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A B S T R A C T   

Background: Osteoarthritis (OA) is the most common age-related musculoskeletal disease. However, there is still a 
lack of therapy that can modify OA progression due to the complex pathogenic mechanisms. The aim of the study 
was to explore the role and mechanism of XJB-5-131 inhibiting chondrocytes ferroptosis to alleviate OA 
progression. 
Methods: We treated tert-butyl hydroperoxide (TBHP)-induced ferroptosis of mouse primary chondrocytes with 
XJB-5-131 in vitro. The intracellular ferroptotic hallmarks, cartilage anabolic and catabolic markers, ferroptosis 
regulatory genes and proteins were detected. Then we established a mouse OA model via destabilization of the 
medial meniscus (DMM) surgery. The OA mice were treated with intra-articular injection of XJB-5-131 regularly 
(2 μM, 3 times per week). After 4 and 8 weeks, we performed micro-CT and histological examination to evaluate 
the protection role of XJB-5-131 in mouse OA subjects. RNA sequencing analysis was performed to unveil the key 
downstream gene of XJB-5-131 exerting the anti-ferroptotic effect in OA. 
Results: XJB-5-131 significantly suppressed TBHP-induced increases of ferroptotic hallmarks (ROS, lipid perox-
idation, and Fe2+ accumulation), ferroptotic drivers (Ptgs2, Pgd, Tfrc, Atf3, Cdo1), while restored the expression 
of ferroptotic suppressors (Gpx4, Fth1). XJB-5-131 evidently promoted the expression of cartilage anabolic and 
decreased the expression of cartilage catabolic markers. Moreover, intra-articular injection of XJB-5-131 
significantly inhibited the expression of Cox2 and Mmp13, while promoted the expression of Col2a1, Gpx4 
and Fth1 in DMM-induced mouse articular cartilage. Further, we identified Pebp1 as a potential target of XJB-5- 
131 by RNA sequencing analysis. The anti-ferroptosis and chondroprotective effects of XJB-5-131 were signifi-
cantly diminished by Locostatin, a specific antagonist of Pebp1. 
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Conclusion: XJB-5-131 significantly protects chondrocytes from ferroptosis in TBHP-induced mouse primary 
chondrocytes and DMM surgery-induced OA mice model via restoring the expression of Pebp1. XJB-5-131 is a 
potential therapeutic drug in the management of OA progression.   

The translational potential of this article 

We demonstrate that XJB-5-131 is a potential therapeutic drug in the 
management of OA, which provides a new breakthrough in the mech-
anism treatment of OA with clinical potential. 

1. Introduction 

Osteoarthritis (OA) is the most prevalent age-related musculoskeletal 
disease characterized by swelling and pain of involved joints, which can 
be accompanied by joint deformity, movement limitation, and even 
disability in severe cases [1–4]. Although OA has been recognized for a 
long time, however, there is still a lack of therapy modifying its pro-
gression due to the complex pathogenic mechanisms. The U.S. Food and 
Drug Administration (FDA) classified OA as “a serious disease with 
unmet medical need” [5]. There was an urgent need to develop new 
drugs for the treatment of OA. 

Cartilage degeneration has been recognized as the main pathogenesis 
of OA progression, in which injury of chondrocytes, the only one cell 
type in cartilage, directly accelerated this process [6–8]. Multiple types 
of chondrocyte death have been identified in cartilage degeneration [8, 
9]. Recently, chondrocyte ferroptosis has been suggested to be direct-ly 
involved in OA cartilage degeneration [10]. Ferroptosis is a novel form 
of iron-dependent programmed cell death characterized by lipid per-
oxidation, accumulated ferrous ions, and depleted glutathione, which is 
significantly different from previously identified programmed cell death 
at the genetic, morphological, and biological levels [11–13]. Increasing 
studies focused on chondrocyte ferroptosis in OA [14–17], whereas, few 
investigations have been reported to inhibit chondrocyte ferroptosis and 
alleviate OA. The nitroxide XJB-5-131 is an antioxidant targeting 
mitochondria and has achieved satisfactory efficacy in a variety of dis-
eases [18–23], as well as being considered a potential inhibitor of fer-
roptosis [24]. However, the role and mechanism of XJB-5-131 in OA 
progression have not been investigated. 

In the current study, we explored the anti-ferroptotic effects of XJB- 
5-131 with primary mouse chondrocytes and mouse OA model induced 
by destabilization of the medial meniscus (DMM) surgery. We found that 
XJB-5-131 exhibited anti-ferroptotic effect of chondrocyte and allevi-
ated OA progression. These results have important implications for the 
development of novel therapeutic agents based on the pathogenesis of 
OA. 

2. Materials and methods 

2.1. Ethics statement 

All experimental procedures were in accordance with the Declara-
tion of Helsinki. The animal experimental procedures were performed in 
strict accordance with the guidelines of the Animal Care and Use Com-
mittee of Nanjing Drum Tower Hospital (2020AE01102). 

2.2. Isolation and culture of mouse primary chondrocytes 

The murine primary chondrocytes were isolated and cultured refer-
ring to previous protocols [25]. Briefly, the cartilage tissues from the 
3-day-old C57BL/6 mice (purchased from Model Animal Research 
Center of Nanjing University) were digested in 0.2 % type II collagenase 
(Gibco, USA) at 37 ◦C) for 4 h. After removing soft tissues and filtrating 
with a cell strainer (Corning, USA), the isolated chondrocytes were 
cultured in Dulbecco’s modified Eagle’s medium contained 1 g/L 

glucose (DMEM/F12) (Gibco, USA) supplemented with 1 % pen-
icillin–streptomycin (Invitrogen, USA) and 10 % fetal bovine serum 
(Gibco, USA) in the incubator (5 % CO2, 37 ◦C) (Thermo Scientific, 
USA). The cell culture medium was refreshed every 48 h, and chon-
drocytes from passages 1 to 3 were used in cell experiments. 

2.3. Cell viability assay 

To assess the cytotoxicity of tert-butyl hydroperoxide (TBHP) 
(#MKCH9944, Sigma, USA) to chondrocytes in the presence or absence 
of XJB-5-131 (#SML2982, Sigma, USA), CCK-8 assay was performed 
(#CK04, Dojindo, Japan) according to the manufacturer’s instruction. 
Uniformly chondrocytes were seeded in 96-well plates and cultured with 
TBHP and/or XJB-5-131 for 24 h. After washed by PBS, the cells were 
then incubated with DMEM/F12 containing 10 % CCK-8 solution for 
90min at 37 ◦C. The OD values were measured at 450 nm with a 
microplate reader (Thermo Scientific, USA). 

2.4. Quantitative real-time PCR 

The cellular mRNA isolation and qPCR were performed essentially 
using RNA-quick Purification Kit (#RN001, ES Science, Shanghai, 
China), HiScript-TS 5’/3′ RACE Kit (RA101, Vazyme Biotech Co.,Ltd, 
China) and ChamQ™ SYBR Color qPCR Master Mix (Q411, Vazyme, 
China) according to previous protocols [26]. The primer sequences used 
were as follows: 

Gapdh: 5’ – AGGTCGGTGTGAACGGATTTG- 3’ (forward) 
and 5’ – TGTAGACCATGTAGTTGAGGTCA- 3’ (reverse) 
Atf3: 5’ – GAGGATTTTGCTAACCTGACACC- 3’ (forward) 
and 5’ – TTGACGGTAACTGACTCCAGC- 3’ (reverse) 
Gpx4: 5’ – TGTGCATCCCGCGATGATT- 3’ (forward) 
and 5’ – CCCTGTACTTATCCAGGCAGA- 3’ (reverse) 
Pgd: 5’ – TGAAGGGTCCTAAGGTGGTCC- 3’ (forward) 
and 5’ – CCGCCATAATTGAGGGTCCAG- 3’ (reverse) 
Cdo1:5’ – GGGGACGAAGTCAACGTGG- 3’ (forward) 
and 5’ – ACCCCAGCACAGAATCATCAG- 3’ (reverse) 
Ptgs2: 5’ – TGAGCAACTATTCCAAACCAGC- 3’ (forward) 
and 5’ – GCACGTAGTCTTCGATCACTATC- 3’ (reverse) 
Col2a1: 5’ – CCAGATGACCTTCCTACGCC- 3’ (forward) 
and 5’ – TTCAGGGCAGTGTACGTGAAC- 3’ (reverse) 
Acan: 5’ – GTGCCTATCAGGACAAGGTCT- 3’ (forward) 
and 5’ – GATGCCTTTCACCACGACTTC- 3’ (reverse) 
Mmp13: 5’ – TCTTTATGGTCCAGGCGATGA- 3’ (forward) 
and 5’ – ATCAAGGGATAGGGCTGGGT- 3’ (reverse) 
Mmp3: 5’ – ATGGGCCTGGAACAGTCTTG- 3’ (forward) 
and 5’ – GTGGGAGTTCCATAGAGGGAC- 3’ (reverse) 
Tfrc: 5’ – GTTTCTGCCAGCCCCTTATTAT- 3’ (forward) 
and 5’ – GCAAGGAAAGGATATGCAGCA- 3’ (reverse) 

2.5. Intracellular Fe2+, ROS and lipid peroxidation detection 

Intracellular levels of ferrous iron (Fe2+), ROS and lipid peroxidation 
were measured with Flow Cytometry as previously described [15]. 
Briefly, chondrocytes were incubated with 1 μM Fe2+ probe FerroOr-
ange (#F374, Dojindo, Japan), 10 μM ROS probe DCFH-DA (#S0033S, 
beyotime, China) and 5 μM lipid ROS probe C11-BODIPY (#GC40165, 
GLPBIO, USA) for 40 min in the incubator (37 ◦C, 5 % CO2), respec-
tively. After washing the probes with PBS, the chondrocytes were 
treated with 50 μM TBHP and/or 2 μM XJB-5-131, 10 μM Locostatin 
(#A16079, Adooq, China) for 4 h. Then the fluorescent intensity of 
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chondrocytes was measured by Flow Cytometry (BD Biosciences, USA). 
FlowJo software (Version 10, USA) was used to analyzed the data. 

2.6. Protein extraction and western blot 

The total protein of chondrocytes with different treatment were 
extracted using a whole Cell Lysis Assay Kit (#KGA1202, Keygen, 
China). Protein concentration measurements and western blot were 
performed according to the previously described protocols [26]. The 
primary antibodies used were as follows: anti-Collage II (#BA0533, 
Boster, China), anti-MMP13 ((#ab219620, Abam, UK), anti-Cox2 
(#66351-1-Ig, Proteintech, China), anti-FTH1 (#4393, Cell Signaling 
Technology, USA), anti-GPX4 (#ab125066, Abam, UK), anti-PEBP1 
(#GB113118, Servicebio, China). After HRP-conjugated goat 
anti-rabbit/mouse secondary antibodies (#BL003A or #BL001A, Bio-
sharp, China) incubation, an ECL Western Blot Kit (Tanon, China) was 
used to detect signals. Finally, we quantified the protein bands with 
Image J software (version 1.8.0, USA). 

2.7. Animals study 

Twelve weeks old wild-type C57BL/6 male mice were purchased 
from the Model Animal Research Center of Nanjing University, and 
acclimated in specific pathogenfree (SPF) condition. The mice were 
randomly divided into the following 4 groups: (1) Sham operation 
(Sham); (2) Sham operation with XJB-5-131 treatment (XJB); (3) 
Destabilization of medial meniscus (DMM); and (4) DMM with XJB-5- 
131 treatment (DMM + XJB). The XJB-5-131 (2 μM, 8 μl, 3 times/ 
week) was intra-articularly injected into the right knees since 1 week 
after DMM surgery for 4 W or 8 W. The equal volume of saline was 
injected in the Sham and DMM groups. The DMM procedure were per-
formed as previouly decribed [26]. 

2.8. Micro-CT analysis 

Mouse knee joints were fixed in 4 % paraformaldehyde (PFA), and 
then were evaluated with a micro-CT scanner (mCT80, Scanco Medical 
AG, Switzerland). As previously de-scribed. We analyzed the images and 
reconstructed the 3D knee joints with Scanco Medical software. The 
number of osteophytes, subchondral plate thickness (SBP), bone volume 
(BV), subchondral bone mineral density (BMD), bone volume/tissue 
volume (BV/TV), trabecular thickness (Tb.Th), trabecular separation 
(Tb.Sp), trabecular number (Tb.N) were acquired from the Scanco 
Medical software. 

2.9. Histological analysis 

After treatment, the experimental knee joints were surgically 
removed and fixed in 4 % PFA, decalcified with 10 % EDTA and 
embedded in paraffin. The subjects were sliced into continuous coronal 
5 μm slides by a microtome (Thermo, USA) and stained with safranin O/ 
fast green (Solarbio, China). The Osteoarthritis Research Society Inter-
national (OARSI) grading system was used to evaluate the cartilage 
destruction. We also analyzed the thickness of cartilage and the number 
of chondrocytes. 

2.10. Immunofluorescence staining 

After dewaxing, the histological sections of mouse knee joints were 
blocked with 5 % bovine serum albumin (BSA) for 1 h at room tem-
perature, then incubated overnight at 4 ◦C with primary antibodies as 
follows: anti-Collage II (#BA0533, Boster, China), an-ti-MMP13 
(#ab219620, Abam, UK), anti-Cox2 (#ab219620, Abam, UK). Then, 
the slides were washed with TBST and incubated with a fluorescein- 
conjugated secondary antibody (#BL003A or #BL001A, Abcam, USA) 
for 60 min at room temperature. Then we stained the nuclei with DAPI 

(#SC3598, Santa Cruz, USA). A fluorescence microscope (Zeiss, Ger-
many) was used to observe and acquire the images. 

2.11. RNA sequence analysis 

Total RNA was extracted from primary chondrocytes after the 
treatment of TBHP with or without XJB-5-131 for 6 h (n = 3). The RNA 
was submitted to GeneChem company (Shanghai, China) for RNA 
sequencing analysis. The Pearson’s correlation analysis and heatmaps 
were performed. In this study, differentially expressed genes (DEGs) 
were defined as fold changes >2 and P < 0.05. We used Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to 
assess the biological function of DEGs. 

2.12. Statistical analysis 

The data were expressed as the mean ± standard deviation (S.D.). 
The data were statistically analyzed by GraphPad Prism software 
(version 8.0, USA) and SPSS software (version 24.0, USA). The quanti-
tative data used represent the results of no less than three independent 
repeated experiments. Levene method and Shapiro–Wilk test were used 
for the estimation of data homogeneity of variance and normal distri-
bution, respectively. The data between two groups were compared with 
unpaired two-tailed t-test. When more than 2 groups, we performed 
One-way ANOVA statistical analysis. The statistically significant was 
considered as P < 0.05. 

3. Results 

3.1. XJB-5-131 suppresses TBHP-induced chondrocytes ferropotsis in 
vitro 

The cytotoxicity of XJB-5-131 were performed by CCK-8 kit, the 
results showed that XJB-5-131 at concentrations of 0.1–5 μM exhibited 
no cytotoxic effects on chondrocyte viability while reduced chondrocyte 
viability but had no significant difference at 5 μM concentration. As 
previously described, we used tert-butyl hydroperoxide (TBHP) (50 μM) 
to induce mouse primary chondrocyte ferropotsis in vitro [15]. The 
viability of chondrocytes was significantly decreased after 12 h incu-
bation of TBHP, however, the cytotoxicity was significantly alleviated 
when the concentration of XJB-5-131 increased (Fig. 1A). Next, we 
found that XJB-5-131 significantly alleviated the ferroptotic hallmarks 
(intracellular ROS level, Fe2+ accumulation and lipid peroxidation level) 
in TBHP-induced chondrocytes by flow cytometry (Fig. 1B). Q-PCR 
verified that XJB-5-131 promoted the expression of chondrocyte 
anabolic genes (Col2a1 and Acan) and inhibited chondrocyte catabolic 
genes (Mmp13 and Mmp3) (Fig. 1C). In addition, under the treatment of 
TBHP, the ferroptotic suppressor (Gpx4) was evidently up-regulated and 
ferroptotic drivers (Tfrc, Atf3, Ptgs2, Cdo1, Pgd) were significantly 
down-regulated by XJB-5-131(Fig. 1C). Moreover, western blot analysis 
showed that XJB-5-131 significantly promoted the expression of chon-
drocyte anabolic protein (Col2a1) and ferroptotic suppressors (Gpx4 and 
Fth1), while markedly decreased chondrocyte metabolic protein 
(Mmp13) and ferroptotic driver (Cox2) (Fig. 1D). These results suggest 
that XJB-5-131 plays an anti-ferroptotic role in chondrocytes. 

3.2. XJB-5-131 alleviates DMM-induced osteophyte formation and 
subchondral bone sclerosis 

To gain insight into whether XJB-5-131 can suppress chondrocyte 
ferroptosis and alleviate OA in vivo, we performed intra-articular in-
jection of XJB-5-131 in the OA mouse model. Previous study suggested 
that OA cartilage degeneration was highly associated with bone 
redundancy formation and subchondral bone microarchitectural 
changes [27]. We further analyzed the effect of XJB-5-131 on the bone 
quality of the mice knee joint. We found osteophytes, subchondral bone 
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Fig. 1. XJB-5-131 suppresses TBHP-induced chondrocytes ferropotsis in vitro. (A) The viability of primary chondrocytes after XJB-5-131 treatment with or without 
TBHP(n = 5). (B) Flow cytometry analysis and quantitative analysis of intracellular total reactive oxygen species (ROS), FerroOrange (Fe2+), lipid peroxidation (C11- 
BODIPY) (n = 6). (C) Q-PCR analysis of indicated genes in chondrocytes treated with 50 μM TBHP and/or 2 μM XJB-5-131 for 6 h (n = 5). (D)Western blot analysis of 
protein expression and quantification of Col2a1, Cox2, MMP13, Fth1 and Gpx4 in chondrocytes treated with XJB-5-131 (2 μM) with or without TBHP(n = 3). The 
values are presented as the means ± SDs. *P < 0.05; **P < 0.01; ***P < 0.001. 
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thickness increased significantly in the knee joint of DMM mice with 
micro-CT both in 4 weeks and 8 weeks group (Fig. 2A–C). In 4 weeks 
group, we found the bone volume (BV), subchondral bone mineral 
density (BMD), bone volume/tissue volume (BV/TV), subchondral 
trabecular thickness (Tb.Th), the number of osteophyte and subchondral 
bone plate(SBP) thickness were significantly higher in the DMM mice, 
while the subchondral trabecular separation(Tb.Sp) significantly 

reduced and trabecular number (Tb.N) showed no significant change 
(Fig. 2A). Intra-articular administration of XJB-5-131 significantly 
alleviate osteophyte formation and subchondral bone thickness 
(Fig. 2B). The trend of these index in 8 weeks group were similar to that 
in 4 weeks group and the effect of XJB-5-131 was more pronounced than 
that in 4 weeks (Fig. 2D). These results suggest that XJB-5-131 sup-
presses the osteophyte formation and subchondral bone sclerosis in 

Fig. 2. XJB-5-131 alleviates DMM-induced bone redundancy formation and subchondral bone microarchitectural changes. (A, C) 3D reconstructed images of mice 
knee joints and the sagittal view of the medial joint compartment revealing the changes to femoral and tibial surfaces and subchondral bone plate (SBP) thickness, 
respectively. Red line indicates the thickness of SBP (4 weeks and 8 weeks, n = 6). (B, D) Micro-CT analysis of indicated markers of bone redundancy formation and 
subchondral bone microarchitectural changes (4 weeks and 8 weeks, n = 6). Scale bars, 1 mm (A, C) The values are presented as the means ± SDs. *P < 0.05; **P <
0.01; ***P < 0.001. 
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DMM-induced mice OA model. 

3.3. XJB-5-131 alleviates OA progression via inhibiting chondrocytes 
ferroptosis 

Next, we performed safranin O/fast green staining of mice joints and 
found decreased cartilage thickness, reduced chondrocytes numbers, 
and increased OARSI scores in the DMM mice compared to the Sham 
mice in both 4 weeks and 8 weeks group, which were significantly 
alleviated by the intra-articular injection of XJB-5-131 (Fig. 3A–D). To 
further evaluate the anti-ferroptotic and chondroprotective effects of 
XJB-5-131, we performed immunofluorescence staining of mice artic-
ular cartilage. The histological examination revealed reduced Col2a1, 
Fth1 and Gpx4 expression, whereas increased Mmp13 and Cox2 
expression in DMM-induced mice cartilage, which were markedly 
abolished by XJB-5-131 treatment both in 4 weeks and 8 weeks group 
(Fig. 3E–G). Taken together, these data indicates that XJB-5-131 inhibits 
DMM-induced articular cartilage erosion and chondrocyte ferroptosis. 

3.4. Pebp1 is a potential mediator of XJB-5-131 exerting the anti- 
ferroptotic effect in chondrocytes 

To explore the mechanisms of XJB-5-131 inhibiting chondrocytes 
ferroptosis, we performed RNA sequencing analysis of mouse chon-
drocytes treated with TBHP in the presence or absence of XJB-5-131. 
Compared with control group, there were 8361 DEGs in TBHP group, 
within which 4239 genes were up-regulated and 4122 were down- 
regulated. Moreover, compared with the TBHP group, there were 
5500 differentially expressed genes in the TBHP + XJB-5-131 group, of 
which 2567 were up-regulated and 2933 were down-regulated (Fig. 4A). 
There were 3870 common difference genes between Control group vs 
TBHP group and TBHP group vs TBHP + XJB-5-131 group (Fig. 4B). 
Compared with the Control group, the GO in TBHP group was signifi-
cantly enriched ROS metabolic processes, cellular transition metal ion 
homeostasis and regulation of membrane lipid distribution (Fig. 4C). 
Furthermore, the cellular iron ion homeostasis and glutathione peroxi-
dase activity were more enriched while the ROS metabolic processes 
were less enriched in the TBHP + XJB group than the TBHP group 
(Fig. 4C). All of these reveals that XJB-5-131 significantly suppressed 
TBHP induced chondrocyte ferroptosis. 

Within the heat map of DEGs, we noted that the Pebp1 was signifi-
cantly down-regulated after TBHP treatment and was restored by XJB-5- 
131 (Fig. 4D). Therefore, we speculated that Pebp1 may be an important 
mediator of XJB-5-131 resistance to chondrocyte ferroptosis. Then, we 
performed immunofluorescence staining of mice knee sections to verify 
the expression of Pebp1 protein in cartilage. Both in 4 weeks and 8 
weeks groups, the Pebp1 were significantly decreased in the DMM mice 
while XJB-5-131 treatment evidently restored its expression (Fig. 4E). 
Taken together, these results suggest that Pebp1 is a potential target of 
XJB-5-131 exerting anti-ferroptotic effects in chondrocytes. 

3.5. Inhibition of pebp1 disables the effect of xjb-5-131 resistant to 
chondrocyte ferroptosis 

Pebp1 was a small hybrid scaffold protein, which was bound to and 
inhibited the Raf1 kinase cascade under homeostatic conditions, there-
fore, Pebp1 was also known as Raf1 kinase inhibitory protein (RKIP) 
[28]. Locostatin, a Pebp1 specific inhibitor, disrupted the interaction of 
Pebp1 and Raf1 kinase and liberated Pebp1 by binding 15LO [29,30]. 
We selected Locostatin as an inhibitor of Pebp1 to explore the mecha-
nism of Pebp1 in XJB-5-131 against chondrocyte ferroptosis. We treated 
primary chondrocytes with different concentrations of Locostatin for 24 
h and revealed no significant effect on chondrocyte viability at 5 and 10 
μM. In contrast, the same concentration of Locostatin blocked XJB-5-131 
from rescuing the TBHP induced chondrocyte toxicity (Fig. 5A). Next, 
we found Locostatin (10 μM) attenuates the beneficial effects of 

XJB-5-131 on alleviating the ferroptotic hallmarks with flow cytometry 
(Fig. 5B). Furthermore, Locostatin counteracted XJB-5-131’s restoration 
of cartilage anabolic genes (Col2a1, Acan) and ferroptosis suppressor 
gene (Gpx4) as well as inhibition of cartilage catabolic genes (Mmp3, 
Mmp13) and ferroptosis drivers (Atf3, Ptgs2). In addition, the Pebp1 
expression was decreased significantly after Locostatin treatment 
(Fig. 5C). Furthermore, similar results of cartilage metabolic, ferroptosis 
markers, and Pebp1 were also observed by western blot analysis 
(Fig. 5D). These results indicates that inhibition of Pebp1 disables the 
effect of XJB-5-131 resistance to chondrocyte ferroptosis. 

4. Discussion 

In this study, we explored the effect of XJB-5-131 in inhibiting 
chondrocyte ferroptosis and alleviating OA progression. There were 
several novel and important findings here: (1) XJB-5-131 significantly 
alleviated chondrocyte ferroptosis and restored cartilage metabolic ho-
meostasis in vitro; (2) XJB-5-131 alleviated articular cartilage degen-
eration in DMM surgery induced OA mice model by suppressing 
chondrocyte ferroptosis; (3) XJB-5-131 exerted anti-ferroptotic effect on 
chondrocytes by restoring Pebp1 expression. 

Recent studies have shown that ferroptosis plays an important role in 
the pathogenesis of various diseases, including OA [31–34]. Iron was not 
only an essential trace element in human body, but also indispensable 
for metabolic reactions in chondrocytes, such as redox reactions, cellular 
respiration and DNA synthesis [35,36]. However, the range of cellular 
benefits of iron was narrow, and intracellular iron overload in chon-
drocytes had been suggested as a risk factor for OA [37]. Iron in cells was 
mainly stored in ferritin, which consists of two types, ferritin heavy 
polypeptide 1 (Fth1) and ferritin light polypeptide 1 (Ftl1), in which 
Fth1 played the main role of iron storage [38]. Studies showed that Fth1 
reduction would lead to the accumulation of Fe2+ and subsequent 
Fenton reactions, which would trigger ferroptosis. Conversely, increased 
Fth1 inhibited ferroptosis [39–41]. After treatment of XJB-5-131, the 
expression of Fth1 and Gpx4 increased while the ferroptosis driver Cox2 
decreased significantly in primary chondrocytes. In the animal study, we 
could not obtain chondrocytes and use probes to detect the biochemical 
markers (ROS levels and lipid peroxidation) of ferroptosis of chon-
drocytes directly because various factors including temperature and 
digestive enzymes would interference the chondrocytes state during the 
process of cartilage acquisition, resulting in unreliable results. There-
fore, immunofluorescence assay was used to measure the markers of 
cartilage synthesis and catabolism as well as ferroptosis to evaluate the 
anti-ferroptotic role and cartilage protective effect of XJB-5-131. 

We screened and verified Pebp1 as a potential mediator of XJB-5-131 
resistance to ferroptosis with RNA sequencing analysis and histological 
studies. Pebp1 was suggested as a key factor in the regulation of fer-
roptosis by binding with 15-lipoxygenase (15LOX) to form 15LOX/ 
Pebp1 complex [42–45]. Wenzel et al. suggested that Locostatin dis-
rupted the binding of Pebp1 to Raf1, and liberated it to form 15LOX/-
Pebp1 complex to exacerbate ferroptosis [42]. In our study, the 
anti-ferroptotic effect of XJB-5-131 was significantly inhibited by 
Locostatin. XJB-5-131 protects chondrocytes from ferroptosis by 
restoring Pebp1 expression, and its inhibition will lead to the failure of 
XJB-5-131 treatment. 

A growing number of studies have targeted the inhibition of chon-
drocyte ferroptosis since it was found to be involved in the progression 
of osteoarthritis [10,46,47]. However, there was few studies on target-
ing mitochondria to inhibit chondrocyte ferroptosis. The function of 
mitochondria in ferroptosis has been extensively studied, the main 
opinion was that mitochondria was important source of ROS involved in 
ferroptosis [48]. Moreover, ROS would lead to mitochondrial membrane 
lipid peroxidation [49,50]. The mitochondria-targeted antioxidant 
XJB-5-131 exhibited a potent anti-ferroptotic effect in cardiac cells and 
tubular epithelial cells [23,51]. Our investigation directly revealed that 
XJB-5-131 could alleviate OA progression by inhibiting chondrocyte 
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Fig. 3. XJB-5-131 ameliorates DMM-induced cartilage erosion chondrocyte ferropotsis in mouse knee joints. (A, C) Representative images of safranin-O/fast green 
stained knee joint sections in different groups (4 weeks and 8 weeks). (B, D) Quantitation of chondrocytes numbers, cartilage thickness and Osteoarthritis Research 
Society International (OARSI) scores (4 weeks and 8 weeks, n = 6). (E, F) IF staining of Col2a1, Mmp13, Cox2, Fth1, Gpx4 and their quantification (G) in different 
mice groups (4 weeks and 8 weeks, n = 6). Scale bars, 50 μm (A) (C) (E) (F), The values are presented as the means ± SDs. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Fig. 4. RNA sequencing analysis of primary chondrocytes treated with TBHP in the presence or absence of XJB-5-131, which identified Pebp1 as a potential mediator 
of XJB-5-131 exerting the anti-ferroptosis in chondrocytes. (A) RNA sequencing Volcano Plot between TBHP group (T) vs TBHP + XJB-5-131 group (T_X) and Control 
Group (C) vs T. (B) Venn Diagram of C vs T and T vs T_TX (C) Gene ontology (GO) enrichment plot in T vs C and T vs T_X groups. (D) Heatmap of Differential gene, 
identified Pebp1 as a potential mediator (E) IF staining of Pebp1 and quantification in different mice groups (4 weeks and 8 weeks, n = 6). Scale bars, 50 μm (E). 
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Fig. 5. Inhibition of pebp1 disables XJB-5-131 resistance to chondrocyte ferroptosis. (A) The viability of primary chondrocytes after Locostatin treatment with or 
without TBHP and XJB-5-131(n = 5). (B) Flow cytometry analysis and quantitative analysis of intracellular ROS, FerroOrange (Fe2+), lipid peroxidation (C11- 
BODIPY) in different groups(n = 6). (C) Q-PCR analysis of indicated genes in chondrocytes treated with TBHP, TBHP + XJB-5-131 and TBHP + XJB-5- 
131+Locostatin for 6 h (n = 5). (D)Western blot analysis of protein expression and quantification of Col2a1, Cox2, MMP13, Fth1 and Gpx4 in different groups (n =
3). The values are presented as the means ± SDs. *P < 0.05; **P < 0.01; ***P < 0.001. 
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ferroptosis. We not only provided a potential possibility of modifying the 
pathological progression of OA but also indicated the direction for the 
subsequent application of XJB-5-131 as a ferroptosis inhibitor in other 
diseases. Nonetheless, there were several limitations in our study. OA 
was a multifactorial degenerative disease involving multiple cells and 
factors [52,53]. However, in this study, we only investigated the path-
ogenic mechanism of XJB-5-131 on ferroptosis in chondrocytes, while 
the studies on other cells (such as macrophage) and other pathogenic 
factors need to further studied. In addition, the pathological features of 
OA were degeneration of articular cartilage, hyperplasia of subchondral 
bone, osteogenesis at the joint edge, inflammation and proliferation of 
synovial tissue [54]. In our study, although we have provided microCT 
data of subchondral bone which is consistent with the pathological 
alleviation of OA, ferroptosis is related to bone homeostasis [55], and 
the specific mechanism of subchondral bone remodeling needs to be 
further explored. 

5. Conclusion 

In conclusion, we found that XJB-5-131 suppressed chondrocyte 
ferroptosis and alleviated OA progression by restoring Pebp1 expression. 
This work suggests XJB-5-131 as a potential therapeutic drug for 
exploring the disease-modifying drug of OA. 
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