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Abstract: Natural products have attracted attention due to their safety and potential effectiveness as
anti-inflammatory drugs. Particularly, xanthones owning a unique 9H-xanthen-9-one scaffold, are
endowed with a large diversity of medical applications, including antioxidant and anti-inflammatory
activities, because their core accommodates a vast variety of substituents at different positions.
Among others, α- and γ-mangostin are the major known xanthones purified from Garcinia mangostana
with demonstrated anti-inflammatory and antioxidant effects by in vitro and in vivo modulation
of the Nrf2 (nuclear factor erythroid-derived 2-like 2) pathway. However, the main mechanism of
action of xanthones and their derivatives is still only partially disclosed, and further investigations
are needed to improve their potential clinical outcomes. In this light, a library of xanthone derivatives
was synthesized and biologically evaluated in vitro on human macrophages under pro-inflammatory
conditions. Furthermore, structure–activity relationship (SAR) studies were performed by means of
matched molecular pairs (MMPs). The data obtained revealed that the most promising compounds
in terms of biocompatibility and counteraction of cytotoxicity are the ones that enhance the Nrf2
translocation, confirming a tight relationship between the xanthone scaffold and the Nrf2 activation
as a sign of intracellular cell response towards oxidative stress and inflammation.

Keywords: Nrf2; inflammation; oxidative stress; xanthones; macrophages; mangostins

1. Introduction

Over the last decades, natural compounds have attracted strong interest, not only for
their wide range of pharmacological applications but also for the possibility of chemical
modification in order to improve their pharmacodynamics or pharmacokinetics. Among
these molecules, the heat-stable xanthone scaffold provides advantageous therapeutic
effects in different pathological conditions leading researchers to better investigate their po-
tential [1,2]. The core nucleus is represented by the xanthene-9-one, which is characterized
by different substitution patterns to elicit a wide range of biological activities, including an-
tioxidant, anti-inflammatory, antimicrobial, and anti-cytotoxic responses. The antioxidant
and anti-inflammatory effects have recently emerged as the most relevant, mainly for the
treatment of skin inflammatory diseases [3]. However, the main mechanism of action of
xanthones and their derivatives is still only partially disclosed. It has been reported that the
biological effects of the xanthone core nucleus might be related to the modulation of various
pro-inflammatory and anti-inflammatory cytokines as a sign of the recruitment of immune
cells. In parallel, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB),
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mitogen-activated protein kinase (MAPK), inducible cyclooxygenase (COX-2), and vascular
endothelial growth factor (VEGF)-related signaling pathways are also involved [4].

The most famous natural xanthones are mangostins isolated as secondary metabolites
from the mangosteen fruit (Garcinia mangostana L.), namely α- and γ-mangostin [5,6].
α-Mangostin is a prenylated xanthonoid endowed with wide-ranging biological effects
from anticancer to anti-inflammatory properties. Its key structural features and safety have
been investigated [7], although its low oral bioavailability and poor brain penetration have
made finding a proper therapeutic application challenging. However, these limitations
could be partially overcome by using specific carrier systems [8]. Conversely, γ-mangostin,
isolated from the fruit hull, has been only marginally investigated despite it only differing
slightly from the previous one (7-OH instead of 7-OCH3) [9].

The nuclear factor erythroid 2-related factor 2 (Nrf2) is essential for protection against
oxidative/xenobiotic stresses and has been widely known to be activated in immune cells to
attenuate inflammation [10]. Previous studies show that Nrf2 exerts its anti-inflammatory
effects in bacterial lipopolysaccharide (LPS)-treated macrophages interfering with the
Toll-like receptor 4 (TLR4)-induced NF-kB signaling pathway [11]. The relationship be-
tween α-mangostin and Nrf2 activation has been demonstrated both in vitro and in vivo
in different disease models. In a model of hydrogen peroxide (H2O2)-stressed RPE cells
(age-related macular degeneration model), reactive oxygen species (ROS) generation and
malondialdehyde (MDA) production were suppressed, whereas Nrf2-related antioxidant
enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX), as well
as the reduced glutathione (GSH) content, were increased. These effects have been related
to the mangostin-induced Nrf2 nuclear translocation leading to the up-regulation of heme
oxygenase-1 (HO-1), a potent antioxidant enzyme [12]. In other work, it was demonstrated
that the administration of α-mangostin attenuated lipopolysaccharide/D-galactosamine
(LPS/D-GalN) induced acute liver pathological injury in mice by activating Nrf2 and
HO-1 and thus enhancing the antioxidant cell defense towards inflammation generated
through the TLR4-related signaling. The authors also observed a decrease in specific
pro-inflammatory biomarkers such as cytokines, including tumor necrosis factor (TNF-α),
interleukin-1β and 6 (IL-1β, IL-6), and the recovery of hepatic GSH, SOD, and catalase
activities [13].

The present work aims at evaluating newly synthesized xanthone derivatives in terms
of biological activity and Nrf2 activation under pro-inflammatory conditions. With these
aims, a model of LPS-stimulated macrophages was established, and xanthone deriva-
tives were administered to measure cell metabolic activity, cytotoxicity, and Nrf2 nuclear
translocation. Then, the biological results were analyzed to build a QSAR (Quantitative
Structure–Activity Relationship) model to identify structural features influencing activ-
ity/potency within this large library of synthetic and natural xanthones.

2. Results and Discussion

Xanthones 2–11, 13–37, 39, and 40 (Table 1) were previously synthesized in our labora-
tory in the scope of other projects via three traditional methods (Scheme 1) [14–30]: conden-
sation of salicylic acid or salicylic ester with a phenol derivative (a), via benzophenone (b),
or via diphenyl ether intermediates (c).

Compounds 2, 6 (Grover, Shah, and Shah), and 31 (Eaton’s reagent) were synthe-
sized via (a), while compounds 3, 4, 7, 11, 16, 17, 24, 26, and 28 were obtained via (b).
The compound 13 was obtained through a dehydrative process (d) from commercial
2,2′,4,4′-tetrahydroxybenzophenone. The diaryl process led to the synthesis of com-
pounds 9 and 14 via (e) and the compounds 5, 8, 10, and 15 via (f), respectively. Fur-
ther structural modifications were performed on compounds 13, 26, and 28 in order
to extend the structural diversity of this library of compounds as previously reported
by other groups [23,28,31]. 1,7-Dihydroxyxanthone (12) was previously isolated from
Cratoxylum maingayi (Guttiferae) [15].
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To investigate whether the polyphenolic and aminated synthesized xanthone deriva-
tives have biological activity in an inflamed environment, the compounds were tested on
LPS-stimulated macrophages. In parallel, cells were pre-incubated and exposed to BSO to
trigger oxidative stress and stimulate a sustained Nrf2 activation, as reported in previous
studies [32] and shown in Scheme 2. When the LPS and the BSO were added, macrophage
metabolic activity dramatically increased (160% of metabolically active cells compared to
untreated cells, as a sign of activation. For comparison, macrophages were also exposed
to N-acetylcysteine (NAC) (5 and 10 mM,), a widely known antioxidant capable of de-
creasing Nrf2 activation in macrophages under oxidative stress conditions [32] and α- and
γ-mangostins. Since mangostins, as natural xanthones, represent the ideal controls for the
newly synthesized xanthone derivatives, only data after mangostin exposure are shown.

Table 1. Structure of xanthones 1–40.
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Table 1. Cont.

Compound R1 R2 R3 R4 R5 R6 R7 R8
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When α-mangostin was added at 24 h, the cell metabolic activity significantly increased
both at 1 and 10 µM with respect to the sample in the presence of LPS and BSO, which
was chosen for 100% of the experimental procedure. This trend maintained after 48 h
and was even greater in the presence of γ-mangostin (Tables 2 and 3). To verify if the
increase in metabolic activity and, thus, the macrophage activation led to cytotoxicity or
not, the LDH assay was performed on the supernatant from cells exposed to mangostins
after 24 h (Figure 1). As expected, the cells dramatically released a pool of LDH when
stimulated with LPS and BSO (25.1-fold of the pure UC). It should be noted that cells only
pre-incubated with BSO (UC) also abundantly released LDH (29.1-fold). When α- and
γ-mangostin were added to the cultures, the release of LDH was significantly decreased
(6.6- and 4.8-fold, respectively). It is plausible to assume that the metabolic activation and
the decreased cytotoxicity in the presence of mangostins allowed the authors to speculate
that the presence of these natural xanthones could even amplify the Nrf2 activation and
translocation to counteract the oxidative stress occurrence and, thus, the macrophage
activation. In order to demonstrate this speculation, a Western blot analysis was performed
(Figure 2). The immunoblotting clearly revealed that Nrf2 translocates into the nuclei in
the presence of mangostins under inflammatory conditions, mainly in the presence of the γ

derivative. Despite the significant macrophage activation in terms of metabolic activity, it
is plausible to assume that mangostins, amplifying the Nrf2 signaling, ameliorate the cell
response towards LPS- and BSO-induced oxidative stress and thus counteract cytotoxicity
occurrence in these cells. In this light, after having screened all the newly synthesized
xanthones derivatives in the same experimental conditions with the cell metabolic activity
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test (Tables 2 and 3), the derivatives resembling the cell metabolic activity behavior in the
presence of mangostins were chosen for further analyses (namely compounds 5, 6, 10, 16,
17, and 27).
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Scheme 2. In vitro experimental model used for the screening of xanthone derivatives 1–40 and
controls (mangostins). Undifferentiated human monocytes (CRL-9855™) were stimulated with
100 ng/mL of PMA (phorbol-12-myristate-13-acetate) for 48 h to obtain differentiated macrophage-
like cells. Next, macrophages were pre-incubated with 50 µg/mL of BSO (L-buthionine sulfoximine)
for 18 h. After that, cells were stimulated with 0.5 µg/mL of LPS (Lipopolysaccharide) and exposed
in parallel to BSO or xanthone derivatives (test compounds) or mangostins for up to 48 h.

The selected xanthone derivatives underwent LDH release measurements to verify
cytotoxicity occurrence. The assay revealed that 17 and 27 were the best compounds capable
of decreasing the LDH release from inflamed macrophages (8.6- and 6.8-fold, respectively),
and these data are comparable with that obtained in the presence of mangostins (Figure 1).
In parallel, Western blot analysis on cell cytosols and nuclei was performed, revealing
that 27 was the best compound in activating the Nrf2 translocation, followed by 16 and 10
(Figure 2).

Due to a large number of derivatives and biological data, proper structure–activity rela-
tionship (SAR) studies must be extrapolated. Different SAR methods, which relate chemical
structure to molecular properties, are frequently used to determine which derivatives
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should be synthesized based on the information that has been achieved in the optimization
procedures. In recent years, matched molecular pairs (MMPs) have become widely used in
medicinal chemistry, such as in SAR studies, activity profile analysis, and lead optimiza-
tion [33]. In fact, a substituent group replacement or a modification in the structure scaffold
can cause changes in the physico-chemical properties and activity profile of a molecule.
MMPs are defined as pairs of compounds that only differ by a chemical change at a single
site. The MMPs transformation can be used to explore changes in a molecule’s dataset
activities [34].

Table 2. Cell metabolic activity percentages in the presence of compounds 1–40 at 1 µM obtained
from the MTT assay.

Compound (1 µM) Viability 24 h (% LPS) Viability 48 h (% LPS)
1 81.3 ± 5.1 d,g 118.7 ± 23.1
2 77.9 ± 2.6 a,e,h 98.6 ± 25.5
3 116.5 ± 28.9 137.1 ± 16.5
4 123.4 ± 4.1 130.8 ± 6.7 a

5 151.7 ± 5.2 a 144.6 ± 7.0 b

6 168.7 ± 5.2 c 147.4 ± 3.1 b

7 110.8 ± 0.7 105.9 ± 15.0
8 97.6 ± 17.0 100.6 ± 18.8
9 135.2 ± 39.6 b 147.2 ± 6.4
10 131.8 ± 3.3 a 127.1 ± 5.3 a

11 119.3 ± 7.6 104.7 ± 17.8 g

12 92.6 ± 5.0 f,i 107.3 ± 15.4
13 114.7 ± 0.6 101.4 ± 12.8 d,g

14 122.3 ± 1.8 102.0 ± 11.6 g

15 109.5 ± 1.9 h 108.9 ± 3.0
16 111.3 ± 10.0 g 130.9 ± 1.9
17 143.4 ± 14.5 a 123.5 ± 5.3
18 104.8 ± 12.0 d,h 109.7 ± 5.9
19 105.4 ± 4.9 d,h 111.8 ± 2.5
20 134.5 ± 2.8 a 101.3 ± 2.4 d,g

21 90.8 ± 0.5 f,i 93.3 ± 6.6 e,i

22 93.4 ± 0.4 f,i 107.6 ± 11.1
23 112.7 ± 3.6 g 91.4 ± 6.0 e,i

24 102.0 ± 11.4 e,i 83.7 ± 17.1 f,i

25 110.7 ± 8.4 h 99.9 ± 15.0 d,h

26 100.8 ± 7.0 f,h 99.9 ± 7.2
27 101.6 ± 16.9 e,h 124.8 ± 8.4 a

28 112.5 ± 2.0 g 108.8 ± 8.1
29 89.4 ± 1.5 f,i 98.4 ± 2.2 d,h

30 104.7 ± 1.5 e,i 108.4 ± 7.3
31 104.0 ± 2.7 e,i 105.5 ± 10.6 g

32 96.6 ± 8.8 f,i 94.8 ± 3.4 e,i

33 98.0 ± 2.9 f,i 82.8 ± 9.0 f,i

34 87.0 ± 5.6 f,i 85.5 ± 3.6 f,i

35 111.8 ± 3.5 f,i 115.3 ± 2.2 a,h

36 117.1 ± 3.8 a,f,i 100.9 ± 2.7 e,h

37 112.9 ± 0.3 f,i 103.3 ± 0.1
38 90.0 ± 4.2 b,f,i 84.5 ± 11.5 f,i

39 96.7 ± 0.5 f,i 83.5 ± 7.0 f,i

40 82.9 ± 1.4 f,i 85.3 ± 2.0 a,f,i

α-mangostin 135.4 ± 0.2 b 120.3 ± 1.4 a

γ-mangostin 140.2 ± 1.4 c 123.2 ± 3.5 a

% LPS = LPS set as 100%; LPS = 18 h of pre-incubation with BSO 50 µM then 24 or 48 h with BSO 50 µM + LPS
0.5 µg/mL; compounds 1 µM = 18 h of pre-incubation with BSO 50 µM then 24 or 48 h with BSO 50 µM + LPS
0.5 µg/mL + compounds 1 µM. a = p < 0.05, b = p < 0.005, and c = p < 0.0005 between compounds and LPS;
d = p < 0.05, e = p < 0.005, and f = p < 0.0005 between compounds and α-mangostin at the same concentration;
g = p < 0.05, h = p < 0.005, and i = p < 0.0005 between compounds and γ-mangostin at the same concentration.

When studying SARs, the use of MMPs is useful in identifying structural features
that affect activity/potency. The MMP protocol used identified crucial substitutions by
identifying all possible MMPs and grouping them by common transformations. The
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frequency of the transformations indicates the probability that the structural change will
give rise to a property variation, and outliers can reveal a means to circumvent the general
tendency [35].

Table 3. Cell metabolic activity percentages in the presence of compounds 1–40 at 10 µM obtained
from the MTT assay.

Compound (10 µM) Viability 24 h (% LPS) Viability 48 h (% LPS)
1 108.0 ± 0.3 m 100.7 ± 7.5
2 81.2 ± 0.4 77.7 ± 15.8 g

3 112.4 ± 19.8 122.3 ± 1.3
4 117.5 ± 6.8 99.0 ± 3.5 m

5 144.1 ± 19.3 a 96.3 ± 2.7 n

6 123.8 ± 5.5 n 102.9 ± 5.8 n

7 133.2 ± 11.3 a 95.8 ± 1.7
8 92.8 ± 10.5 97.0 ± 1.3
9 127.2 ± 5.7 124.7 ± 1.8
10 134.3 ± 9.3 a 134.2 ± 4.6 a

11 115.7 ± 2.9 91.9 ± 8.0
12 100.1 ± 3.9 i 103.7 ± 16.1
13 111.9 ± 1.1 93.8 ± 3.9
14 111.2 ± 2.4 98.3 ± 0.1
15 98.3 ± 10.1 101.1 ± 0.2
16 116.6 ± 10.6 103.3 ± 3.7
17 111.2 ± 5.9 92.3 ± 15.0
18 106.1 ± 14.2 115.0 ± 5.3
19 116.4 ± 1.9 73.7 ± 4.2 m,e,h

20 86.0 ± 2.3 n,d,h 56.0 ± 6.4 a,m,f,i

21 51.8 ± 9.9 a,m,f,i 40.4 ± 11.3 b,m,f,i

22 100.1 ± 0.1 86.2 ± 3.7 g

23 111.8 ± 6.1 97.7 ± 16.1
24 101.9 ± 0.9 100.4 ± 1.3
25 101.6 ± 2.0 120.5 ± 7.1
26 114.0 ± 7.9 115.0 ± 8.2
27 102.0 ± 1.3 118.0 ± 3.0 a

28 100.8 ± 2.7 95.9 ± 11.3
29 77.5 ± 3.3 a,f,i 72.3 ± 1.3 c,r,e,i

30 53.0 ± 6.6 b,r,f,i 51.5 ± 1.3 c,r,f,i

31 91.1 ± 1.1 h 87.0 ± 8.2 g

32 92.4 ± 3.7 g 88.5 ± 2.5
33 88.3 ± 10.7 g 70.7 ± 7.1 a,e,i

34 94.6 ± 7.1 g 96.9 ± 8.6
35 109.0 ± 0.8 h 103.3 ± 0.7 h

36 91.7 ± 2.1 n,f,i 87.1 ± 7.6 f,i

37 92.8 ± 0.1 m,f,i 110.6 ± 3.4 h

38 82.2 ± 0.7 a,f,i 80.0 ± 7.1 f,i

39 91.8 ± 2.2 a,f,i 112.2 ± 1.2 a,h

40 76.86 ± 1.7 m,f,i 91.0 ± 1.4 n,f,i

α-mangostin 115.1 ± 0.1 118.2 ± 1.3 a

γ-mangostin 120.1 ± 0.6 a,m 126.9 ± 0.7 b

% LPS = LPS set as 100%; LPS = 18 h of pre-incubation with BSO 50 µM then 24 or 48 h with BSO 50 µM + LPS
0.5 µg/mL; compounds 10 µM = 18 h of pre-incubation with BSO 50 µM then 24 or 48 h with BSO 50 µM + LPS
0.5 µg/mL + compounds 10 µM. a = p < 0.05, b = p < 0.005, and c = p < 0.0005 between compounds and LPS;
d = p < 0.05, e = p < 0.005, and f = p < 0.0005 between compounds and α-mangostin at the same concentration;
g = p < 0.05, h = p < 0.005, and i = p < 0.0005 between compounds and γ-mangostin at the same concentration;
m = p < 0.05, n = p < 0.005, and r = p < 0.0005 between the same compound at 10 µM and 1 µM.

A large library of natural and synthetic xanthone derivatives was studied by MMPs
to identify structural trends that could influence activity. Fifty-eight MMPs were found
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spanning 13 structural substitutions (Figure 3). For each MMP, the activity change was
classified as neutral, increased, or decreased. The activity effects are tabulated and sorted
to show which MMPs have the largest effects in each category. Six types of substitu-
tion were responsible for an increase in activity [C(Br)Br >> H, C(Br)Br >> C(=O)OC,
C=O >> C(=O)OC, C=O >> C(Br)Br, C(Br)Br >> C, and C=O > C]; one substitution caused
an increase in activity in 66% of the cases, and had no effect in 33% of the cases (C=O >> H);
four substitutions caused an increase, a decrease, or had no effect on activity (H >> C,
H >> O, O >> OC, OC >> H); and finally, two substitutions did not cause a relevant
difference in activity [Cl >> H and C >> C(=O)OC] (Figure 3).
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Figure 1. Cytotoxicity occurrence in inflamed macrophages in the presence of compounds 5, 6, 10, 16,
17, 27, and mangostins after 24 h of exposure. (A) The trend line graph shows the percentage of LDH
released from cells in all the experimental conditions. Values are normalized on 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) data obtained from the same experiment. (B) Images
from a representative experiment. UC = untreated cells (cells pre-incubated with BSO for 18 h). LPS
= cells stimulated with 0.5 µg/mL LPS alone. The pure UC (cells exposed to complete RPMI for the
entire experimental procedure) was set as 1 (not shown). c = p < 0.0001 between samples and UC;
d = p < 0.01 and f = p < 0.0001 between samples and LPS. Representative images from experiments
were obtained by optical microscopy (phase-contrast, magnification 100×).

Some conclusions could be reached from this MMP analysis, namely the groups
that are more favorable for activity. Concerning the molecules studied by MMP anal-
ysis, methyl groups always increased activity, and methyl formate groups were typi-
cally important for activity (or at least did not affect activity). Conversely, formalde-
hyde groups were always prejudicial for activity. Other groups had variable behavior
according to the group they were substituting. Moreover, -OH groups at positions R2,
R3, R6, and/or R8; -OCH3 groups at positions R1; prenyl groups at R3, R4, and/or
R8; N,N,N′,N′-tetramethylpropane-1,3-diamine groups at R1; piperidine and piperazine
groups at R3 and/or R7; and -Cl groups at R8 presented the highest activities (Figure 4).

QSAR studies have been used for several years to point out properties of small
molecules that are relevant for activity and to forecast the activity of new compounds [36].
Therefore, a QSAR model was built to highlight the descriptors that are relevant to the
activity of the tested xanthone derivatives. Furthermore, a QSAR model allows efforts to
be directed toward the synthesis of compounds that are more likely to have the desired
activity [36]. In this work, a 2D-QSAR model was elaborated using the Comprehensive
Descriptors for Structural and Statistical Analysis (CODESSA 2.7.2) software package,
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which calculates approximately 500 descriptors. The heuristic method performs a pre-
selection of descriptors by eliminating descriptors that are not available for each structure,
have a small variation in magnitude, are correlated pairwise, and have no statistical
significance. The heuristic method is a convenient method for searching for the best set of
descriptors, without restrictions on the dataset size [37].
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Figure 2. Nrf2 protein expression in cytosols and nuclei of inflamed macrophages in the presence
of compounds 5, 6, 10, 16, 17, 27, and mangostins after 24 h of exposure. (A) Western blot analysis
of Nrf2 in cytosolic and nucleic protein fractions. β-actin and laminin A/C were used as load-
ing controls. (B) Bar graphs display densitometric values normalized using the loading controls.
UC = untreated cells (cells pre-incubated with BSO for 18 h). LPS = cells stimulated with 0.5 µg/mL
LPS alone. b = p < 0.001 and c = p < 0.0001 between samples and UC; d = p < 0.01, e = p < 0.001, and
f = p < 0.0001 between samples and LPS.

The correlation coefficient (R2), standard error (S), and Fisher value (F) measures were
used to evaluate the validity of the regression equation [38]. As the rules of QSAR establish
that there must be one descriptor for every five molecules used to build the model, seven
descriptors were used to build the QSAR equation. The multilinear regression analysis
using the heuristic method for 36 compounds in the seven-descriptor model is shown in
Figure 5. The compounds are uniformly distributed around the regression line, which
indicates that the obtained model has a satisfactory predictive ability.

The best QSAR equation has an R2 of 0.7346, a Fisher value of 11.07, and an S of
11.96, which reveals that the proposed model has statistical validity [39]. R2 is greater than
0.7, which proves the high strength of the relationship between the QSAR model and the
dependent variable [40]; it represents close to 70% of the total variance in the dependent
variable (activity) shown by the test compounds. The QSAR model is significant at the 95%
level, as shown by the Fisher’s F-test value (F = 11.96), which is larger than the tabulated
value (2.36), which is required for a statistically significant model [40]. The standard
deviation S displays a small value (s = 11.96), showing that the model is significant and
has small variation around the regression line [41]. The reliability of the resulting QSAR
model was analyzed using two different types of validation criteria: external validation by
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using a test set and internal validation by leave-one-out (LOO) cross-validation [42]. The
model was able to predict the activity of an external test set with an average difference of
9.00 from the experimental value [43]. Moreover, the cross-validated R2 (Q2 = 0.5824) from
the LOO internal validation process is greater than 0.5 and smaller than the overall R2, as
anticipated, and the difference between R2 and Q2 is lower than 0.3, which indicates that
the model does not suffer from overfitting [44].
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Figure 3. MMPs analysis— bar graph of the MMP transformations versus % that affects activity. Each
bar indicates a MMP transformation, and the color coding classifies the activity change: increases
activity (green), decreases activity (red), and has neutral effect on activity (yellow). The labels on
the left axis indicate the type and number of transformations. Additionally, a table on the right side
contains the SMILES transformation and a sketch of the associated reaction. In order to abbreviate
the large structures of the tested molecules, * represents the rest of the molecule.

By interpreting the molecular descriptors in the regression model, it is possible to
have some insight into structural characteristics that are likely to be responsible for the
antioxidant activity of the studied compounds. Seven variables were found to have a
significant influence on the potency of the compounds (Figure 5).

Three of the descriptors—moment of inertia A, topographic electronic index, and
minimum partial charge for an O atom—have a positive regression coefficient of 1613.2,
45.652, and 2158.9, which means that an increase in these descriptors will lead to an increase
in the antioxidant activity of the xanthonic derivatives. On the other hand, minimum partial
charge for a H atom, HACA-1, WNSA-1 weighted PNSA, and RNCS relative negative
charged SA descriptors have negative regression coefficients of −1106.4, −2.3678, −0.2266,
and −1.1013, which reveals that an increase in the values of these descriptors will lead to a
decrease in the activity of the molecules.

The moment of Inertia A (IA) is obtained from the 3D coordinates of the atoms in the
given molecule and is defined as the product of the mass times the distance from the axis
squared, IA = ∑i mir2

ix, where mi is the atomic mass, and rix denotes the distance of the
i-th atomic nucleus from the main rotational axes, x. IA characterizes the mass distribution
in the molecule. The high positive correlation coefficient of the moment of inertia A and
the highest t-value (t-values define the statistical significance of a descriptor) suggest that



Int. J. Mol. Sci. 2022, 23, 13319 11 of 17

the orientation behavior in relation to the size of the whole molecule is very important for
activity.
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The next implicated descriptor is the topographic electronic index, TE, which connects
submolecular polarity parameters with molecular topography expressed by interatomic
distances [45]. This index is calculated as a sum of ratios

∣∣qi − qj
∣∣/r2

i,j over all the pairs of
atoms, both connected and disconnected (qi and qj are the corresponding partial charges on
atoms i and j in the pair, whereas ri,j is the interatomic distance) [46].

Minimal partial charge for a H atom and minimal partial charge for an O atom are
electrostatic descriptors related to charge distribution. Electrostatic descriptors consider
the electrostatic structure of the molecules characterized by the partial charge distribution
or the electronegativity of the atoms. The partial charges in the molecule can be calculated
using the method proposed by Zefirov [47], which takes molecular electronegativity as a
geometric mean of atomic electronegativity.

HACA1 (hydrogen bonding acceptor ability of the molecule) is a charged partial
surface area (CPSA) descriptor that is determined by the equation ∑A SA A ∈ XH−acceptor
where SA stands for the solvent-accessible surface area of H-bonding acceptor atoms,
selected by threshold charge.

WNSA-1 weighted PNSA (partial negative surface area) is a quantum-chemical de-
scriptor that characterizes molecules by molecular shape and electron distribution and is
defined as PNSA1×TMSA

1000 , where PNSA1 is the partial negatively charged molecular surface
area, and the TMSA is the total molecular surface area. This descriptor is defined based on
the total molecular surface area and charge distribution in the molecule, thus indicating the
influence of charge distribution on antioxidant activity [48].

RNCS relative negative charged surface area (SAMNEG * RNCG) is an electrostatic
descriptor that depends on the distribution of the charges on the molecule. The relative
negative charge of the molecule and its surface area can thus influence activity.

The molecular descriptors used in the QSAR model demonstrate that the mechanism
underlying the antioxidant activity of xanthones is related to the mass distribution, the
polarity of the atoms in relation to their interatomic distances, the electronegativity of hy-
drogens and oxygens, the hydrogen bonding acceptor ability of the molecule, the molecular
shape, and the electron and charge distribution of the molecule. The inspection of the
molecular descriptors can result in a better comprehension of the relationship between the
structure and activity of xanthones. The QSAR model developed in the present paper may
be useful for increasing the awareness of the mechanisms modulating Nrf2 activity.

3. Materials and Methods
3.1. Synthesis

Xanthones 2–11, 13–37, 39, and 40 were previously synthesized in our laboratory in
the scope of other projects and used without further purification after purity assessment:
1-hydroxy-9H-xanthen-9-one (2); [15–17,19,21], 2-hydroxy-9H-xanthen-9-one(3); [15–17,19,21],
3-hydroxy-9H-xanthen-9-one (4); [15–17,19,21], 4-hydroxy-9H-xanthen-9-one(5); [15–17,19,21],
1-methoxy-9H-xanthen-9-one (6); [15,19,21,30], 2-methoxy-9H-xanthen-9-one (7); [15,19,21,30],
4-methoxy-9H-xanthen-9-one (8); [15,19,21,30], 1,2-dihydroxy-9H-xanthen-9-one
(9); [15,19,25,26,30], 2,3-dihydroxy-9H-xanthen-9-one (10); [15,19,21,30], 3,4-dihydroxy-
9H-xanthen-9-one (11); [15,19,21,30], 3,6-dihydroxy-9H-xanthen-9-one (13); [16,21,22,24],
1,2-dimethoxy-9H-xanthen-9-one (14); [15,19,21,30], 2,3-dimethoxy-9H-xanthen-9-one (15);
[15,19,21,30], 3,4-dimethoxy-9H-xanthen-9-one (16); [15,19,21,30], 4-hydroxy-3-methoxy-
9H-xanthen-9-one (17); [15,19,21,24,30], 1,3-dihydroxy-2-methoxy-9H-xanthen-9-one
(18); [15,30], 3,4-dihydroxy-9-oxo-9H-xanthene-1-carbaldehyde (19); [15], 3,4-dimethoxy-
9-oxo-9H-xanthene-1-carbaldehyde (20); [23,27], 3,4,6-trimethoxy-9-oxo-9H-xanthene-1-
carbaldehyde (21); [20,27], 4-hydroxy-3-methoxy-9-oxo-9H-xanthene-1-carbaldehyde
(22); [27–29], methyl 3,4,6-trimethoxy-9-oxo-9H-xanthene-1-carboxylate (23); [27],
3-hydroxy-4-methoxy-9-oxo-9H-xanthene-2-carbaldehyde (24); [14,15,18], 3,4-dihydroxy-
1-methyl-9H-xanthen-9-one (25); [26,27,30], 3,4-dimethoxy-1-methyl-9H-xanthen-9-one
(26); [20,23,27–30], 2-chloro-3,4-dimethoxy-1-methyl-9H-xanthen-9-one (27); [20],
3,4,6-trimethoxy-1-methyl-9H-xanthen-9-one (28); [20,27,29,30], 1-(dibromomethyl)-3,4-
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dimethoxy-9H-xanthen-9-one (29); [23,27–30], 1-(dibromomethyl)-3,4,6-trimethoxy-9H-
xanthen-9-one (30); [27,29,30], 1,8-dihydroxy-3,6-dimethyl-9H-xanthen-9-one (31); [26,30],
3,6-dichloro-9H-xanthen-9-one (32); [30], dimethyl 9-oxo-9H-xanthene-3,6-dicarboxylate
(33); [49], 9-oxo-9H-xanthene-3,6-diyl bis(trifluoromethanesulfonate) (34); [50],
3,6-di(piperidin-1-yl)-9H-xanthen-9-one (35); [50], 6-(diethylamino)-9-oxo-9H-xanthen-3-
yl trifluoromethanesulfonate (36); [50], 3,6-di(piperazin-1-yl)-9H-xanthen-9-one (37); [50],
1-(((3-(dimethylamino)propyl)(methyl)amino)methyl)-3,4-dimethoxy-9H-xanthen-9-one
HCl (39); [27], 1-((5-amino-3,4-dihydroisoquinolin-2(1H)-yl)methyl)-3,4-dimethoxy-9H-
xanthen-9-one (40) [23,27]. 1,7-Dihydroxy-9H-xanthen-9-one (12) was previously isolated
from Cratoxylum maingayi (Guttiferae) [15]. Xanthone (1), α-mangostin, and γ-mangostin
(purity ≥98% by HPLC) were purchased from Sigma-Aldrich (Milan, Italy). The purity of
compounds 2–40 was assessed by HPLC-DAD and was greater than 95%.

3.2. Synthesis of 1-(((4-fluorobenzyl)amino)methyl)-3,4-dimethoxy-9H-xanthen-9-one hydrochloride (38)

1-(((4-Fluorobenzyl)amino)methyl)-3,4-dimethoxy-9H-xanthen-9-one (38) was synthe-
sized, as previously described [27]. An etheric solution was prepared with 38 (purity > 95%)
and was cooled at −4 ◦C. A solution of 2.0 M hydrogen chloride in diethyl ether solution
(3 mL) was added to the etheric solution, a white precipitate formed, and the resulting mix-
ture was placed at −4 ◦C overnight. Dichloromethane (10 mL) was added, the suspension
was centrifuged, and the supernatant was placed at −4 ◦C overnight. The procedure was
repeated twice, and the obtained solid was washed with dichloromethane and dried in a
desiccator containing phosphorus pentoxide furnishing 1-(((4-fluorobenzyl)amino)methyl)-
3,4-dimethoxy-9H-xanthen-9-one hydrochloride (38).

1H NMR (CDCl3): δ = 8.32 (1H, dd, J = 8.0 and 1.7 Hz, H-8), 7.75 (1H, ddd, J = 8.5, 7.0,
and 1.7 Hz, H-6), 7.59 (1H, dd, J = 8.4 and 0.9, H-5), 7.41 (1H, ddd, J = 8.0, 7.1 and 0.9 Hz,
H-7), 6.98 (1H, s, H-2), 4.95 (2H, s, H-1′), 4.03 (3H, s, H-4), 4.01 (3H, s, H-3); 13C-NMR
(CDCl3): δ = 179.0 (C-6), 156.1 (C-10a), 146.3 (C-12a), 143.2 (C-11a), 134.3 (C-9), 132.4 (C-12),
126.6 (C-7), 123.6 (C-8), 121.5 (C-6a), 118.2 (C-10), 117.9 (C-5), 117.0 (C-4a), 115.4 (C-5a),
76.5 (C-2), 32.6 (C-3), 27.0 (C-4), 21.7 (C-1′).

3.3. Cell Culture and Differentiation

Undifferentiated human monocytes (CRL-9855™) were purchased from ATCC® and
sub-cultured in RPMI 1640 (Merck, Darmstadt, Germany) supplemented with 10% heat-
inactivated fetal bovine serum (FBS), 1% penicillin/streptomycin, and 1% sodium pyruvate
(all from Gibco, Invitrogen, Life Technologies, Carlsbad, CA, USA) at 37 ◦C and 5% CO2.

For differentiation into macrophages, the monocytes were seeded in 96 multi-well
culture plates (0.5 × 104 cells/well) for the MTT assay and in 150 mm cell culture dishes
(0.1 × 107 cells/dish) for the immunoblotting and stimulated with 100 ng/mL of PMA
(phorbol-12-myristate-13-acetate, purchased from Merck, Darmstadt, Germany, stock solu-
tion 1 mM in DMSO) in complete RPMI for 48 h at 37 ◦C and 5% CO2. After 48 h, a culture
of macrophage-like cells was obtained and used for further experimental procedures.

3.4. Establishment of the Inflamed Environment and Cell Treatment

After 48 h in RPMI supplemented with 100 ng/mL of PMA, the differentiation
medium was discarded and replaced with complete RPMI in the presence of 50 µM BSO
(L-buthionine sulfoximine, purchased from Merck, Darmstadt, Germany). The cells were
incubated for 18 h at 37 ◦C and 5% CO2. Next, the pre-incubation medium with BSO was
discarded and macrophages were exposed to complete RPMI (UC, untreated control), or
stimulated with LPS 0.5 µg/mL (lipopolysaccharide from E. coli, purchased from Merck,
Darmstadt, Germany, stock solution 1 mg/mL in water) and 50 µM BSO and exposed to
α- or γ-mangostin (Merck, Darmstadt, Germany) in concentrations of 1–10 µM or xan-
thone derivatives in concentrations of 1–10 µM for up to 48 h. A pure untreated control
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(macrophages exposed only to complete RPMI for the entire experimental procedure) was
analyzed and used as an internal comparison.

3.5. Cell Metabolic Activity (MTT Assay)

At the established time points (24 and 48 h), the exposure media were replaced by
200 µL/well of a solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) 0.5 mg/mL (Merck, Darmstadt, Germany) and processed as elsewhere reported [51].
The optical density in each well was measured using a spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) at a wavelength of 540 nm. Each experiment was performed
two times in duplicates per experimental condition (n = 4). The optical density readings
obtained from treated cell cultures were summarized and normalized to BSO- and LPS-
stimulated cell cultures (100%).

3.6. Cytotoxicity Assay (LDH Assay)

To quantify cytotoxicity occurrence after 24 h, the CytoTox 96® Non-Radioactive Assay
(Promega Corporation, Fitchburg, WI) was performed. The assay quantitatively measures
LDH (lactate dehydrogenase), a stable cytosolic enzyme that is released upon cell lysis.
Supernatants from 96 well plates used for the MTT assay (50 µL) were analyzed as reported
previously [52], and the obtained optical densities were normalized with the ones related
to MTT for each sample. The data are the fold increase in the pure UC set as 1. The assay
was performed in triplicate for each experimental condition (n = 3).

3.7. Protein Extraction

After 24 h, the exposure was stopped by collecting the exposure media and floating
cells. Adherent cells were washed with ice-cold PBS, detached with trypsin/5 mM EDTA
(EuroClone, Milan, Italy), and collected by centrifugation. The cell pellet was resuspended
and washed twice in ice-cold PBS. Next, nuclear and cytosolic extracts were separated
using different lysis buffers as described [53]. The protein concentration was determined
using a bicinchoninic acid assay (QuantiProTM BCA Assay kit for 0.5–30 mg/mL protein,
Merck, Darmstadt, Germany) following the manufacturer’s instructions. The assay was
performed in triplicate for each experimental condition (n = 3).

3.8. Immunoblotting (Western Blot)

Proteins (20 µg per lane) were first separated on a 10% sodium dodecyl sulfate-
polyacrylamide gel by electrophoresis (SDS-PAGE) and transferred to a nitrocellulose
membrane in SDS buffer (25 mM Tris HCl, 192 mM glycine, 20% methanol, pH 8.3) at
350 mA for 120 min. Nitrocellulose membranes were then blocked in 5% of non-fat milk or
5% of BSA, 10 mmol/L Tris pH 7.5, 100 mM NaCl, 0.1% Tween 20 and probed overnight
at 4 ◦C under gentle shaking with rabbit polyclonal anti-Nrf2 (primary antibody dilution
1:750) purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA), mouse mono-
clonal anti-β-actin (primary antibody dilution 1:5000), and mouse monoclonal anti-laminin
A/C (primary antibody dilution 1:1000) all purchased from Merck, Darmstadt, Germany.
Afterward, membranes were incubated in the presence of specific IgG horseradish per-
oxidase (HRP)-conjugated secondary antibodies. Immunoreactive bands were identified
using the ECL detection system (LiteAblot Extend Chemiluminescent Substrate, EuroClone
S.p.A., Milan, Italy) and analyzed by densitometry. Densitometric values, expressed as
integrated optical intensity (IOI), were estimated in the CHEMIDOC XRS system using
the QuantiOne 1-D analysis software (BIORAD, Richmond, CA, USA). The values ob-
tained were normalized based on densitometric values of internal cytosolic actin or nuclear
laminin and were expressed as relative expressions of Nrf2 (n = 3).

3.9. Structure–Activity Analysis Using Matched Molecular Pairs (MMPs)

The MMPs were calculated using the 42 molecules (test molecules and controls) and
the MMP analysis of activity effects protocol in Discovery Studio Biovia 2016. The activity
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was set as the viability at 10 µM after 48 h. The minimum frequency was set to 1, and
the activity change threshold was set to 10. A bar graph of the transformations that most
frequently changed the activity was obtained.

3.10. Quantitative Structure–Activity Relationship (QSAR)

The forty test xanthone derivatives and the two xanthone controls (α- and γ-mangostin)
were used to build the QSAR model using the experimental data obtained from the in vitro
studies (viability at 10 µM after 48 h). Viability was selected as a dependent variable
in the QSAR analysis. The 42 molecules were randomly distributed into a training set
(36 molecules) and a test set (6 molecules). CODESSA software (version 2.7.10, Univer-
sity of Florida, Gainesville, FL, USA) was used to calculate hundreds of constitutional,
topological, geometrical, electrostatic, quantum-chemical, and thermodynamical molecular
descriptors [54]. The heuristic multilinear regression methodology was chosen to perform
a complete search for the best multilinear correlations with a multitude of descriptors of
the training set [37]. The 2D-QSAR model with the best square of the correlation coefficient
(R2), F-test (F), and squared standard error (S2) was selected. The final model was further
validated using the test set and leave-one-out (LOO) internal validation.

4. Conclusions

A library of forty newly synthesized and natural xanthone derivatives were evaluated
in vitro on human macrophages under pro-inflammatory conditions to select the greatest-
performing derivative for oxidative stress counteraction in terms of cytotoxicity and Nrf2
nuclear translocation. With this aim, compounds 5, 6, 10, 16, 17, and 27 were selected,
disclosing that 27 was the best compound for decreasing cytotoxicity and enhancing Nrf2
translocation and, thus, activation. Moreover, a QSAR study revealed that topological,
geometrical, electrostatic, charged partial surface area, and quantum-chemical descriptors
were implicated in the antioxidant activity of the tested xanthones.
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