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The advent of X-ray free-electron lasers promises the possibility to determine

the structure of individual particles such as microcrystallites, viruses and

biomolecules from single-shot diffraction snapshots obtained before the particle

is destroyed by the intense femtosecond pulse. This program requires the ability

to determine the orientation of the particle giving rise to each snapshot at signal

levels as low as ~10�2 photons per pixel. Two apparently different approaches

have recently demonstrated this capability. Here we show they represent

different implementations of the same fundamental approach, and identify the

primary factors limiting their performance.

1. Introduction

X-ray free-electron lasers promise to move crystallography

beyond crystals. For example, moves are afoot to determine

the structure of biological molecules and their assemblies by

exposing a succession of individual single particles to intense

femtosecond pulses of X-rays (Solem & Baldwin, 1982; Neutze

et al., 2004; Gaffney & Chapman, 2007). In addition to

experimental issues, two algorithmic challenges must be

overcome in order to recover structure from such diffraction

snapshots. First, the orientation of the object giving rise to

each snapshot must be determined. Second, this must be

performed at extremely low signal. A typical 500 kD bio-

molecule, for example, scatters only 100 of the �1012 incident

photons, with the photon count per pixel being as low as 10�2

at the detector (Shneerson et al., 2008). As the particle

orientations giving rise to the snapshots are unknown, the

signal cannot be boosted by averaging, and orientation

recovery must be carried out at ‘raw signal level’ in the

presence of shot (Poisson) and background scattering noise

(Shneerson et al., 2008; Fung et al., 2009). Orientation recovery

is thus one of the most critical steps in single-particle

structure determination (Leschziner & Nogales, 2007). Once

diffraction-pattern orientations have been discovered, the

three-dimensional diffraction volume can be assembled and

the particle structure recovered by standard phasing

algorithms (Gerchberg & Saxton, 1972; Feinup, 1978; Miao et

al., 2001; Shneerson et al., 2008; Fung et al., 2009; Loh & Elser,

2009).

Using an adaptation of generative topographic mapping

(GTM) (Bishop et al., 1998; Svensén, 1998), Fung et al. (2009)

published the first successful recovery of the structure of a

molecule from simulated diffraction snapshots of unknown

orientation at signal levels expected from a 500 kD molecule

by utilizing the information content of the entire ensemble of

diffraction snapshots. Subsequently, Loh & Elser (2009)

demonstrated structure recovery from simulated diffraction

snapshots by an apparently different approach, using a

so-called expansion–maximization–compression (EMC)

algorithm (Loh & Elser, 2009). Both approaches have been

validated with experimental data. Loh et al. (2010) have

oriented snapshots from iron oxide nanoparticles obtained by

single-shot diffraction. Using GTM, Fung et al. (2010) and

Schwander et al. (2010) have determined the orientation of

diffraction snapshots from gold nanofoam with �8 � 10�2

scattered photons per Shannon pixel with an orientational

accuracy of about one Shannon angle. Using a variety of

manifold embedding approaches, Giannakis et al. (2010) have

demonstrated orientation recovery from diffraction snapshots

of superoxide dismutase crystals with 1� accuracy compared

with the goniometer step size of 0.5� and the crystal mosaicity

of 0.8�. Using recently discovered symmetries of image

formation, Giannakis et al. (2010) have used manifold

approaches for orientation recovery and three-dimensional

reconstruction of single chaperonin molecules with experi-

mental cryo-electron microscopy snapshots as well as experi-

mental snapshots processed to represent doses 10� lower than

is possible with existing techniques.

Here we show the two Bayesian approaches of Loh & Elser

(2009) and Fung et al. (2009) are fundamentally the same,

and discuss their capabilities and limitations. Issues to do with

the way each approach is implemented and performs under

different conditions are beyond the scope of the present

paper, if only because these aspects are under active devel-

opment. In order to facilitate the discussion, the structure-

recovery process is divided into two steps: (a) orienting the

diffraction snapshots and assembling the three-dimensional

diffraction volume; and (b) recovering the structure by a
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phasing algorithm. Since we are concerned with orientation

recovery, the discussion will be confined to the first step.

The differences in presentation and notation notwith-

standing, the Fung et al. (2009) and the Loh & Elser (2009)

approaches are the same in all essential features. Specifically,

they both:

(a) exploit the information content of the entire data set;

(b) recognize that a nonlinear mapping function relates the

space of object orientations to the space of scattered inten-

sities;

(c) determine the mapping function by Bayesian inference;

(d) use the well established expectation–maximization

(EM) iterative algorithm (Dempster et al., 1977) to maximize

likelihood;

(e) apply a constraint to guide likelihood maximization; and

(f) implement noise-robust algorithms with essentially the

same computational scaling behaviors.

At the conceptual level, the primary difference between the

two approaches concerns the way the step (e) is introduced.

This paper elucidates the essential similarity between these

two approaches, thus clarifying the common basis of Bayesian

approaches to orienting snapshots. Details of each approach

can be found in the cited references (Svensén, 1998; Fung et

al., 2009; Loh & Elser, 2009; Giannakis et al., 2010). To facil-

itate a comparison of the two papers, Table 1 provides a

translation table for the symbols used in each.

2. Conceptual outline of orientation recovery

In essence, diffraction from a given object is a process (‘a

machine’), which takes an orientation as input to generate a

diffraction pattern as output. With a detector consisting of p

pixels, one can represent a diffraction pattern as a vector in a

p-dimensional Euclidean space of intensities, with the nth

component of the vector consisting of the intensity recorded at

the nth detector pixel. The information content of each

diffraction pattern can be captured by ensuring that the pixels

represent Shannon–Nyquist samples. In this picture, diffrac-

tion maps an orientation to a point in a p-dimensional space.

Because an object has only three orientational degrees of

freedom (‘Euler angles’), in the absence of noise, the points

in the p-dimensional space of intensities define a three-

dimensional manifold, which is, in fact, a nonlinear map of the

SO(3) manifold of orientations (Giannakis et al., 2010).1

The representation of object orientations bears careful

consideration. Despite their widespread use, Euler angles are

not a good representation of orientational similarity, because

an object can be rotated through large Euler angles (�; �; �)

and end at an orientation very close to its starting point. As

the Euclidean distance in quaternion space is a good measure

of (dis)similarity between orientations, both Fung et al. (2009)

and Loh & Elser (2009) use unit quaternions (Kuipers, 2002)

to represent orientations. Diffraction to a point in reciprocal

space, therefore, can be thought of as a functional yðxÞ, with x

representing a unit quaternion.

A diffraction snapshot consists of p intensity values. The

mapping thus takes an orientation x to generate a model

snapshot yðxÞ ¼ ðy1; . . . ; ypÞ. These are to be compared with

experimental snapshots t ¼ ði1; . . . ; ipÞ, but will, in general,

not be identical to any single snapshot owing to (experi-

mental) noise.2

Because a given object has only three orientational degrees

of freedom, the points tn ¼ ðin1; . . . ; inpÞ representing the

diffraction snapshots in the so-called manifest intensity space

trace out a three-dimensional manifold, which is a nonlinear

map of the SO(3) manifold of orientations. At a conceptual

level, given the ‘input’ and ‘output’ manifolds, it is possible to

discover the nonlinear map between them. This links (‘maps’)

a diffraction snapshot to a given orientation, and thus assigns

an orientation to each diffraction snapshot (Fung et al., 2009;

Giannakis et al., 2010). Once this has been accomplished,

snapshots of similar orientation can be averaged to boost the

signal, and structure recovery can proceed by standard tech-

niques. In fact, appropriately wielded, manifold embedding

can improve the signal far more efficiently than simple aver-

aging of similar snapshots (Schwander et al., 2010; Giannakis et

al., 2010), but this is beyond the scope of the present paper.

We now discuss how this conceptual outline forms the basis

of the two apparently different approaches by Fung et al.

(2009) (hereafter Fung) and Loh & Elser (2009) (hereafter

LE).

3. Exploiting the information content of the data set

Both approaches use the conceptual framework that snapshot

orientations can be determined by discovering the nonlinear

map connecting the two manifolds. The power of this general

approach stems from the fact that the intensity manifold is

research papers

482 Moths and Ourmazd � Comparison of single-particle diffraction algorithms Acta Cryst. (2011). A67, 481–486

Table 1
Indices and symbols.

Translation tables for indices and symbols used in Fung et al. (2009) (Fung)
and Loh & Elser (2009) (LE).

Fung LE Description

Indices
k j Indexes the set of orientations corresponding to the model

diffraction patterns
d i Indexes the pixels in an experimental or model diffraction

pattern
n k Indexes the set of experimental diffraction patterns

Symbols
T K Matrix whose entries are the pixel intensities of the

experimental diffraction patterns
Y W Matrix whose entries are the pixel intensities of the model

diffraction patterns
R P Matrix whose entries are the conditional probabilities of

the model diffraction patterns, given the experimental
diffraction patterns, e.g. Rkn is the probability of the kth
model diffraction pattern, given the nth experimental
diffraction pattern

1 In mathematical terms, diffraction is a mappingM :¼ �½SOð3Þ� � L2ðR2Þ,
with � describing the diffraction process. In the absence of object symmetry,
the map is diffeomorphic, one-to-one and onto. In the presence of object
symmetry, the map becomes many-to-one.
2 In this paper, vectors are represented by bold lower-case, matrices by bold
upper-case letters.



defined by the entire ensemble of snapshots. In essence, one is

using the whole data set to assign an orientation to each

snapshot. This is needed to overcome the paucity of infor-

mation in any single snapshot. Key here is the recognition that

the ‘mutual information’ between the snapshots of a large

ensemble is much larger than the information in any single

snapshot (Fung et al., 2009; Elser, 2009).

To render the formalism tractable, the SO(3) space of

orientations is represented by a discrete set of K orientations

(‘nodes’) fxkg, distributed nearly uniformly on the three-

sphere (Lovisolo & da Silva, 2001; Coxeter, 1973). The inter-

node spacing is chosen to satisfy the Shannon–Nyquist

sampling criterion, determined as follows. Consider recov-

ering the structure of an object with largest diameter D (radius

R) to resolution r (Fig. 1). The orientational accuracy needed

is then

��orient
Shannon ¼

1

2

r

R
¼

r

D
; ð1Þ

with the number of independent orientations in three

dimensions given by

Nnodes ¼
1

2

Area of three-sphere ¼ 2�2

Shannon element on three-sphereð Þ
3

� �

�
1

No: of symmetry elements
: ð2Þ

The pre-factor of 1
2 accounts for the fact that the three-sphere

is a double-cover of SO(3). The Shannon element in terms of

quaternions q is

�qShannon ¼ 2 1� cos
��Shannon

2

� �� �1=2

’
��Shannon

2
; ð3Þ

leading to

Nnodes ¼
8�2

Sð��ShannonÞ
3 ; ð4Þ

where S is the number of symmetry elements of the molecule

being reconstructed.

The information content of the data set is compromised by

noise. Noise is handled by Fung via a Gaussian model for the

departures of a vector representing a noisy snapshot from its

ideal noise-free position in the p-dimensional intensity space.

The large number of pixels used as components of a vector

representing a snapshot ensures, via the central limit theorem

(CLT), that a Gaussian model is appropriate regardless of the

specific noise spectrum present in each pixel (see Appendix

A). This is important because: (a) no prior knowledge of the

noise model is required; and (b) background scattering, which

need not be Poisson in nature, can be dealt with (Schwander et

al., 2010). The use of a Gaussian noise model imposes no

restrictions or additional requirements on Fung. LE, at least in

its present form, explicitly relies on a Poisson noise model. As

pointed out by LE, it remains to be established whether this is

sufficient to deal with situations where other types of noise

also play a role (Loh & Elser, 2009).

4. Bayesian inference and likelihood maximization

To link the orientations fxkg to intensity space, both approa-

ches use Bayesian inference and iterative likelihood maximi-

zation. Given a pair of events A and B with marginal

probabilities PðAÞ and PðBÞ, Bayes’ theorem links their

conditional probabilities via the expression

PðAjBÞ ¼
PðBjAÞPðAÞ

PðBÞ
: ð5Þ

This is used to link the space of orientations with the space of

observed diffraction snapshots. Starting with an initial guess

for the nonlinear map, the likelihood of the observed data,

given the model snapshots ½yðxkÞ�, is

L ¼
QN
n¼1

PK
k¼1

p½tnjyðxkÞ� pðxkÞ; ð6Þ

where tn and yðxkÞ represent the actual and model snapshots,

and the indices n and k run over the set of N diffraction

patterns and K orientations, respectively. The probability

p½tnjyðxkÞ� is determined by the noise model, and p(xk) is the

prior probability of the orientation xk, which is 1/K when all

orientations are equally likely.

Both LE and Fung maximize the log-likelihood iteratively

by the well known EM algorithm (Dempster et al., 1977). Each

iteration modifies the model snapshots, effectively moving the

manifold defined by them closer to the experimental data.

There is no guarantee that the final solution is a global

maximum.

Once the mapping corresponding to maximum likelihood

has been determined, the orientation of each measured

diffraction pattern tn is taken to correspond to that xk which

maximizes the probability of tn ‘belonging’ to yðxkÞ. Thus we

choose the orientation xk which maximizes the probability

pðxkjtnÞ. The conditional probability pðxkjtnÞ is determined

using equation (5).

Having assigned the N diffraction snapshots to the K

orientational bins, the diffraction volume can be recon-

structed. In standard ‘classification and averaging’, diffraction

patterns assigned to the same orientation xk are averaged so

that there is one representative diffraction pattern for each xk.
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Figure 1
Schematic relationship between object diameter D (= 2R), spatial
resolution r and required orientational accuracy.



So-called generative models such as that used by Fung allow

one to construct (‘generate’) model snapshots for each

orientation directly from the manifold. As the manifold

represents the information content of the entire data set, the

generative approach offers significantly greater noise reduc-

tion than classification and averaging, which relies on the

information in the neighborhood of a given orientation only

(Schwander et al., 2010; Giannakis et al., 2010).

Each averaged, or alternatively, each generated snapshot is

placed in reciprocal space according to its orientation,

resulting in a set of irregularly spaced points in reciprocal

space. These are interpolated onto a Cartesian grid so as to

allow fast Fourier transformation during iterative phasing

(Gerchberg & Saxton, 1972; Schwander et al., 2010; Feinup,

1978).

5. Constraints to guide expectation–maximization

The only substantive difference between the GTM and the

EMC algorithms is the way in which the manifold embedding

process is introduced, more specifically, the way the model

diffraction patterns are evolved so as to maximize the like-

lihood. In principle, one would modify the model diffraction

patterns along the steepest ascent in log-likelihood, until the

derivative with respect to changes in the model diffraction

patterns is zero. However, this approach is too simple to be of

use in practice. Suppose we have found the map y such that the

likelihood L is maximized, and suppose we now exchange a

pair of model images assigned to x1 and x2, viz. yðx1Þ  ! yðx2Þ.

This simply switches the order of the first two terms in the sum

over k in equation (6), leaving the likelihood unchanged. By

the same reasoning, we are able to permute the images

assigned to the xk arbitrarily without changing the likelihood

L. This means that likelihood maximization alone is unable to

find a unique solution, and is, for example, unable to distin-

guish between the two very different neighborhood assign-

ments shown in Fig. 2.

In order to eliminate this problem, both the GTM and EMC

algorithms place a ‘contiguity constraint’ on the map y. This

constraint demands that two nodes which are close to each

other in the space of orientations be mapped to points close to

each other in data space. Fung and LE impose this contiguity

constraint differently. In the GTM approach used by Fung, the

map is expanded in terms of a set of basis functions:

yðxÞ ¼
PM
m¼1

’mðxÞwm; ð7Þ

where ’m is one of M basis functions (M< the number of

independent orientations K) and wm represent the expansion

coefficients (weights).

Likelihood maximization proceeds by adjusting the M sets

of p coefficients. The basis functions are chosen so as to vary

slowly with x. In the current implementation of GTM, they are

Gaussians (Bishop et al., 1998). The map in equation (7) varies

slowly, provided the weights wm are small. This is achieved by

imposing a zero-centered Gaussian distribution on the sum of

the squares of the weights. This strategy helps ensure that,

topologically, the neighborhood assignments in manifest

(intensity) space reflect the neighborhood assignments in

latent (orientation) space, i.e. yðxkÞ is close to yðxk0 Þ when xk is

close to xk0.

The EMC algorithm of LE, in contrast, uses the model

diffraction patterns yðxkÞ themselves (rather than the weights

wm) as fitting parameters. After each expectation–maximiza-

tion step, a so-called ‘compression’ step inserts the model

diffraction patterns yðxkÞ into reciprocal space according to

their orientations, and the resulting irregularly spaced points

are interpolated onto a uniform grid to determine a new

diffraction volume by local averaging. Next, an ‘expansion’

step uses the new diffraction volume as the source for a fresh

set of model diffraction snapshots by interpolating back onto

the irregularly spaced points corresponding to the pixels of

each of the model diffraction patterns. In this approach, both

the compression and expansion steps act as low-pass filters;

replacing two diffraction patterns by their average and then

deducing two diffraction patterns from the average removes

sharp variations between diffraction patterns mapped to

similar points in reciprocal space. In essence, the so-called

compression–expansion cycle is an alternative implementation

of the contiguity constraint, whereby neighboring orientations

in latent space give rise to neighboring points in manifest

intensity space.

The apparently different introductions of the contiguity

constraint described above belie the fundamental similarity of

the two approaches even in this step. As shown in Appendix B,

in the limit of zero weight-regularization parameter in Fung

and no compression–expansion in LE, the two approaches

reduce to the same algorithm.

6. Scaling behavior

The fundamental similarities between the two approaches

result in similar scaling in computational behavior. In brief, the

computational demands rise as En, where E ¼ D=rð Þ
s is the

number of resolution elements, D and r the object diameter

and spatial resolution, respectively, and s the number of

orientational degrees of freedom. Typically, 2 	 n 	 3, i.e. the

computational cost scales as the sixth to ninth power of (D=r)
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Figure 2
The two different neighborhood assignments indicated by the black lines
have the same likelihood. Assignment A, which ‘connects’ neighbors, is
clearly preferred to assignment B. An additional ‘contiguity constraint’ is
required to distinguish between these two assignments. The circle
perimeters represent the ‘true’ data manifold, the red dots represent the
model images yðxkÞ and the black lines represent the neighborhood
assignments.



(Fung et al., 2009), severely limiting the achievable resolution

and/or amenable object size. Significant improvements in this

behavior are essential, with the most obvious route involving

more efficient implementation and parallelization (Fung et al.,

2009; Loh & Elser, 2009). Fundamentally, however, the high

computational cost of Bayesian approaches stems from their

generality. It has long been known that the most general

algorithms are the most inefficient and the way to improve this

involves introducing problem-specific constraints (Le Cun et

al., 1990; Schwander et al., 2010). This is the basis of a new

generation of more efficient algorithms, which directly incor-

porate the physics of scattering (Giannakis et al., 2010).

7. Summary and conclusions

Bayesian approaches are capable of orienting snapshots

containing as few as 100 scattered photons (~10�2 photons per

pixel). The present paper establishes that two apparently

different Bayesian approaches to orienting diffraction snap-

shots are the same in all essential features. The elucidation of

these features can guide the development of computationally

more efficient algorithms, which are needed if the large and

more complex data sets anticipated from ongoing experiments

are to be successfully analyzed. The remarkable capability of

the Fung and LE approaches to operate at extremely low

signals stems not from algorithmic details, but from the

realization that much of the information about a given snap-

shot resides not in the snapshot itself, but in the other snap-

shots in the data set, and the entire information content is

needed to orient each snapshot at low signal.

APPENDIX A
Gaussian noise model in GTM

The fact that the orientations deduced by GTM agree closely

with the correct values for a wide variety of applications,

including the case when the noise is strongly Poisson distrib-

uted, indicates that the Gaussian model is adequate, at least

for the instances we have so far considered. Below we offer a

mathematical justification for this observation.

In Svensén’s nomenclature (Svensén, 1998) GTM maxi-

mizes the likelihood function:

L ¼
YN

n

1

K

XK

k

pðtnjykÞ

" #
¼
YN

n

1

K

XK

k

pnk

 !
; ð8Þ

where the indices k and n represent the latent space nodes and

the data vectors, respectively. Equation (8) can be written as

follows:

L ¼
YN

n

pn;

pn ¼
1

K

XK

k

pnk: ð9Þ

The parameter pn is a mean, representing the probability of a

data vector tn belonging to a node, averaged over the K nodes

of the manifold. The key point is that the parameters deter-

mining the likelihood, and hence the outcome of GTM, are a

set of N means. By the central limit theorem (CLT), for

sufficiently large N, the distribution of pn is normal, irre-

spective of the distributions describing pnk. As N 
 103 in our

case, this is easily satisfied. The normal distribution describing

pn has mean and variance ð�N; �n=N1=2Þ independent of the

functional form assumed for pnk.

With � and yk as fitting parameters, GTM uses the func-

tional form

pnk ¼
�

2�

� ��D=2

exp �
�

2
tn � yk

�� ��2

� �
ð10Þ

to fit the data vector cloud. In essence, this is an attempt to

describe the data cloud as a sum of Gaussians. As the latter

form a complete set, this is permissible, although it may not be

the most efficient representation when the noise is Poisson.

The CLT is, of course, valid regardless of the representation

used to describe the data, and the parameters of the final

normal distribution describing pn are independent of this

choice.

APPENDIX B
Comparison between contiguity constraint
implementations

For GTM, the equation obtained from setting to zero the

derivatives of the likelihood with respect to the model para-

meters is

ðUTGUþ 	IÞW ¼ UTRT; ð11Þ

where the matrix G is a K � K diagonal matrix with entries

given by gkk ¼
P

n rkn.

In LE, the model parameters are the pixel intensities

themselves, so U is the identity matrix and W = Y. There is

no weight regularization in the EMC algorithm, i.e. 	 = 0.

Therefore, equation (11) reduces to:

GY ¼ RT: ð12Þ

This is to be compared with equation (11) of LE, which,

translated into the same notation as equation (12) above,

becomes ykd ¼
P

n rkntnd=
P

n rkn. From the definition of the

matrix G, it is clear that the LE update rule is given by

Y ¼ G�1RT, which is equivalent to equation (12) above.
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