60]. Taking this into account, U1-SCRTX-Lg1a emerges as a promising
template for the development of novel antibiotics.

2.4. Cytotoxicity of U1-SCRTX-Lg1a

The cytotoxicity of U1-SCRTX-Lg1a against human cervical carcinoma cells (HeLa) was assessed
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. After incubating
the cells with the fraction at various concentrations (0.88 µM to 112.74 µM), it was observed that
the amount of formazan produced by the mitochondria of living cells did not vary considerably,
which indicates that U1-SCRTX-Lg1a did not affect HeLa cell viability even at a high concentration
of 112.74 µM (Figure 3). This lack of cytotoxicity presented by the fraction against HeLa cells at
the antimicrobial concentration range suggests a possible specificity of U1-SCRTX-Lg1a against
bacteria, leading us to consider this as an indicator of its safety for the development of antibiotics for
mammalian organisms.
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Figure 3. Cytotoxicity of U1-SCRTX-Lg1a. HeLa cells were incubated with various concentrations
(0.88 µM to 112.74 µM) of the fraction for 48 h at 37 ◦C. Effects on cell viability were determined by
performing an MTT assay. Untreated HeLa cells were used as a negative control and HeLa cells treated
with DMSO served as a positive control. The results correspond to the mean ± standard deviation of
three experiments carried out independently.

2.5. U1-SCRTX-Lg1a Identification

The silver-stained 12% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis did not
show bands corresponding to the purified antimicrobial U1-SCRTX-Lg1a within the molecular weight
range established by the marker (MW); instead, it was observed that the fraction accumulated near the
bottom of the gel, while other protein components of L. gaucho crude venom (CV) whose molecular
weights are higher than 10 kDa did appear on the gel and were clearly separated (Figure 4). Through
this, we inferred that U1-SCRTX-Lg1a has a molecular weight lower than 10 kDa.
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Figure 4. Electrophoretic analysis of U1-SCRTX-Lg1a. Silver-stained 12% SDS-PAGE gel of the crude
venom of L. gaucho (CV) (5 µg) and purified antimicrobial U1-SCRTX-Lg1a (2.5 µg) under non-reducing
conditions. On the left are numbers that correspond to the positions of molecular weight markers (MW)
expressed in kDa.
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Accurate molecular mass and sequence of U1-SCRTX-Lg1a were established by tandem mass
spectrometry (MS/MS) data interpretation using PEAKS Studio software (v8). The fragmentation
pattern revealed a peptide sequence of 16 amino acids (VGTDFSGNDDISDVQK) with a monoisotopic
mass of 1695.75 Da and an average local confidence (ALC) of 88% (Figure 5). The U1-SCRTX-Lg1a
database searches performed through the PEAKS DB tool revealed that this native peptide fraction of
L. gaucho venom may be derived from the phospholipase D LgRec1 [33], covering 6% of the whole
protein sequence (Figure 6).

To our knowledge, U1-SCRTX-Lg1a is the first antimicrobial peptide isolated from the venom
of L. gaucho, an araneomorph spider that belongs to the Sicariidae family. Before this study, the only
peptides reported for Loxosceles spiders were ICKs [24,52,53], a family of structural peptides with
several cysteine residues that form disulfide bonds that result in a knot, which have generated great
interest due to their ability to specifically bind to insect ion channels, conferring them great potential for
the development of efficient bioinsecticides for the control of pests that can affect the agricultural sector
or insects vectors of infectious diseases [20,21]. Considering this, it is safe to say that U1-SCRTX-Lg1a
is the newest member of the group of bioactive peptides isolated from the venom of Loxosceles spiders.
As such this complex protein mixture invites a new biotechnological approach in view that it may
represent a valuable alternative to standard antimicrobial therapies as a new and non-conventional
anti-infective agent.
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represented by standard amino acid code letters.
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Figure 6. Peptide spectrum match indicated by a blue line below the sequence of the phospholipase D
LgRec1. U1-SCRTX-Lg1a covered 6% of the whole protein sequence.

2.6. Structure and Physicochemical Characteristics of U1-SCRTX-Lg1a

Sequence similarity searches with the Basic Local Alignment Search Tool (BLAST) allowed us
to perform a multiple alignment analysis of the amino acid sequence of U1-SCRTX-Lg1a using the
Clustal Omega program. BLAST searches and sequence alignment exhibited the peptide homology
to specific regions of nine phospholipases D found in the venom of Loxosceles spiders (Figure 7).
The amino acid sequences of phospholipases D LgRec1 (fragments 162–177) and Loxtox_s1D
(fragments 188–203) had the highest homology to U1-SCRTX-Lg1a, showing a 100% identity match
with the peptide. On the other hand, LvSicTox-alphaIC1bv (fragments 154–169), LvSicTox-alphaIC1aii
(fragments 155–170), LgSicTox-alphaIA1 (fragments 162–177), LsaSicTox-alphaIB1avi (fragments
155–170), LsaSicTox-alphaIB1av (fragments 152–167), and LruSicTox-alphaIC1a (fragment 155–170)
had a lower but still significant homology to the peptide with an identity match range between 88–81%.
Finally, LiSicTox-alphaII2 had the lowest homology to U1-SCRTX-Lg1a, exhibiting a 75% identity
match. The alignment also showed that all analyzed sequences contain two regions with identical
amino acids: one of two residues (VG) and another one of eight residues (DFSGNDDI). Furthermore,
three positions are strongly conserved and two are occupied by residues of functional similarity (D
and E, both with negatively charged R groups; V and I, both with nonpolar R groups), indicating that
these positions represent conservative amino acid exchanges [61].
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Figure 7. Multiple alignment analysis of the deduced amino acid sequence of U1-SCRTX-Lg1a from
L. gaucho with specific fragments of phospholipases D previously reported from different species of
Loxosceles spiders. Regions that show identical amino acids among all species are shaded in dark gray
and those strongly conserved are shaded in light gray. Sequences alignment was performed with
Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/; accessed on 25 September 2018) and
modified manually.

The venoms of several species are rich sources of antimicrobial molecules, and it has been
suggested that the presence of these molecules is useful for organisms like spiders and scorpions to
clean the biological conducts that transport venom from the gland where it is produced to the tip of the
venom injector, protecting them from potential infections [1]. Based on this, the PEAKS DB searches
and resulting multiple sequence alignment led us to hypothesize that, as has been previously reported
in studies on AMPs derived from large proteins found in the venom of spiders and snakes [12,62],
U1-SCRTX-Lg1a may have originated from a limited proteolytic cleavage after K residues suffered
from the phospholipase D LgRec1 previously isolated from the venom of L. gaucho [33], suggesting
that these dermonecrotic toxins may be important factors in the immune response of Loxosceles spiders
by functioning as a substrate for the generation of AMPs.

http://www.ebi.ac.uk/Tools/msa/clustalo/
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Some physical and chemical characteristics of U1-SCRTX-Lg1a were predicted by performing a
sequence analysis using the ProtParam tool available on the bioinformatics resource portal ExPASy.
The net charge, grand average of hydropathicity (GRAVY), and theoretical isoelectric point (pI),
among other properties, were calculated (Table 2). U1-SCRTX-Lg1a is an anionic molecule (net charge
of −3) due to the presence in its structure of four aspartic acid residues (D), a negatively charged
amino acid, and just one lysine residue (K), which is a positively charged amino acid. Furthermore,
the peptide has a pI of 3.77, indicating that this is the pH value at which its net charge is equal to 0.
Additionally, the GRAVY score, a metric of the overall hydrophobicity/hydrophilicity of polypeptides,
was in the negative range for U1-SCRTX-Lg1a (−0.769), showing that this AMP could be hydrophilic
in nature.

Table 2. Physicochemical parameters of U1-SCRTX-Lg1a.

Net charge −3
Theoretical isoelectric point (pI) 3.77
Molar extinction coefficient (ε) 51,100 M−1 cm−1

Aliphatic index 60.62
GRAVY (grand average of hydropathicity) −0.769 1

Instability index −11.26 2

Physicochemical parameters were obtained using the ProtParam tool in ExPASy (http://web.expasy.org/
protparam/; accessed on 25 September 2018). 1 The negative GRAVY value suggests that the peptide is hydrophilic.
2 The instability index rates this peptide as stable.

Most AMPs are cationic, which facilitates their interaction with anionic microbial membranes,
leading to a variety of effects that includes membrane permeabilization, depolarization, leakage,
and lysis, which ends in cell death. However, many evidences indicate that some cationic AMPs
(CAMPs) can interact with intracellular anionic targets such as DNA, RNA, or cell wall components
whilst others appear to have immunomodulatory properties [63]. Generally, CAMPs also have
an isoelectric point close to 10, which is very similar to detergents and is consistent with the
membrane-disruptive mechanisms of action proposed for many of these peptides [64]. Taking this into
account, the net negative charge of U1-SCRTX-Lg1a and its low pI indicate that this peptide is part of
the interesting group of anionic antimicrobial peptides (AAMPs), which have been considered as an
essential part of the innate immunity of vertebrates, invertebrates, and plants [63].

Because some microbial strains either possess inherent resistance to CAMPs or can develop
resistance to these molecules, a rapidly growing number of AAMPs have been identified in recent
years, which appear to have evolved to counter microbes with resistance to CAMPs and would
thus seem well-suited for the development of novel antimicrobial agents [65]. The interaction with
the membrane appears to be crucial for the antimicrobial mechanisms of AAMPs, which include
toroidal pore formation and the Shai–Huang–Matsazuki model of membrane interaction along with
membranolysis via tilted peptide formation and pH-dependent amyloidogenesis [66]. However, it has
also been reported that some of these AAMPs use non-membranolytic mechanisms of action that and
involve the binding of metal ions through the residues of aspartic acid and glutamic acid to form
cationic salt bridges with negatively charged components of microbial membranes. This action would
allow the translocation of these peptides across the cell membrane into the cytoplasm, where they
could act on internal cellular targets [63]. Taking into consideration that the results of the hemolytic
assay suggest a non-membrane disruptive mechanism of action for U1-SCRTX-Lg1a, it would be
interesting to elucidate the way in which this anionic peptide interacts with its target microorganisms
in future studies.

To predict the primary and secondary structure of the peptide from its amino acid sequence,
the PepDraw tool and I-TASSER server were used, respectively (Figure 8). The predicted model by
I-TASSER suggests that U1-SCRTX-Lg1a tends to form an α-helix between the ISDV residues and
that the rest of the structure is a coil, which implies an absence of regular secondary structure in the
largest portion of the molecule. The C-score, a measure of confidence that allows an estimation of the

http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
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quality of the predicted structure, was −0.77 for this peptide, indicating a correct global topology for
the model.
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3. Conclusions

In summary, we isolated, purified, and characterized a native AAMP from the venom of the spider
L. gaucho, named U1-SCRTX-Lg1a. The 1695.75 Da peptide shows a potent and rapid antibacterial
effect on different strains of Gram-negative bacteria, a lack of hemolytic activity against human
erythrocytes, a lack of cytotoxicity against HeLa cells, and a remarkable similarity to specific regions of
phospholipases D from different species of Loxosceles spiders. These data suggest that U1-SCRTX-Lg1a
have potential for the design of novel and non-conventional therapeutic agents effective against
infectious diseases caused by bacteria. Thus, the mechanism of action of U1-SCRTX-Lg1a should
be determined in future studies. Finally, it is worth highlighting that this is the first peptide with
antimicrobial properties described for the Loxosceles genus, whose venom has been extensively studied,
indicating that this complex mixture of proteins and peptides could be a relatively untapped source of
antimicrobial molecules with novel mechanisms of action.

4. Materials and Methods

4.1. Microbial Strains

Bacterial and fungal strains were obtained from the collection of microorganisms of the Special
Laboratory for Applied Toxinology (LETA) of the Butantan Institute (São Paulo, Brazil). Among these
strains were: E. coli SBS363, E. coli D31, P. aeruginosa ATCC 27853, P. aeruginosa PA14, E. cloacae β-12, M.
luteus A270, Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 6633, C. albicans MDM8, C. krusei
IOC 4559, and the filamentous fungus A. niger isolated from bread.

4.2. Animals

Adult specimens of L. gaucho were collected and kept alive in the bioterium of the LETA (Figure 9).
The animals were collected under the Permanent License for the Collection of Zoological Material
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no. 11024-3 provided by the Brazilian Institute of Environment and Renewable Natural Resources
(IBAMA) and Special Authorization for Access to Genetic Patrimony no. 001/2008.
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4.3. Venom Fractionation and U1-SCRTX-Lg1a Purification

After capture, the arachnids were kept in quarantine for seven days without food as a preparation
for the extraction of venom. For this procedure, the technique performed was electrostimulation using
an AVS-100 electric shock generator (AVS Projetos Especiais, São Paulo, Brazil), which consisted of
applying brief 15 V electric shocks repeatedly to the chelicerae of the spiders until they released
the venom (Figure 10). L. gaucho crude venom was collected with a micropipette, pooled in a
0.5-mL Eppendorf tube that remained on ice throughout the extraction period, and then immediately
freeze-dried and stored at −80 ◦C before being resuspended in acidified water (trifluoroacetic acid
(TFA) 0.05%) for the RP-HPLC fractionation, which was carried out 18 hours later. The volume of crude
venom collected was approximately 15 µL. The insoluble material was eliminated by centrifugation at
14,000× g for 2 min and the supernatant was directly subjected to RP-HPLC on a semi-preparative
column Jupiter C18 (Phenomenex International, Torrance, CA, USA) equilibrated at room temperature
with 0.05% TFA in ultrapure water. The purification of the sample was carried out using acetonitrile
(ACN)/water/0.05% TFA gradients of 0% to 80% ACN at a flow rate of 1.5 mL/min over 60 min.
Ultraviolet (UV) absorbance of the effluent was monitored at 225 nm. The eluted peak fractions
were manually collected and were vacuum-dried before being used in antimicrobial activity assays.
The fraction with antimicrobial activity (peak 18) was further purified using a linear gradient from
26% to 46% ACN at a flow rate of 1 mL/min for 60 min on the same column and it was quantified
based on absorbance at 205 nm using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). Peptide purity of the obtained individual component with antimicrobial activity
(U1-SCRTX-Lg1a) was confirmed by mass spectrometry and amino acid sequencing.
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Figure 10. Venom collection of L. gaucho by electrostimulation. The spider was immobilized holding its
legs back and released the venom into a 10-µL pipette tip. The venom was later pooled in a 0.5-mL
Eppendorf tube.

4.4. Antimicrobial Assays

During the purification process, the antimicrobial effects of the fractions were evaluated by
liquid growth inhibition assays against E. coli SBS363, M. luteus A270, A. niger, and C. albicans MDM8.
Bacteria were cultured in poor nutrient broth (PB) (1.0 g peptone in 100 mL of water containing 86 mM
NaCl at pH 7.4; 217 mOsm), and the fungus and yeasts were cultured in poor potato dextrose broth
(1/2-strength PDB) (1.2 g potato dextrose in 100 mL of water at pH 5.0; 79 mOsm). Determination
of antimicrobial activity was executed using a five-fold microtiter broth dilution assay in 96-well
sterile plates (Shanghai Beiyi Bioequip Information Co., Ltd., Shanghai, China) at a final volume
of 100 µL. Mid-log phase cultures were diluted to a final concentration of 5 × 104 CFU/mL for
bacteria and 5 × 105 CFU/mL for the fungus and yeasts [67,68]. Dried fractions were dissolved in
200 µL of ultrapure water and then 20 µL were aliquoted into each well with 80 µL of microbial
dilution. The assays were carried out in duplicate. Sterile water and PB or PDB were used as controls.
Tetracycline was also used as a growth inhibition control. The microtiter plates were incubated for
18 h at 30 ◦C. Growth inhibition was determined by measuring absorbance at 595 nm.

4.5. Concentration of U1-SCRTX-Lg1a

The concentration of U1-SCRTX-Lg1a was determined through the Lambert-Beer law using
the molar extinction coefficient at 205 nm absorption [69], obtained using the Protein Parameter
Calculator tool available at the Nick Anthis website (http://nickanthis.com/tools/a205.html; accessed
on 25 September 2018).

4.6. MICs of U1-SCRTX-Lg1a

The MICs were established using the purified fraction U1-SCRTX-Lg1a against Gram-negative
bacterial strains, Gram-positive bacterial strains, a fungal strain, and a yeast strain, as described above
(Section 4.1). The fraction dissolved in ultrapure water at a final concentration of 23 µM was used
to perform serial dilutions in 96-well sterile plates at a final volume of 100 µL. For that, 20 µL of the
fraction was applied to each well at a serial dilution of two-fold microtiter broth dilution and added
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to 80 µL of the microbial dilution (modified from Ehret-Sabatier et al. [70]). Microbial growth was
measured by monitoring the increase in optical density at 595 nm using a Victor 3TM 1420 multilabel
counter (PerkinElmer, Waltham, MA, USA). The MIC was defined as the lowest concentration without
visible growth after incubation at 30 ◦C for 18 h. Assays were performed in duplicate.

4.7. Determination of Hemolytic Activity

The hemolytic activity of the U1-SCRTX-Lg1a fraction was assessed against human erythrocytes
from a healthy adult donor. A 3% (v/v) suspension of washed erythrocytes in 0.15 M phosphate-
buffered saline (PBS) was incubated with U1-SCRTX-Lg1a at concentrations ranging from 0.13 µM
to 137 µM in a U-bottom 96-well plate for 3 h at 37 ◦C with intermittent shaking. The supernatants
were first collected and transferred to a flat-bottom 96-well plate, and then hemolysis was determined
by measuring the absorbance of each well at 414 nm in a FlexStation 3 multi-mode microplate reader
(Molecular Devices, San Jose, CA, USA). Assays were conducted in triplicate. The hemolysis percentage
was expressed in relation to a 100% lysis control (erythrocytes incubated with 0.1% Triton X-100), PBS
was used as a negative control, and the calculation was made according to the following equation:
% hemolysis = (Asample − Anegative)/(Apositive − Anegative).

4.8. Cytotoxicity Assay against HeLa Cells

The toxicity of the fraction U1-SCRTX-Lg1a against HeLa cells was evaluated using the MTT
colorimetric assay to measure cell viability. First, the cells were cultivated and maintained in DMEM
culture medium, supplemented with 10% heat-inactivated calf serum. After that, the HeLa cells were
seeded in 96-well sterile plates (2 × 105 cells/well) and cultured for 24 h at 37 ◦C in a humidified
atmosphere containing 5% CO2. Serial dilutions of the fraction were carried out using DMEM to obtain
final concentrations ranging from 0.88 µM to 112.74 µM, which were added and allowed to react with
the cells for 48 h, followed by the addition of 20 µL MTT (5 mg/mL in PBS) for another 4 h at 37 ◦C.
Finally, 150 µL of isopropanol were added to dissolve the formazan crystals. Absorbance at 550 nm
was measured and assays were conducted in triplicate. Cell survival was calculated according to the
following equation: % survival = (Atreated cells/Auntreated cells) × 100.

4.9. SDS-PAGE Analysis

Samples of L. gaucho crude venom (5 µg) and U1-SCRTX-Lg1a (2.5 µg) were analyzed by 12%
tris-glycine SDS-PAGE under non-reducing conditions [71], using a Spectra Multicolor Broad Range
Protein Ladder (Thermo Fisher Scientific, Waltham, MA, USA) to estimate the molecular mass. Before
the electrophoresis, the samples were solubilized in sample buffer. The total running time was 3 h at
120 V. After electrophoresis, the gel was stained with silver nitrate [72].

4.10. Mass Spectrometry Analysis and U1-SCRTX-Lg1a Identification

The fraction U1-SCRTX-Lg1a was analyzed in positive ion mode on an LTQ Orbitrap Velos mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled to an Easy-nLC II (Thermo Fisher
Scientific, Bremen, Germany), according to Abreu et al. [12] with some modifications. The mass
spectrometer was programmed for a full scan, recorded between m/z 300 and 2000 with a resolution of
60,000 (at m/z 400). The 10 most abundant peaks were fragmented using collision-induced dissociation
(CID) and analyzed in an ion trap. The isolation window for precursor ions was set to 2 m/z,
the minimum count of ions to trigger events (MS2) was 10,000, and the dynamic exclusion time
was set to 90 s. Normalized collision energy was set to 35%. In order to identify the U1-SCRTX-Lg1a
fraction, mass spectrometry (MS) raw data were processed and searched in the PEAKS Studio software
(v8; Bioinformatics Solutions, Waterloo, ON, Canada) [73]. To determine its amino acid sequence,
we performed de novo sequencing from MS/MS data with the following parameters: a precursor mass
tolerance of 10 ppm and a fragment ion mass tolerance of 0.5. De novo peptides, whose ALC scores
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≥80% were searched against the UniProt-SwissProt database using the PEAKS DB tool. The peptide
false discovery rate (FDR) was predictable by the decoy fusion method and was selected at a maximum
of 1%.

4.11. U1-SCRTX-Lg1a Analysis with Bioinformatics Tools

The resulting amino acid sequence of U1-SCRTX-Lg1a was submitted to searches for regions of
local similarity against proteins from arthropods registered on the public database provided at the
National Center for Biotechnology Information (NCBI) website using BLAST (https://blast.ncbi.nlm.
nih.gov/Blast.cgi; accessed on 25 September 2018). The physicochemical parameters of the sequence
were calculated using the ProtParam tool available on the bioinformatics resource portal ExPASy of
the Swiss Institute of Bioinformatics (SIB) website (http://web.expasy.org/protparam/; accessed on
25 September 2018). Finally, the potential primary structure of U1-SCRTX-Lg1a was generated using
the PepDraw tool provided by the Wimley laboratory (Tulane University, New Orleans, LA, USA)
(http://www.tulane.edu/~{}biochem/WW/PepDraw/; accessed on 25 September 2018), and the
online I-TASSER server available on the Yang Zhang laboratory website (http://zhanglab.ccmb.med.
umich.edu/I-TASSER/; accessed on 25 September 2018) was used to obtain a three-dimensional (3D)
image of its secondary structure.
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