

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article Data on dimer formation between importin α subtypes

Yoichi Miyamoto, Masahiro Oka

Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan

ARTICLE INFO

Article history: Received 18 November 2015 Received in revised form 16 March 2016 Accepted 24 March 2016 Available online 1 April 2016

Keywords: Nuclear transport Importin α Nuclear localization signal Dimer

ABSTRACT

This article describes data related to the research article titled "Functional characterization of importin $\alpha 8$ as a classical nuclear localization signal receptor" [1]. A GST pull-down assay showed that both importin $\alpha 1$ and $\alpha 8$, which are classical nuclear localization signal (cNLS) receptors, can form a dimer with importin $\alpha 6$, $\alpha 7$, or $\alpha 8$. Importin $\alpha 8$ has higher dimer-forming ability than importin $\alpha 1$. In addition, our data show that either importin $\alpha 1$ or importin $\alpha 8$ can form a heterodimer with importin $\alpha 3$, which exists in a preformed complex with cNLS substrates such as the conventional SV40TNLS or the p53 protein, resulting in the release of the cNLS substrates from importin $\alpha 3$.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific sub- ject area	Nucleocytoplasmic transport
Type of data How data was acquired	Figure GST pull-down, western blot

DOI of original article: http://dx.doi.org/10.1016/j.bbamcr.2015.07.017

E-mail addresses: ymiyamoto@nibiohn.go.jp (Y. Miyamoto), moka@nibiohn.go.jp (M. Oka).

http://dx.doi.org/10.1016/j.dib.2016.03.080

^{2352-3409/© 2016} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Data format Experimental factors	Raw image Bacterially expressed and purified recombinant proteins
Experimental features	Bound proteins precipitated by GST pull-down assay were subjected to SDS- PAGE and detected by immunoblotting
Data source location	Osaka, Japan
Data accessibility	Data are accessible in this article only

Value of the data

- These data are valuable to researchers interested in the molecular mechanisms by which the importin α-cNLS substrate complex dissociates in the nucleus.
- These data show that importin α1 and α8 have substantial differences in dimer-forming ability, despite both proteins belonging to the same subfamily.
- These data provide a new insight into the function of nuclear-localized importin αs.

1. Data

To examine whether importin α s can directly bind with other importin α subtypes, FLAG-tagged importin α 6, α 7, or α 8 recombinant proteins were incubated with either GST-importin α 8, or GST-importin α 1, and analyzed by western blotting (Fig. 1A). To investigate the effect of heterodimerization of importin α s on its substrate binding, either an importin α 3-SV40TNLS complex, or an importin α 3-p53 complex was incubated with increasing amounts of FLAG-importin α 8, or α 1 recombinant proteins, and analyzed by western blotting (Figs. 1B and 2).

2. Experimental design, materials and methods

2.1. Plasmid construction

Fig. 1. Western blot analysis indicates that importin α subtypes have the potential to form heterodimers with other importin α s. (A) GST-importin α 8 (IMP α 8) and GST-importin α 1 (IMP α 1) were incubated with FLAG-importin α 6 (IMP α 6), FLAG-importin α 7 (IMP α 7), or FLAG-importin α 8 (IMP α 8) recombinant proteins. Bound proteins were detected by anti-FLAG antibody or anti-GST antibody, respectively. FLAG-tagged importin α s (0.625 pmol) were loaded as an input. (B) GST-importin α 3 (IMP α 3) immobilized on GSH beads was preincubated with SV40TNLS-GFP (Preincubation), and then an equal or 10 times higher amount of FLAG-importin α 8 or FLAG-importin α 1 was added. Left panels: representative immunoblot (IB) images of the NLS-GFP and GST-importin α 3 bands. Right panels: relative fold changes in the NLS-GFP/GST ratio in the presence of either importin α 8 or α 1, which were normalized to the control condition (without FLAG-importin α s). The results are from three independent experiments and have been presented as mean \pm SEM. The numbers 1–5 correspond to the lane numbers in the left panels. **p < 0.01, *p < 0.05; Student's *t*-test.

The construct encoding SV40 large T antigen NLS (PPKKKRKVED, pGEX6P2-SV40TNLS-GFP) was subcloned from pGEX2T-SV40TNLS-GFP [2]. The plasmids pGEX6P3/FLAG-human-importin α 1 (KPNA2), pGEX6P2-mouse-importin α 2 (KPNA2, which we referred to as m-importin α 1), and pGEX2T-human-importin α 3 (KPNA4, Qip1) were obtained as described previously [1,3,4].

The human cDNA encoding the tumor protein p53 (NM_000546) was amplified from MCF7 cells by PCR performed using the following primers: p53 Forward: 5'-CACGGATCCATGGAGGAGCCG-CAGTCAGATC-3' and p53 Reverse: 5'-GGACTCGAGTCAGTCTGAGTCAGGCCCTTCTG-3'. The PCR program was as follows: one cycle of 2 min at 94 °C; 40 cycles of 15 s at 94 °C, 30 sec at 64 °C, and 1 min 20 s at 68 °C; and one cycle of 10 min at 68 °C. The PCR product was subcloned into the *Bam*HI and *XhoI* sites of pGEX6P1, and then verified by sequencing.

2.2. Recombinant protein purification

Recombinant proteins fused to GST were purified as follows: The expression vectors were transformed into *Escherichia coli* Rosetta, and then the cells were grown at 37 °C in LB medium containing

Fig. 2. Either importin α8 or α1 dissociates the importin α3-p53 complex by dimer formation with importin α3. (A) p53 preferentially binds to importin α3 rather than importin α1 or α8. Pull-down assays were performed with the p53 recombinant protein and with GST-importin α1 (IMPα1), GST-importin α3 (IMPα3), or GST-importin α8 (IMPα8) immobilized on GSH beads. After incubation at 4 °C for 1 h, the beads were washed and bound proteins were analyzed by SDS-PAGE. Proteins are detected by Coomassie staining, p53 (10 pmol) was loaded as an input control. (B) GST-importin α3 (IMPα3) immobilized on GSH beads was preincubated with a five times higher amount of p53 to form a complex (Preincubation). Then, increasing amounts of FLAG-importin α3 bands. Right panels: relative fold changes in the p53/GST ratio in the presence of either FLAG-importin α8 or FLAG-importin α3 which were normalized to the control condition (without FLAG-importin α3). The results are from three independent experiments and have been presented as mean \pm SEM. The numbers 1–5 correspond to the lane numbers described in the left panels. **p < 0.01, *p < 0.05; Student's t-test.

50 μ g/mL ampicillin. Expression was induced by addition of 1 mM isopropyl- β -D-thiogalactopyranoside (IPTG), followed by incubation at 20 °C for 12 h. The bacteria were lysed in lysis buffer (50 mM Tris-HCl at pH 8.3, 500 mM NaCl, 1 mM EDTA, 2 mM dithiothreitol (DTT), 0.2 mM phenylmethylsulfonyl fluoride (PMSF), 1 µg/mL aprotinin (Nacalai Tesque, Kyoto, Japan), 1 µg/mL pepstatin (Peptide Institute, Osaka, Japan), and $1 \mu g/mL$ leupeptin (Peptide Institute)) by freeze-thawing twice and passing through a French press (model: FA-078, SLM Instruments, Rochester, NY, USA). The cell lysates were sonicated using a Sonifier 250 (Branson, Danbury, CT, USA), and centrifuged at 20,400g at 4 °C for 30 min. The resultant supernatant was incubated with glutathione-Sepharose 4B beads (GSH beads, GE Healthcare, Tokyo, Japan) at 4 °C for 12 h. After the GSH beads were washed five times with lysis buffer, GST-tagged proteins were eluted with elution buffer (20 mM glutathione, 100 mM Tris-HCl at pH 8.3, 100 mM NaCl, 1 mM EDTA, 2 mM DTT, and 1 μ g/mL each of aprotinin, pepstatin, and leupeptin). Cleavage of GST from the GST-fused protein was performed using Pre-Scission protease (GE Healthcare, Piscataway, NJ, USA) with 10 units/mg of fusion protein at 4 °C for 12 h in cleavage buffer (50 mM Tri-HCl at pH 7.0, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, and 1 µg/mL each of aprotinin, leupeptin, and pepstatin). Finally, the purified proteins were dialyzed against dialysis buffer (20 mM HEPES at pH 7.3, 110 mM CH₃COOK, 2 mM DTT, and 1 µg/mL each of aprotinin, pepstatin, and leupeptin) and concentrated by ultrafiltration using Amicon Ultra centrifugal filter units (Merck Millipore, Tullagreen, Ireland).

2.3. GST pull-down assay

Fig. 1A: Bacterially produced FLAG-h-importin α 6, α 7, and α 8 recombinant proteins (100 pmol each) were incubated with GST, GST-h-importin α 8 (KPNA7), or GST-m-importin α 1 (KPNA2) immobilized on GSH beads in 200 µL of transport buffer (TB; 20 mM HEPES at pH 7.3, 110 mM potassium acetate, 2 mM magnesium acetate, 1 mM EGTA, 1 mM DTT, 500 µM PMSF, and 1 µg/mL each of aprotinin, pepstatin, and leupeptin) with 0.1% Triton X-100 at 4 °C for 1 h. After washing five times with TB containing 0.1% Triton X-100, the beads were suspended in sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer (50 mM Tris–HCl at pH 6.8, 34.7 mM SDS, 50% glycerol, 25% β -mercaptoethanol, and bromophenol blue). Bound proteins were analyzed by western blotting with specific antibodies described.

Fig. 1B: GST-h-importin $\alpha 3$ (50 pmol) immobilized on GSH beads was incubated with the SV40TNLS substrate (SV40TNLS-GFP, 50 pmol) at 4 °C for 1 h. After washing the beads to remove unbound proteins, either 50 pmol or 500 pmol of FLAG-h-importin $\alpha 8$ or FLAG-h-importin $\alpha 1$ was mixed with the importin $\alpha 3$ -SV40TNLS complex at 4 °C for 1 h. The beads were then washed five times with TB containing 0.1% Triton X-100 and suspended in SDS-PAGE loading buffer. Bound proteins were analyzed by western blotting with specific antibodies described.

Fig. 2A: GST-h-importin $\alpha 1$, $\alpha 3$, or $\alpha 8$ (50 pmol each) immobilized on GSH beads were incubated with the p53 protein (50 pmol) in 200 µL TB containing 0.1% Triton X-100 at 4 °C for 1 h. After washing the beads to remove unbound proteins, bound proteins were subjected to 10% SDS-PAGE and stained with Coomassie Brilliant Blue (CBB).

Fig. 2B: GST-h-importin $\alpha 3$ (50 pmol) immobilized on GSH beads was incubated with the p53 protein (250 pmol) in 200 µL TB containing 0.1% Triton X-100 at 4 °C for 1 h. After washing the beads, either 50 pmol or 500 pmol of FLAG-h-importin $\alpha 8$ or FLAG-h-importin $\alpha 1$ was added to the importin $\alpha 3$ -p53 complex at 4 °C for 1 h. The beads were then washed five times with TB containing 0.1% Triton X-100, and bound proteins were analyzed by western blotting with the specific antibodies described below.

2.4. Antibodies

The following antibodies were used for western blotting: anti-FLAG M2 antibody (F1804, 0.1 µg/mL, Sigma-Aldrich, St. Louis, MO, USA), anti-GST antibody (sc-138, 0.04 µg/mL, Santa Cruz Biotechnology, Texas, USA), anti-GFP antibody (M048-3, 0.1 µg/mL, MBL, Nagoya, Japan), anti-p53 (FL-393) antibody (sc-6243, 0.04 µg/mL, Santa Cruz Biotechnology), and horseradish peroxidase (HRP)-conjugated anti-mouse or anti-rabbit IgG secondary antibodies (1: 10,000 dilution, Jackson ImmunoResearch Lab., West Grove, PA, USA)

2.5. Western blotting

Samples were loaded on a 10% SDS-PAGE gel, and the separated proteins in the gel were transferred onto an Immobilon-P membrane (PVDF membrane; Merck Millipore, Darmstadt, Germany) using a semi-dry transfer blotting system (Trans-Blot Turbo Transfer System, BioRad Laboratories, Inc., Hercules, CA, USA). The membrane was blocked with blocking buffer consisting of 3% skim milk in Tris-buffered saline (TBS; TAKARA BIO, Shiga, Japan) with 0.05% Tween (TBS-T) for 1 h. The membrane was probed with primary antibodies diluted in Can Get Signal Immunoreaction Enhancer Solution 1 (TOYOBO, Osaka, Japan) at 4 °C overnight, and then incubated with the HRP-conjugated secondary antibody diluted in Can Get Signal Immunoreaction Enhancer Solution 2 (TOYOBO) at room temperature (RT) for 1 h. After the membrane was washed with TBS-T, it was developed with Chemi-Lumi One L or Super (Nacalai Tesque). The intensity of each western blot signal was quantified by Image J software (http://rsbweb.nih.gov/ij/).

Acknowledgments

We thank Hitomi Inoue for the technical support provided for this study. We also thank Yoshinari Yasuda for constructing the pGEX6P1-p53 plasmid. This work was supported in part by JSPS Grant-in-Aid for Scientific Research (C) (No. 15K07068) to Y.M. and Grant-in-Aid for Scientific Research on Innovative Areas (No. 25116008) to M.O.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2016.03.080.

References

- C. Kimoto, T. Moriyama, A. Tsujii, Y. Igarashi, C. Obuse, Y. Miyamoto, M. Oka, Y. Yoneda, Functional characterization of importin α8 as a classical nuclear localization signal receptor, Biochim. Biophys. Acta 1853 (2015) 2676–2683.
- [2] Y. Miyamoto, M.A. Baker, P.A. Whiley, A. Arjomand, J. Ludeman, C. Wong, D.A. Jans, K.L. Loveland, Towards delineation of a developmental α-importome in the mammalian male germline, Biochim. Biophys. Acta 1833 (2013) 731–742.
- [3] T. Sekimoto, N. Imamoto, K. Nakajima, T. Hirano, Y. Yoneda, Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1, EMBO J. 16 (1997) 7067–7077.
- [4] Y. Miyamoto, N. Imamoto, T. Sekimoto, T. Tachibana, T. Seki, S. Tada, T. Enomoto, Y. Yoneda, Differential modes of nuclear localization signal (NLS) recognition by three distinct classes of NLS receptors, J. Biol. Chem. 272 (1997) 26375–26381.