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Coronavirus disease 2019 (COVID-19) pandemic is caused by the novel coronavirus that
has spread rapidly around the world, leading to high mortality because of multiple organ
dysfunction; however, its underlying molecular mechanism is unknown. To determine the
molecular mechanism of multiple organ dysfunction, a bioinformatics analysis method
based on a time-order gene co-expression network (TO-GCN) was performed. First, gene
expression profiles were downloaded from the gene expression omnibus database
(GSE161200), and a TO-GCN was constructed using the breadth-first search (BFS)
algorithm to infer the pattern of changes in the different organs over time. Second, Gene
Ontology enrichment analysis was used to analyze the main biological processes related
to COVID-19. The initial gene modules for the immune response of different organs were
defined as the research object. The STRING database was used to construct a protein–
protein interaction network of immune genes in different organs. The PageRank algorithm
was used to identify five hub genes in each organ. Finally, the Comparative
Toxicogenomics Database played an important role in exploring the potential
compounds that target the hub genes. The results showed that there were two types
of biological processes: the body’s stress response and cell-mediated immune response
involving the lung, trachea, and olfactory bulb (olf) after being infected by COVID-19.
However, a unique biological process related to the stress response is the regulation of
neuronal signals in the brain. The stress response was heterogeneous among different
organs. In the lung, the regulation of DNA morphology, angiogenesis, and mitochondrial-
related energy metabolism are specific biological processes related to the stress
response. In particular, an effect on tracheal stress response was made by the
regulation of protein metabolism and rRNA metabolism-related biological processes, as
biological processes. In the olf, the distinctive stress responses consist of neural signal
transmission and brain behavior. In addition, myeloid leukocyte activation and myeloid
leukocyte-mediated immunity in response to COVID-19 can lead to a cytokine storm.
Immune genes such as SRC, RHOA,CD40LG,CSF1, TNFRSF1A, FCER1G, ICAM1, LAT,
LCN2, PLAU, CXCL10, ICAM1, CD40, IRF7, and B2M were predicted to be the hub
genes in the cytokine storm. Furthermore, we inferred that resveratrol, acetaminophen,
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dexamethasone, estradiol, statins, curcumin, and other compounds are potential target
drugs in the treatment of COVID-19.
Keywords: COVID-19, TO-GCN, cytokine storm, multiple organ dysfunction, targeted intervention, BFS algorithm,
multiple organ heterogeneity
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by an
infectious, occult, and lethal novel coronavirus, which has led
to an ongoing worldwide pandemic (1). It obtains new
peculiarities through continuous variation and causes acute
respiratory distress syndrome and multiple organ dysfunction
that seriously endanger the health of the patient (2).
Angiotensin-converting enzyme 2 (ACE2) plays a major role
in the renin–angiotensin system (RAS) regulatory pathway and is
the main protein that severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) binds to in the host cells (3, 4).
After SARS-CoV-2 combines with ACE2, the protease
transmembrane protease serine 2 (TMPRSS2) is activated by
the viral spike protein, resulting in various degrees of pulmonary
interstitial fibrosis; intestinal, esophageal, and gastric mucosa
degeneration; necrosis; abscissions; and other acute injuries (5).
This can also cause hepatocyte degeneration, glomerular
congestion, segmental hyperplasia or necrosis, cerebral
congestion, edema, degeneration, and ischemic changes in
neurons (6–8). Briefly, SARS-CoV-2 infection leads to different
degrees of injury and diverse clinical symptoms in different organs.

Researchers have found that a cytokine storm is the main
cause of severe illness in SARS-CoV-2 (9). Cytokines are the
early warning signals when pathogens enter the body, triggering
an immune system response to attack them (10). Saha et al.
found that after SARS-CoV-2 invades the body, a large amount
of self-replication induces the host cells to produce and release
interleukin-1 (IL-1), interleukin- 6(IL-6), tumor necrosis factor
a(TNF-a), and other interleukin-based cytokines (11).
Interleukins dilate the endodermis of adjacent blood vessels,
increasing their permeability and triggering a cytokine storm
that destroys type I and II alveolar cells, eventually destroying the
entire alveoli (12, 13). The loss of type I and type II cells results in
dysfunctional gas exchange in the respiratory system. Excess
interleukins are transported through blood vessels to the
hypothalamus, guiding it to reset the body temperature to a
higher level (14). In the case of severe pulmonary inflammation,
excessive interleukin can even penetrate the bloodstream and
distribute throughout the body, stimulating the body to produce
systemic inflammatory response syndrome, which may
eventually lead to septic shock (15). Cytokine storm is a
clinical feature of systemic inflammatory response failure (16,
17); however, its underlying molecular mechanism is
still unclear.

Clinical studies have shown that bronchial transient secretory
cells (18), nasal secretory cells, alveolar epithelial cells, brain cells,
and intestinal epithelial cells are the main sources of SARS-CoV-
2 detection (19), and are also the main target organs of SARS-
CoV-2 attack. At the transcriptome level, the present study
org 2
explored the key mechanisms by which SARS-CoV-2 causes
dysfunction in multiple organs, including the brain, lungs,
trachea, olfactory bulb (olf), and small intestine (smint). We
constructed a time-order gene co-expression network (TO-
GCN) to analyze the dynamic changes in gene expression and
different biological processes in various organs after being
infected by SARS-CoV-2. The hub genes of each organ were
identified, and compounds targeting the hub genes were
identified as potential targeted drugs for COVID-19.
MATERIALS AND METHODS

The TO-GCN analysis method was applied to detect the changes
in the gene expression profiles of five organs, namely the brain,
lung, trachea, olf, and smint, on days 0, 1, 2, 4, 6, 8, and 14 days
after SARS-CoV-2 infection in Syrian golden hamsters
(Mesocricetus auratus). Figure 1 shows the flow chart of the
study design.
FIGURE 1 | The overall flow chart of the data analysis conducted in this study.
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Data Preprocessing
The gene expression profiles of the five organs of Syrian golden
hamsters infected with a low dose of SARS-CoV-2 on days 0, 1, 2,
4, 6, 8, and 14 were obtained from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/, GSE161200). Five samples of
normal control groups and three samples of experimental
groups were tested in each subgroup. A total of 22,283 genes
were sequenced in this study.

At first, we converted the read counts to counts per million
(CPM) values to standardize the data sets. Then, zero-expressed
genes were removed to complete the data preprocessing
(Supplementary Table 1). The CPM calculation was
implemented using the edgeR package in R version 3.28.1 (20).

Identification of Differentially Expressed
Genes (DEGs)
In our study, the DEseq2 algorithm was selected to identify
significant DEGs (21, 22). The fold change threshold was set at
log2 (fold change) > log2(1.5) or log2 (fold change) < -log2(1.5),
and p-adj was set as p-adj < 0.05. The gene expression profiles of
five organs on days 1, 2, 4, 6, 8, and 14 after SARS-CoV-2
infection were compared with the normal control group (day 0)
to identify the differences in gene expression in each organ, and
all the differences in gene expression were combined to obtain
the DEGs in each organ for further analysis. DEGs were screened
using the DEseq2 function in R (version 3.6.3) (23, 24).

Construction of TO-GCN
The Pearson’s correlation coefficient (PCC) is an important
index for determining the strength of synergistic or
antagonistic action between genes (25). Considering the
transcriptome data of DEGs at six time points as the
background data, the Pearson’s correlation algorithm was
selected to calculate the correlation coefficients between two
genes in five organs, and the PCC and p value were obtained.
The cut-off value was set as PCC > 0.75 and p < 0.05 to screen the
interaction relationship between genes. TO-GCN was established
by co-expressing genes that met the threshold requirements.

Time-Order Gene Modules Identification
Using the Breadth-First Search
(BFS) Algorithm
In TO-GCN, the two interlinked genes showed similar changes
over time (26). The BFS algorithm was applied to infer the
temporal expression order of all genes in the TO-GCN (27).
First, the genes with peak gene expression at the first time point
and decreasing trend over time were defined as the initial node of
TO-GCN. Next, the BFS algorithm was selected to traverse the
TO-GCN to infer the gene rule of dynamic changes and obtain
time-order gene modules. Finally, we used Gene Ontology (GO)
enrichment analysis to biologically annotate the time-order
gene modules.

Construction of Key Gene Modules
The initial gene modules involved in the immune response of
different organs were selected as the research objects to elucidate
Frontiers in Immunology | www.frontiersin.org 3
the key mechanism of the immune response of the body (28).
The NCBI database (https://ftp.ncbi.nlm.nih.gov/gene/DATA/)
was used to map the human genes in these modules that are
homologous to the Syrian golden hamster. Furthermore, the
ImmPort database (https://www.immport.org) was used to
identify immune-related genes in the modules (29, 30). Finally,
the genes were imported into the STRING database (https://
string-db.org/) to construct immune protein–protein interaction
(PPI) networks for different organs (31). Multiple proteins were
selected in the “names/identifiers” option in the query mode, and
the minimum required interaction score was set to “medium
confidence” (0.400).

Identification of Hub Genes
The PageRank algorithm was proposed by Larry Page and Sergey
Brin, the founders of Google, to calculate the importance of
nodes in a complex network (32). It was used to score the
importance of genes in the PPI network (based on topological
principles) (33). We defined five genes with the highest scores in
each organ as hub genes.

Verification of Hub Genes
First, GSE166253 and GSE162615 were downloaded from the
GEO database to identify the mRNA expression levels of hub
genes. There were 10 normal samples (GSM5066812-GSM5066821),
six COVID-19 recovery samples (GSM5066822-GSM5066827), and
10 COVID-19 retesting-positive samples (GSM5066828-
GSM5066837) in GSE166253. GSE162615 consisted of 18 normal
and COVID-19 samples (GSM4955401-GSM4955418).
Furthermore, t-tests were used to verify the differences in hub genes.

Screening the Potential Targeted Drugs
Using the Comparative Toxicogenomics Database (CTD)
(https://ctdbase.org/), which contains chemical and gene
interactions, potential drugs that target the hub genes in the
five organs were investigated.

The selected hub genes were imported into the CTD database
and classified according to the interaction relationship between
genes and compounds. The 10 compounds with the highest scores
were identified as potential target compounds of hub genes.
RESULTS

COVID-19 Caused Changes in Multiple
Organs at Transcriptome Levels
The data on day 0 of SARS-CoV-2 infection were used as the
normal control group, and the data of days 1, 2, 4, 6, 8, and 14
were used as the experimental group. To understand the changes
in gene expression related to multiple organ dysfunction after
being infected by SARS-CoV-2, we used the DESeq2 algorithm to
screen DEGs of the five organs. DEG distribution results of
different organs are shown in Supplementary Figure 1 and
Supplementary Table 2. The results showed that the
expression of different genes in multiple organs had an obvious
time phase.
August 2021 | Volume 12 | Article 729776
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As shown in Figure 2A, on day 1 after the brain was infected by
SARS-CoV-2, 507 DEGs (NDRG2, RPSA, TRF, etc.) were
upregulated, and 254 DEGs (COL4A2, RGS5, ATP13A5, etc.)
were downregulated. On day 2, 1,562 DEGs (MX2, IRF9, TRF,
etc.) were upregulated, and 1,438 DEGs (ENSMAUG00000008753,
ENSMAUG00000014490, etc.) were downregulated. Subsequently,
the number of DEGs decreased gradually. On days 4, 6, and 8, the
number of upregulated DEGs was 660 (TRF, AGT, etc.), 439 (TRF,
AGT, etc.), and 88 (PYGB, OGDHAND, etc.), whereas the number
of downregulated DEGs was 430 (COL4A2, etc.), 478
(ENSMAUG00000019419, etc.), and 37 (SRSF5, etc.), respectively.
Notably, on day 14, the differential expression levels rebounded
(910 upregulated and 745 downregulated).

In the lung, the number of DEGs increased rapidly and lasted
for a relatively long time. On days 1, 2, 4, and 6, the number of
upregulated DEGs was 90 (RNF5, etc.), 1,000 (IRF7, MX2, etc.),
329 (IRF7, MX2, etc.), and 2,154 (IRF7, MX2, etc.), whereas the
number of downregulated DEGs was 369 (Pcnp, CACRL, Serp1,
etc.), 675 (ENSMAUG00000011900, ENSMAUG00000017566,
etc.), 398 (DBP, etc.), and 2,020 (CALCRL, etc.), respectively. The
number of DEGs decreased rapidly on day 8. There were 477
upregulated DEGs (IRF7, MX2, etc.) and 599 downregulated
DEGs (ENSMAUG00000001317, ENSMAUG00000011754, etc.)
on day 8. On day 14, the DEGs almost disappeared.

In the trachea, there were 158 upregulated DEGs (SLC16A11,
UCP2, etc.) and 198 downregulated DEGs (RNF112, RHCG, etc.)
on day 1. However, the number of DEGs increased significantly on
day 2 compared to that on day 1. There were 1,315 upregulated
DEGs (IRF7 , e tc . ) and 867 downregula ted DEGs
(ENSMAUG00000000032, ENSMAUG00000001101, etc.) on day
2, and then, the number of DEGs decreased gradually. On days 4
Frontiers in Immunology | www.frontiersin.org 4
and 6, the number of upregulated DEGs was 290 (IRF7, etc.) and
653 (IRF7, etc.), whereas the number of downregulated DEGs was
653 (RNF112, etc.) and 195 (ENSMAUG00000011132, etc.). The
DEGs decreased persistently on days 8 and 14.

In the olf, the number of DEGs increased rapidly and lasted
for a relatively long time. On days 1, 2, 4, and 6, the number
of upregulated DEGs was 13 (SLC3A1, MX2, etc.), 71 (MX2
andMX1), 128 (MX2, B2M, etc.), and 548 (SERPING,MX2, etc.),
whereas the number of downregulated DEGs was 3 (FOSL2, NR4A2,
etc.), 21 (FOSL2, NR4A2, etc.), 25 (ENSMAUG00000013627,
ENSMAUG00000007358, etc.), and 272 (ENSMAUG00000019419,
ENSMAUG00000021143, etc.), respectively. However, it rapidly
decreased on day 8 to 62 (C3, B2M, etc.) upregulated DEGs and 79
(FOSL2, etc.) downregulated DEGs. On day 14, there were 162
upregulated DEGs (ND6, SLC3A1, etc.) and 26 downregulated
DEGs (GNAS, etc.). There were few DEGs in the smint. The
number of upregulated genes was 2 (ENSMAUG00000017595 and
ENSMAUG00000012989), 31(UBA7, MX2, etc.), 11(UBA7, etc.),
and 10 (ENSMAUG00000021358, ENSMAUG00000017595, etc.),
and the number of downregulated DEGs was 16 (COL18A1, COX1,
etc.), 9 (ENSMAUG00000003218, ENSMAUG00000000032, etc.),
16 (NR1D1, etc.), and 36 (JCHAIN, etc.) on day 1, 2, 4, and 6,
respectively. The DEGs almost disappeared on day 8. Except for the
brain and trachea (on day 2), peak values of DEGs were observed
on day 6 in the smint, lung, and olf.

Next, we considered a union of the DEGs of each organ at
different time points. There were total of 3,398, 4,983, 3,051, 999,
and 102 DEGs in the brain, lung, trachea, olf, and smint,
respectively (Figures 2B, C). Despite the significant differences
in DEGs in the five organs, 15 genes that were primarily involved
in the immune system response (interferon a/b signaling) and
A B

C

FIGURE 2 | The differentially expressed genes (DEGs) in different organs over time. (A) The number of DEGs in the brain, lung, trachea, olf, and smint over time.
(B) Venn diagrams of DEGs in the brain, lung, trachea, olf, and smint. (C) The value of total DEGs in each organ.
August 2021 | Volume 12 | Article 729776
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immune system cytokine signaling were significantly
differentially expressed in all the five organs after SARS-CoV-2
infection compared with the normal control samples
(Figure 2B). Based on the abovementioned results, we inferred
that the dynamic changes in gene expression in the lungs,
trachea, olf, and smint after being infected by COVID-19 were
similar, but the dynamic changes in the brain were quite different
from those in the other organs. The regulation of immune system
reactions may be an important mechanism for multiple
organ dysfunction.

Construction of Organ-Specific TO-GCN
After SARS-CoV-2 Infection
The number of DEGs in smint (102) was too small to be analyzed
from the perspective of TO-GCN. The DEGs transcriptome data
of the brain, lung, trachea, and olf were used as background data
to investigate the genetic mechanisms of the dynamic changes in
multiple organs after SARS-CoV-2 infection.
Frontiers in Immunology | www.frontiersin.org 5
The Pearson’s correlation analysis was used to construct a
TO-GCN for each organ, including the brain, lung, trachea, and
olf, and genes that met the threshold criteria (PCC > 0.75 and p-
adj < 0.05) were screened. Next, the sub-networks with fewer
than 20 genes were removed, and the network with the largest
number of genes was defined as a TO-GCN (Figure 3).

GO Analysis of TO-GCN After
SARS-CoV-2 Infection
The genes with peak gene expression at the first time point and a
decreasing trend over time were defined as the initial node of
TO-GCN. ENSMAUG00000021998, ENSMAUG00000022214,
ENSMAUG00000010844, and ENSMAUG00000012900 were
selected as the initial nodes of the brain, lung, trachea, and olf,
respectively. Then, we used the BFS algorithm to traverse the
TO-GCNs to infer the time-order gene modules of different
organs. As shown in Figure 4A, there were six to seven time-
order gene modules that were all involved in the stress response
FIGURE 3 | The results of the time-order gene co-expression network (TO-GCN) analysis in the (A) brain, (B) lung, (C) trachea, and (D) olf. The colored dots
represent the screened genes.
August 2021 | Volume 12 | Article 729776
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in each organ. Except for the brain, there were time-order gene
modules related to immune responses mediated by immune cells
in the lung, trachea, and olf.

To establish the reliability of the time-order analysis results,
we constructed a heatmap for each organ based on the gene
expression data of the time-order gene modules over time
(Figure 4B). It was found that the gene expression of time-
order gene modules roughly presented a main diagonal
distribution in different organs.

Multiple Organ Heterogeneity Based on
the TO-GCN After SARS-CoV-2 Infection
To explore the multiple organ heterogeneity of biological
processes after the organs were infected by SARS-CoV-2, the
biological significance of each organ in time-order gene modules
was explored using the GO enrichment analysis (Supplementary
Table 3). As shown in Figure 5, there are three stages of
biological processes in the brain: the first stage (m1) mainly
affected the regulation of the cell cycle, mitosis (mitotic cell cycle
phase transition, etc.), and chromosome composition (cilium
organization, regulation of chromosome organization, etc.). The
second stage (m2) mainly affected the neuron development
(positive regulation of neuron projection development and cell
morphogenesis involved in neuron differentiation) and synaptic
signaling (anterograde trans-synaptic signaling, chemical
synaptic transmission, synaptic signaling, etc.). The third stage
(m4–m7) mainly affected the mitochondrial translational
elongation (ATP metabolic process, etc.). There were four
stages in the lung: the first stage (m1) mainly affected the
Frontiers in Immunology | www.frontiersin.org 6
cellular tissue components (extracellular matrix organization,
proteolysis involved in cellular protein catabolic process, etc.).
The second stage (m2) mainly affected cell migration (positive
regulation of locomotion, positive regulation of cellular
component movement, etc.) and the regulation of angiogenesis
(blood vessel morphogenesis, angiogenesis, etc.). The third stage
(m3–m5) mainly affected the myeloid leukocyte-mediated
immunity (myeloid leukocyte activation). The fourth stage
(m6) mainly affected the regulation of mitochondrial-related
energy metabolism (mitochondrial translational elongation,
mitochondrial translational termination, etc.). There were four
stages in the trachea: the first stage (m1) mainly affected the
regulation of innate immune response (innate immune response-
activating signal transduction, activation of innate immune
response, etc.). The second stage (m2, m3) mainly affected the
regulation of biological processes related to protein metabolism
(ubiquitin-dependent protein catabolic process, proteolysis
involved in cellular protein catabolic process, etc.) and rRNA
metabolism (ribonucleotide metabolic process, purine
ribonucleotide metabolic process, etc.). The third stage (m4,
m5) mainly affected the myeloid leukocyte-mediated immunity
(myeloid leukocyte activation) and antigen processing and
presentation. The fourth stage (m6) was the oxidative stress
response. There were three stages in the olf. The first stage (m1)
mainly affected the regulation of brain behavior-related
biological processes (learning or memory, behavior, brain
development, etc.). The second stage (m2, m3) mainly affected
the regulation of synaptic plasticity (cell morphogenesis involved
in neuron differentiation, etc.). The third stage (m4–m6) mainly
A B

FIGURE 4 | (A) The analysis results of time-order gene modules in different organs. L1 represents the body’s stress response, whereas L2 represents the immune
response mediated by the immune cells. (B) Heatmaps of the average normalized counts per million (CPMs) in different organs.
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affected the same biological processes as the third stage in the
trachea and lung.

Therefore, there are two types of biological processes: the
stress response and immune cell-mediated immune response
involving the lungs, trachea, and olf after SARS-CoV-2 infection.
However, a single biological process of stress response occurs in
the brain, and the stress response is heterogeneous in different
organs. In the lung, the regulation of DNA morphology,
angiogenesis, and mitochondrial-related energy metabolism are
specific biological processes related to the stress response.
Biological processes related to the regulation of protein and
rRNA metabolism-related biological processes are the main
stress responses of the trachea. In olf, the distinctive stress
response is neural signal transmission and brain behavior. It is
worth mentioning that the myeloid cell-mediated immune
Frontiers in Immunology | www.frontiersin.org 7
response-related biological processes caused by SARS-CoV-2
infection occurred in the lungs, olf, and trachea. Neuron
morphogenesis caused by SARS-CoV-2 infection mainly occurs
in the nervous system, such as in the brain and olf.

These results demonstrated that the immune responses in the
trachea, lung, andolfwere indifferentmodules;however, the timeof
immuneresponseoccurrencewas consistentwith the timewhen the
number of DEGs peaked in different organs.
Hub Genes of the Key Gene Modules in
Multiple Organs After Being Infected by
SARS-CoV-2
Zhou et al. found that there were two clinical stages of SARS-
CoV-2 infection in the human body. The first stage is the initial
FIGURE 5 | Time-order Gene Ontology (GO) enrichment analysis results of different organs 1. nucleic acid metabolic process; 2. cell cycle; 3. nervous system
process; 4. signal transduction; 5. cellular component organization; 6. energy derivation by oxidation of organic compounds; 7. ATP metabolic process; 8.
nucleoside phosphate metabolic process; 9. protein metabolic process; 10. ion transmembrane transport; 11. regulation of locomotion; 12. vasculature
development; 13. secretion by cell; 14. lipid metabolic process; 15. myeloid leukocyte activation; 16. myeloid leukocyte-mediated immunity; 17. macromolecule
localization; 18. protein catabolic process; 19. cellular metabolic process; 20. nucleotide metabolic process; 21. muscle system process; 22. response to stimulus;
23. immune response-regulating signaling pathway; 24. regulation of innate immune response; 25. antigen processing and presentation; 26. head development;
27. small molecule metabolic process; 28. vesicle-mediated transport; 29. regulation of body fluid levels.
August 2021 | Volume 12 | Article 729776
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incubation stage, which is highly infectious, but with less obvious
clinical symptoms. The second stage is the later clinical
symptoms stage, when the immune response is excessively
activated and the inflammatory reaction causes multiple organ
injuries (34). In our study, 15 genes that were significantly
differentially expressed in the lungs, olf, and trachea were
found to be involved in the immune response. GO enrichment
analysis of the time-order gene modules showed that the
immune response mediated by immune cells occurred in the
lungs, trachea, and olf. Based on the abovementioned results, we
speculated that over-activation of the immune response was not
only an important marker of clinical symptoms but also a key
mechanism of SARS-CoV-2-induced multiple organ dysfunction
(34). Therefore, the gene modules of the immune response were
used to explore the hub genes that mediate the immune response
in different organs after SARS-CoV-2 infection.

First, the ImmPort database was used to identify the genes
related to immune response, and the STRING database was used
to construct a PPI network. Finally, the PageRank algorithm was
used to identify hub genes in the lungs, trachea, and olf
(Supplementary Table 4). Among them, SRC, RHOA,
CD40LG, CSF1, and TNFRSF1A were the hub genes in the
lung; hub genes in the trachea were CXCL10, ICAM1, CD40,
IRF7, B2M, whereas FCER1G, ICAM1, LAT, LCN2, and PLAU
were the hub genes of olf (Figure 6A).

In this study, GSE166253 and GSE162615 datasets were used
as background data, and the t-test was used to verify the hub
genes. (Figure 6B). The expression of all the hub genes
mentioned above was significantly different between the
COVID-19 and normal control groups.
Frontiers in Immunology | www.frontiersin.org 8
Screening Targeted Drugs Based
on the Hub Genes
The hub genes were used as targets to explore potential drugs for
COVID-19 treatment using the CTD database (Supplementary
Table 5). As shown in Figure 7, compounds such as resveratrol,
acetaminophen, estradiol, statins, dexamethasone, and quercetin
are potential targeted drugs for managing COVID-19.
Resveratrol and estradiol were screened as they could regulate
the expression of multiple genes such as SRC, CSF1, and ICAM10
in the lung, trachea, and olf after SARS-CoV-2 infection.
Acetaminophen might have a therapeutic effect on lung and
olfactory dysfunction by regulating the expression of TNFRSF1A,
FCER1G, and LAT. Statins had therapeutic effects on lung and
tracheal dysfunction by regulating the expression of RHOA,
CD40LG, and CD40. Dexamethasone and quercetin had
therapeutic effects on olf and tracheal dysfunction by
regulating the expression of LAT, PLAU, CXCL10, and CD40.
DISCUSSION

COVID-19 is caused by SARS-CoV-2, which primarily affects
the lungs and gradually spreads to multiple organs, leading to
multiple organ dysfunction (35). However, the mechanisms
underlying multiple organ dysfunction remain unclear. In our
study, it was found that the lung, trachea, and olf after SARS-
CoV-2 infection mainly demonstrated two biological processes:
stress response and immune cell-mediated immune response.
However, the stress response is the only biological process in the
brain that regulates neuronal signals after SARS-CoV-2
A B

FIGURE 6 | Screening and validation of hub genes in multiple organs after SARS-CoV-2 infection. (A) Hub genes in the protein–protein interaction (PPI) network
screened using the PageRank algorithm (Red ones indicate the hub genes). (B) Validation of hub genes based on datasets GSE166253 and GSE162615,
GSE166253 and GSE162615.
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infection. Virhammar et al. first reported a patient with acute
necrotizing encephalopathy who was negative for COVID-19.
Despite a coma due to neurological deterioration, the patient
never experienced a period of severe inflammatory response.
Moreover, SARS-CoV-2 RNA, high concentrations of the
neuronal injury markers neurofilament light, tau, and astrocyte
activation marker glial fibrillary acidic protein were detected in
the patient’s cerebrospinal fluid (36). The results of the
abovementioned study are consistent with biological processes
identified in the brain in our analysis.

In the lung, the regulation of DNAmorphology, angiogenesis,
and mitochondrial-related energy metabolism are specific
biological processes related to the stress response. Belizário
et al. found that coronaviruses co-evolved with host cells after
pulmonary invasion. The host coordinated the process of
recombination, mutation, and repair of coronavirus RNA
Frontiers in Immunology | www.frontiersin.org 9
intermediates while performing RNA editing and DNA repair,
which drives the pathological process of COVID-19 (37).
Ackermann et al. found that the peripheral pulmonary
pathology of COVID-19 patients who died of respiratory
failure showed diffuse alveolar injury with perivascular T cell
infiltration. Unique vascular features, such as severe endothelial
damage and cell membrane destruction associated with the
presence of intracellular viruses were observed in the lungs of
COVID-19 patients. In addition, extensive thrombosis with
microvascular disease has been observed in COVID-19 patients
(38). Codo et al. found that the replication of coronavirus in the
lungs triggers the production of mitochondrial reactive oxygen
species, which stabilizes hypoxia-inducible factor-1a and
improves the efficiency of coronavirus replication and
glycolysis (36). These studies corroborate our findings
regarding the mechanism of pulmonary dysfunction.
FIGURE 7 | Screening of potential therapeutic drugs for different organ dysfunctions. Red indicates hub genes of organs, whereas purple indicates potential
therapeutic drugs that target hub genes.
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In the trachea, biological processes such as the regulation of
protein metabolism and rRNA metabolism-related biological
processes modulate the stress response. These two biological
processes regulate various factors inside and outside the airway
smooth muscle to maintain the balance of oxygen exchange in the
lung. Airway smooth muscle, a unique type of smooth muscle,
forms an effective, adjustable, and reactive wall that covers most of
the airway from the trachea to the alveolus. Airway smoothmuscle
and the surrounding inflammatory environment play important
roles inCOVID-19 (39).The results showed that after SARS-CoV-2
infection, the trachea responded rapidly to the invading virus
through its inherent normal physiological defenses. Eventually, it
mediated the initiation and response process of specific immunity.

In the olf, the distinctive stress response was the regulation of
biological processes related to neural signal transmission and brain
behavior. It has been reported that coronavirus may enter the
central nervous system through the olf, triggering cytokine storms
and brainstem dysfunction and causing neuronal death (40, 41).

In addition, it was found that the biological processes related
to immune response (myeloid leukocyte activation and myeloid
leukocyte-mediated immunity) occurred in the lung, olf, and
trachea. Immune cells such as neutrophils and mononuclear
macrophages can coordinate protective immunity against SARS-
CoV-2 infection. However, cytokine storms promote excessive
infiltration of immune cells, which cause immune cells to have
strong pro-inflammatory activity and cause multiple organ
dysfunction (42). Therefore, we conducted a deeper investigation
on the effects of the immunity-related genes in various organs after
SARS-CoV-2 infection.

In our study, 15 genes were screened as hub genes, which
played an important role in the pathological process of COVID-
19. In the lungs, COVID-19 causes lung dysfunction by
regulating the expression of SRC, RHOA, CD40LG, CSF1, and
TNFRSF1A. SRC is a typical member of the non-receptor protein
tyrosine kinase family that regulates the activation of T cells (43).
Li et al. found that SRC protein tyrosine kinase was expressed by
leukocytes, alveolar epithelial cells, endothelial cells, and
fibroblasts in the lung. Pulmonary fibrosis is a potentially fatal
disease caused by persistent damage to alveolar epithelial cells,
resulting in the accumulation of myofibroblasts and excessive
deposition of extracellular matrix components and connective
tissue. The pro-fibrotic effect of SRC kinase plays an important
role in pulmonary fibrosis (44). RHOA, a member of the RHO
family of small GTPases that circulates between the inactive
GDP-bound state and the active GTP-bound state, acts as a
molecular switch in the signal transduction cascade. It is
activated during the binding reaction of chemokines, cytokines,
and growth factors (45, 46). In addition, Liu et al. found that
RHOA is the main immune gene that induces lung inflammation
and acute lung injury by inhibiting lung cancer cell apoptosis and
promoting its proliferation (47, 48). The protein encoded by
CD40LG is expressed on the surface of T cells. It can effectively
regulate the function of B cells. Therefore, CD40LG plays an
important role in the conversion of immunoglobulins and the
treatment of high IgM syndrome (49, 50). Li et al. found that
CD40LG and chemokines are jointly involved in the synthesis of
Frontiers in Immunology | www.frontiersin.org 10
pro-inflammatory mediators, which leads to the occurrence of
transfusion-related acute lung injury and autoimmune diseases by
attracting leukocytes to the site of inflammation (51). CSF1 is an
immune gene that controls the production, differentiation, and
function of macrophages. Bertolazzi et al. found that CSF1
overexpression after SARS-CoV-2 infection led to pulmonary
fibrosis by promoting the recruitment and activation of
macrophages (50). TNFRSF1A is a tumor necrosis factor
receptor, and the interaction between tumor necrosis factor and
TNFRSF1A plays an important role in inhibiting the occurrence of
inflammation, tumor proliferation, migration, and invasion (52).
Wilson et al. found that TNFRSF1A induced alveolar epithelial cell
dysfunction in the early stages of acute respiratory distress
syndrome, which promotes lung permeability and inhibits the
reabsorption of alveolar fluid (53). In summary, SRC, RHOA,
CD40LG, CSF1, and TNFRSF1A may be the key genes that cause
lung dysfunction after the body is infected with coronavirus.

SARS-CoV-2 can damage the trachea by regulating the
expression of CXCL10, ICAM1, CD40, IRF7, and B2M. CXCL10
is an immune gene induced by interferon, which regulates T cell
migration by binding to CXCR3. CXCL10 plays an important role
in the “cytokine storm” induced by SARS-CoV-2 (54). Belperio et al.
found that persistent expression of CXCL10 and CXCR3 led to
chronic peribronchiolar leukocyte infiltration, which induced
airway fibrous occlusion (55). ICAM1, a cell surface adhesion
receptor that regulates the accumulation of white blood cells to
inflammation sites, plays an important role in immune cell response
in inflammation and tumorigenesis (56). Yamaya et al. found that
increased ICAM1 expression levels may lead to increased
production of cytokines that induce rhinovirus replication and
infection. This biological process induces airway inflammation
and aggravates asthma (57). CD40 encodes a receptor on antigen-
presenting cells, which can mediate a variety of immune responses
and inflammatory responses (58). Lazaar et al. found that CD40
may mediate an important signal transduction pathway involving
protein tyrosine kinase-dependent calcium mobilization, NF-kB
activation, and IL-6 production in airway smooth muscle, which
interacts with smooth muscle cells to enhance airway inflammation
(57, 59, 60). IRF7 can induce the production of interferons (61).
Barjesteh et al. found that after chicken tracheal epithelial cells were
stimulated by TLR ligands, the IRF7 and NF-kB signaling pathways
initiate antiviral responses, which led to the activation of
macrophages (62). The mechanism by which B2M deficiency
causes primary or acquired drug resistance in immunotherapy
affects the normal folding or transport of MHC I to the cell
surface and antigen presentation. Detection of immunotreatment-
sensitive markers concurrently with possible drug-resistant
mutations allows for more accurate screening of immunotherapy
methods (63). Cook et al. found that the loss of B2M expression
may increase susceptibility to respiratory mycoplasma infection
(64). To summarize, the abnormal expression of CXCL10,
ICAM1, CD40, IRF7, and B2M may be the main cause of
tracheal dysfunction after infection with coronavirus.

SARS-CoV-2 causes damage to the olf and regulates nervous
system function by regulating the expression of FCER1G, ICAM1,
LAT, LCN2, and PLAU. FCER1G is at the core of allergic reactions.
August 2021 | Volume 12 | Article 729776
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The specific bindingof lgE andFCER1G leads to the release ofmany
mediators that can induce allergic reactions (65). Zhang et al. found
that the elimination of activated FcgR can regulate nerve damage by
changing the endoneurium and systemic inflammation (66).
Jahromi et al. found that endothelial cell ICAM-1 and ICAM-2
mediate themigrationofTh1 andTh17 cells across the blood–brain
barrier in neuroinflammation (67). The synergistic signal
transduction system of LAT and SH2 plays an important role in
the signal transduction of mast cells and T cell antigen receptors
(68). LCN2 plays an important antibacterial function in innate
immunity by resisting external stimuli and protecting cells from
apoptosis (69). PLAU encodes a secreted serine protease. Li et al.
found that PLAU exerted a carcinogenic effect in head and neck
squamous cell carcinoma by affecting the tumor immune
microenvironment (70). In general, FCER1g, ICAM1, LAT, LCN2,
and PLAU may be the main immune genes that are regulated by
COVID-19 to induce olf and neurological dysfunction.

The prognosis of COVID-19 is largely influenced by multi-
organ response to the novel coronavirus. Cardiovascular disease
and multiple organ failure have become the most common risk
factors for severe illness anddeath (71).TheCTDdatabasewasused
to explorepotential drugs forhubgenes in the lungs, trachea, andolf
inour study.Resveratrol and estradiolwere screened for their ability
to regulate the expression ofmultiple genes such as SRC, CSF1, and
ICAM10 in the lung, trachea, and olf after SARS-CoV-2 infection.
Resveratrol is a polyphenol compound that has a good preventive
effect against many diseases, such as respiratory system disease,
cancer, and cardiovascular disease. Pasquereau et al. found that
resveratrol has antiviral effects, including on the coronavirus. It
stimulates the immune system and inhibits the release of
inflammatory cytokines by regulating RAS and upregulating the
expression of ACE2 (72–74). Estrogen can effectively regulate the
number of immune cells produced by the immune system, which
makes women more resistant than men to the cytokine storm
induced by SARS-CoV-2 infection and immune system disorders
(75). Acetaminophen may have a therapeutic effect on lung and
olfactory dysfunction by regulating the expression of TNFRSF1A,
FCER1G, and LAT. Acetaminophen, the most classic antipyretic,
analgesic, and anti-inflammatory drug, can relieve fever and other
symptoms in COVID-19 patients (76). Statins have therapeutic
effects on lung and tracheal dysfunction by regulating the
expression of RHOA, CD40LG, and CD40. Statins have anti-
inflammatory, immunomodulatory, and antithrombotic effects.
By upregulating the expression of ACE2, statins minimize lung
dysfunction caused by excess angiotensin II (77). Statins restrict the
“cytokine storm” in patientswith severeCOVID-19 byblocking the
NF-kB pathway and NLRP3 inflammasomes to exert their anti-
inflammatory properties and by reducing the invasion of viruses to
destroy lipid rafts (78, 79). In addition, our study found that
dexamethasone and quercetin had specific therapeutic effects on
olf and tracheal dysfunction by regulating the expression of LAT,
PLAU, CXCL10, and CD40. Quercetin exerted a good antiviral
effect by inhibiting the expression of DNA gyrase, protease,
polymerase reverse transcriptase, and binding to viral capsid
proteins. The combination of quercetin and vitamin C has a
positive effect on COVID-19 patients (80). Dexamethasone is a
Frontiers in Immunology | www.frontiersin.org 11
broad-spectrum immunosuppressant. Molecular docking studies
have shown that dexamethasone inhibits the entry of coronavirus
into cells by binding to ACE2 (81). Dexamethasone restricts the
production and destruction of inflammatory cytokines, but it also
inhibits the protective effects of T cells. Therefore, it can be used to
alleviate the condition of patients with severe COVID-19 in the
short term (82). In conclusion, resveratrol, acetaminophen,
estradiol, statins, dexamethasone, and quercetin may be potential
drugs for the treatment of COVID-19.

In summary, we found that the biological processes in
different organs after SARS-CoV-2 infection were heterogeneous.
The invasion of SARS-CoV-2 causes multiple organ dysfunction
through immune system disorders and cytokine storm syndrome.
Moreover, the abnormal expression of hub genes (SRC, RHOA,
CD40LG, CSF1, TNFRSF1A, FCER1G, ICAM1, LAT, LCN2,
PLAU, CXCL10, CD40, IRF7, and B2M) was regarded as the
main cause of cytokine storm syndrome in COVID-19 patients.
Concurrently, we also found that resveratrol, acetaminophen,
estradiol, statins, dexamethasone, and quercetin, etc. may be
potential drugs for the treatment of COVID-19.
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