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Abstract
Background: In the mouse zygote the paternal genome undergoes dramatic structural and
epigenetic changes. Chromosomes are decondensed, protamines replaced by histones and DNA is
rapidly and actively demethylated. The epigenetic asymmetry between parental genomes remains
at least until the 2-cell stage suggesting functional differences between paternal and maternal
genomes during early cleavage stages.

Results: Here we analyzed the timing of histone deposition on the paternal pronucleus and the
dynamics of histone H3 methylation (H3/K4mono-, H3/K4tri- and H3/K9di-methylation)
immediately after fertilization. Whereas maternal chromatin maintains all types of histone H3
methylation throughout the zygotic development, paternal chromosomes acquire new and
unmodified histones shortly after fertilization. In the following hours we observe a gradual increase
in H3/K4mono-methylation whereas H3/K4tri-methylation is not present before latest pronuclear
stages. Histone H3/K9di-methylation is completely absent from the paternal pronucleus, including
metaphase chromosomes of the first mitotic stage.

Conclusion: Parallel to the epigenetic asymmetry in DNA methylation, chromatin modifications
are also different between both parental genomes in the very first hours post fertilization. Whereas
methylation at H3/K4 gradually becomes similar between both genomes, H3/K9 methylation
remains asymmetric.

Background
It is now generally accepted that the properties of a partic-
ular DNA sequence in cells are not solely defined by the
nucleotide sequence itself, but by "epigenetic" modifica-
tions as well. Epigenetic modifications imply the methyl-
ation of cytosine residues in CpG dinucleotides and
covalent modifications of core histones. These modifica-
tions allow for flexible, but heritable at the same time,
reprogramming of the genome.

In histone H3 five lysine residues can be methylated (K4,
K9, K27, K36 and K79) [1]. Methylation at K4 and K9 play
opposite roles in structuring repressive or accessible chro-
matin domains, with K4 methylation associated with
transcriptionally active chromatin and K9 methylation
with inactive chromatin in higher eukaryotes [2]. In addi-
tion, these lysine residues can be mono-, di- or tri-methyl-
ated, which contributes to the distinct qualities of H3/K4
and H3/K9 methylation. Similar to H3/K9 methylation,
DNA methylation is associated with silenced chromatin
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and there appeared to be an interplay between the two
epigenetic modifications. It is still an open question
whether DNA methylation directs H3/K9 methylation or
other way around, for both scenarios the experimental
evidences do exist [3,4]. It recently has been shown that in
mammalian cells the maintenance DNA methyltrans-
ferase DNMT1 is associated with proteins involved in
chromatin reprogramming, including histones deacety-
lases, and is required for the establishment of H3/K9
methylation [5]. Various experimental data suggest that
the DNA methylation causes multiple changes in local
nucleosomes, such as deacetylation of histones H3 and
H4, prevents H3/K4 methylation and induces H3/K9
methylation [6].

The fertilization of mouse egg causes dramatic changes in
organization of both paternal and maternal genomes. Ini-
tially arrested in metaphase II oocyte completes the meio-
sis, forming haploid maternal pronucleus and extruding
the second polar body. The densely packed with pro-
tamines sperm DNA decondences, protamines get
exchanged by histones and DNA undergoes active
demethylation. The demethylation in the early mouse
zygote occurs asymmetrically on paternal DNA and affects
different classes of repetitive and single copy sequences,
but not the control regions of imprinted genes [7,8]. Pre-
vious studies have shown the exclusive localization of
methylated H3/K9 in maternal pronucleus of the mouse
zygote, which additionally marks the epigenetic asymme-
try between maternal and paternal pronuclei [9-11].

Here we examine time dependent changes of chromatin
structure in the mouse zygote, focusing on the dynamics
of the acquisition of histones in the paternal pronucleus
and methylation status of histone H3 at positions K4 and
K9.

Results and discussion
In order to obtain mouse zygotes at different stages of
development and to provide the precise timing for fertili-
zation we used in vitro fertilization of mature mouse
oocytes. Histones and methylated H3/K4 and H3/K9 were
detected by using indirect immunofluorescence. In our
experiments we used antibodies, which specifically recog-
nize mono- or tri-methylated forms of H3/K4, and di-
methylated H3/K9. The zygotes were analyzed after 3, 5,
8, 10, 12 and 18 hours incubation of mature oocytes with
capacitated sperm from donor males. After 18 hours most
of embryos were found to be at metaphase and some
already at telophase stage of the first mitotic division.
Even using in vitro fertilization, the obtained zygotes are
not completely synchronous in their development and it
is more appropriate to use PN stages classification, which
is based on the morphological changes of both pronuclei
[8,12].

Appearance of histones on paternal chromosomes
We performed the immunostaining against core histones
(anti-PanHistone antibodies) in all the stages tested in
combination with antibodies, recognizing the specific
methylated forms of histone H3. This served as a positive
control for the immunostaining procedure and allowed us
to follow the dynamics of histone acquisition in the pater-
nal pronucleus. Histones were first detected shortly after
the penetration of sperm into the oocyte and the begin-
ning of the decondensation of sperm chromatin. Accord-
ing to PN stages classification we could clearly detect
histones on paternal pronucleus at late PN0/early PN1
stages (approx. 3–5 hours p.f.), exactly when the global
demethylation starts [8] (Fig. 1).

Dynamic changes in H3/K4 methylation in paternal 
genome
Probing the mouse zygotes at different stages with anti-
bodies specifically recognizing either mono- or tri-meth-
ylated H3/K4 revealed that these types of modifications
are associated with maternal genome through all zygotic
stages, including mature oocyte and seem to be rather
ubiquitous (Fig. 1a,1b). As for the paternal pronucleus –
we detect the appearance of H3/K4mono-methylation in
the beginning of PN1 (approx. 5 hours p.f.) stage (Fig. 1a),
only slightly delayed compared to the appearance of core
histones (Fig. 2). By PN3 – PN4 stages both paternal and
maternal pronuclei show equal staining intensity. This
indicates that H3/K4 specific histone methyltransferase,
possibly Set9 [13], is quite active in the early zygote and
methylates histone H3 after it is incorporated into the
nucleosomes. In contrast to that, it has been shown
recently that H3/K9 specific histone methyltransferase is
inactivated immediately after the fertilization by yet
unknown active mechanism, which involves de novo syn-
thesis of some specific factors [11]. H3/K4tri-methylation
becomes detectable later, starting from PN4 stage (approx.
8–10 hours p.f.) and the difference in antibodies staining
intensity between paternal and maternal pronuclei
becomes indistinguishable in the last pronuclear stage
PN5 (approx 12 hours p.f.) (Fig. 1b) and in metaphase
stage of first mitosis approximately 16 hours p.f. (Fig. 3a).
The fact that H3/K4 first becomes mono-methylated and
several hours later tri-methylated suggests progressive
methylation of histone H3 at lysine 4. We also suggest
that histone H3 gets incorporated into the nucleosomes
being unmethylated and then undergoes methylation
because we observe first the appearance of histones and
then H3/K4mono-methylation. In contrast to that –
acetylation of histones H3 and H4 happens before they
are incorporated into the nucleosomes, and after the
nucleosome assembly they can get deacetylated by his-
tone deacetylases (HDACs) whenever required [14]. But
no histone demethylase has been found so far.
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H3/K9 methylation but not H3/K4 defines the genomes 
asymmetry in the mouse zygote
In order to compare the patterns of H3/K4 and H3/K9
methylation we performed the immunostaining of mouse
zygotes using antibodies, which recognize di-methylated
H3/K9. Our results are in the agreement with earlier
observations that H3/K9 methylation is only attributed to
the maternal genome and is completely absent from the
paternal [9-11] (Fig. 1c, Fig. 3b). In normal somatic cells
the absence or disruption of H3/K9 methylation leads to
the chromosome instability and affects chromosomes seg-
regation during mitosis [15]. Therefore the absence of H3/
K9 methylation on paternal chromosomes is rather sur-
prising and compromises its role in chromosomes segre-
gation. The epigenetic asymmetry between paternal and
maternal genomes is observed till 2-cell stage and is char-
acterized by low levels of DNA methylation and H3/K9
methylation in paternal genome [8,10,11,16]. In case
with H3/K4 methylation – the asymmetry is observed
only in the beginning of the zygotic development and is

indistinguishable in the metaphase stage of the first
mitotic division (Fig. 3a). Recent data from Liu et al. sug-
gest that H3/K9 methylation does not depend on DNA
methylation [11], but it is only paternal DNA which gets
demethylated in the mouse zygote and at the same time it
does not have detectable H3/K9 methylation. According
to data published by Santos et al. [17,18] DNA demethyl-
ation starts at PN1 stage, i.e. at a time when we first
observe the appearance of H3/K4mono-methylation (PN1
stage, Fig. 1a), and is completed at PN3 stage when H3/
K4mono-methylation in paternal pronucleus reaches
approximately the same level as in the maternal (Fig. 1a).
This fact is raising the question if such a coincidence
might indicate that DNA demethylation and the establish-
ment of H3/K4 methylation are interdependent. Demeth-
ylation of paternal DNA upon the fertilization is not a
universal phenomenon for mammalian species. In bovine
zygote paternal DNA becomes only partially demethyl-
ated, while in sheep and rabbit zygotes the demethylation
is hardly detectable [17,18]. The analysis of chromatin

Dynamic changes in chromatin of zygotes at different pronuclear stagesFigure 1
Dynamic changes in chromatin of zygotes at different pronuclear stages. DNA is visualized by DAPI (blue colour) 
staining. Mouse monoclonalanti PanHistones antibodies were detected by fluorescein conjugated anti-mouse secondary anti-
bodies (green colour). Specific rabbit polyclonal antibodies, recognizing H3/K4monoMe (a), H3/K4triMe (b) or H3/K9diMe (c) 
were detected by Rhodamine Red-X conjugated anti-rabbit secondary antibodies (red colour).
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modification in early zygotes of these species might help
to get an answer if DNA demethylation depends on, or is
directed by the specific chromatin modifications.

Conclusions
Unlike H3/K9 methylation, methylation of H3/K4 is not
attributed only to the maternal genome but appears
shortly after the acquisition of histones by paternal pro-
nucleus. The methylation of H3/K4 is progressive and by
first mitotic division reaches approximately same level as
in maternal genome.

Methods
In vitro fertilization of mouse oocytes
As sperm and oocytes donors we used (C57BL/6 X CBA)F1
mice. Mature oocytes were collected 14 hours post human
chorionic gonadotropin injection according to standard
procedures [19]. Sperm isolation and in vitro fertilization
(IVF) procedures were performed as described in [20].
Briefly: the sperm was isolated from cauda epididimus of
donor males and capacitated in pre-gassed HTF medium
for 1,5 hours. Isolated oocytes in cumulus cell mass were
placed into 100 µl drop of HTF medium with capacitated
sperm and incubated in CO2 incubator for 3, 5, or 8 hours.
For longer incubation time the oocytes were incubated
with sperm in HTF medium for 8 hours and then trans-
ferred into the drop of pre-gasses and pre-warmed M16
medium and incubated further for 2, 4 or 10 hours.

Immunofluorescence staining
After the removal of zona pellucida by treatment with
Acidic Tyrode's solution fertilized oocytes were fixed for
20 min in 3.7% paraformaldehyde in PBS, and permeabi-
lized with 0.2% Triton X-100 in PBS for 10 min at room
temperature. The fixed zygotes were blocked overnight at
4°C in 1% BSA, 0.1% Triton X-100 in PBS. After blocking
the embryos were incubated in the same solution with
either anti PanHistones (mouse polyclonal, Roche), anti
mono-methyl H3/K4 (rabbit polyclonal, Abcam), anti tri-
methyl H3/K4 (rabbit polyclonal, Abcam) or anti di-
methyl H3/K9 (rabbit polyclonal, a gift from T. Jenuwein
[21] antibodies at room temperature for 1 hour, followed
by several washes and incubation for 1 hour with anti-
mouse secondary antibodies coupled with fluorescein
(Sigma-Aldrich), and anti-rabbit secondary antibodies
coupled with Rhodamine Red-X (Jackson ImmunoRe-
search Laboratories Inc.). After final washes the zygotes
were placed on slides and mounted with a small drop of
Vectashield (VectorLab) mounting medium containing

Distribution of histones and H3/K4monoMe in the zygotes at late PN0 stageFigure 2
Distribution of histones and H3/K4monoMe in the 
zygotes at late PN0 stage. At this stage histones (green 
signal) are detectable in both male (�) and female (�) pro-
nuclei, whereas H3/K4monoMe (red signal) is only detectable 
in female pronucleus and polar body (pb).

Distribution of H3/K4triMe and H3/K9diMe in metaphase chromosomes during the latter portion of the first cell cycleFigure 3
Distribution of H3/K4triMe and H3/K9diMe in met-
aphase chromosomes during the latter portion of the 
first cell cycle. (a) Distribution of H3/K4triMe. Paternally 
and maternally derived chromosomes show equal staining 
pattern along the whole length of chromosomes. (b) Distri-
bution of H3/K9diMe. This type of modification is not detect-
able on paternal chromosomes and in maternal 
chromosomes is mostly associated with centromeres.
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0.5 µg 4,6-diamino-2-phenylindole (DAPI). At least 20
zygotes have been analyzed for each stage of zygotic
development.

Immunofluorescence microscopy
The slides were analyzed on Zeiss Axiovert 200 M inverted
microscope equipped with the fluorescence module and
B/W digital camera for imaging. The images were cap-
tured, pseudocoloured and merged using AxioVision soft-
ware (Zeiss).
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