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Summary
Background Current paediatric cancer care requires innovative approaches to predict prognosis that facilitates per-
sonalised stratification, yet studies on the performance, composition and limitations of contemporary prognostic
models are lacking. We aimed to compare the accuracy of traditional and advanced prognostic models.

Methods A systematic search for this systematic review and meta-analysis (CRTN42022370251) was conducted in
PubMed, Embase, Scopus, and the Cochrane Library databases on 28 June 2024. Studies on the accuracy of
prognostic markers or models used in paediatric haematological malignancies, central nervous system (CNS), or
non-CNS solid tumours (NCNSST) were included. Three model categories were defined using: 1-clinical
parameters, 2-genomic-transcriptomic data, and 3-artificial intelligence (AI). Primary outcomes were area under
the receiver operating characteristic curve with a 95% confidence interval (CI) for various overall survival intervals
and event-free survival. Two independent groups performed selection and data extraction. We used data published
by the authors and publicly available databases.

Findings Of 12,982 studies, 358 were included in the meta-analysis and 27 in the systematic review, with limited data
on AI-approaches. Most data were reported on NCNSST at 5-year OS, where a statistically significant difference was
observed between Category-1 (0.75 CI: 0.72–0.79) and Category-2 (0.85 CI: 0.82–0.88) (p < 0.001), but not between
Categories-2 and -3 (p = 0.2834) (0.82 CI: 0.77–0.88). Internal validation studies showed significantly better
performance compared to those using external validation, highlighting the high risk of bias (ROB) inherent in
internal validation. High ROB was most commonly experienced in the outcomes and statistical analysis domains,
assessed using PROBAST and QUIPS.

Interpretation It is advisable to introduce Category-2 and -3 models in a clinical setting, especially for NCNSST
prognostic for aiding risk-stratification. Although AI-supported predictions in paediatric oncology are at an early
stage of development, it is imperative to further explore their potential. This requires structured data collection
and ethical sharing from paediatric oncology patients in sufficient quantity and quality.
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Research in context

Evidence before this study
There is no available evidence on the accuracy of various
prognostic approaches for predicting paediatric cancer
outcomes. Our aim was to provide a comprehensive review of
the available literature on predicting a wide range of
outcomes of paediatric and adolescent (<21 years) patients
with primary malignant tumours, using models classified into
three categories (1-clinical data-based; 2-robust genomic-
transcriptomic; 3-artificial intelligence-based models) assessed
with direct statistics on the accuracy of the models. A
systematic search of four databases (PubMed, Embase,
Scopus, and Cochrane Library) was conducted on the 22nd of
November 2022, and references of eligible full texts were
checked as well, without language limitations. The search was
updated on the 28th of June 2024. The search key consisted
of four domains: paediatric, cancer, prognosis, and accuracy.
The risk of bias was assessed using two tools: the Quality in

Prognosis Studies (QUIPS) and the Prediction model Risk Of
Bias Assessment Tool (PROBAST).

Added value of this study
Our extensive analysis of different outcomes and subgroups
highlights the superior predictive power of genomic-
transcriptomic and artificial intelligence-based models.
Subgroup analysis showed that the method of validation can
lead to significant differences in accuracy, and internal
validation can lead to better but biased results.

Implications of all the available evidence
In clinical settings, more modern, genomic-transcriptomic
data-based models are recommended. Artificial intelligence is
a promising approach in model development, and external
validation should be chosen to obtain objective and
generalizable models.
Introduction
Paediatric cancers (PC) are characterised by diverse bio-
logical behaviour, aetiology, and clinical trajectories.1–3 In
high-income countries, more than 80% of patients can be
cured4; however, survival rates drop following unfav-
ourable events (e.g., 0.58 5-year survival rate for acute
lymphoblastic leukaemia after relapse in Nordic coun-
tries),5 which requires differentiation between patients
with various clinical courses.6 The scarcity of paediatric
cohorts limits the availability of scientific reports and high-
quality data for valid clinical decisions. Approximately
400,000 new PC cases are diagnosed worldwide each year.7

PC can be divided into three main categories by the
origin of the tumour, which are characterised by very
different therapies, prognostic tools, and outcomes. The
most common are haematological malignancies (HM)
and central nervous system (CNS) tumours (CNST).
Non-CNS solid tumours (NCNSST) consist of a variety
of rare histological types. The age-standardized inci-
dence rates for more common leukaemias and brain
tumours worldwide are 5.41 and 2.04 per 100,000,
respectively, in sharp contrast with, e.g., 0.19 per
100,000 of liver cancer.8 Despite being rare, NCNSSTs
are relevant, as – based on a study from the United
States written in 2020- the 5-year OS of, for example,
bone tumours, soft tissue sarcomas, and hepato-
blastoma is less than 70% in the US.9

Despite recent breakthroughs in therapeutic ap-
proaches, tailoring treatments to patients individually,
and high-risk case management remain a challenge,
raising awareness of clinical decision support. Often,
burdensome multiple-arm therapeutic protocols are
required, but with poor upfront risk stratification, some
patients may receive excessive therapies, others may
face disease progression.10,11

Over the last decade, prognostic tools in paediatric
oncology (PO) have evolved from early models using
observable traits12–14 to integrating comprehensive mo-
lecular profiling via next-generation sequencing
(NGS),15–17 improving accurate risk stratification.18 Arti-
ficial intelligence (AI)-driven prognostic approaches
show promise in capturing the complex interactions
between various data modalities and enabling adequate
data integration.19,20

Despite recent milestones, without prior meta-
analyses, objective evidence on the performance of
these models in PO is lacking. The aim of this sys-
tematic review and meta-analysis was to provide a
comprehensive overview of the evolution of prognostic
modelling in PC, revealing novel insights into the con-
struction of accurate prognostic models and their clin-
ical impact, facilitating the development of more
accurate and robust prognostic tools.
Methods
Our study followed the recommendations of the
Preferred Reporting Items for Systematic Reviews and
www.thelancet.com Vol 78 December, 2024
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Meta-Analyses (PRISMA) 2020 guidelines,21 and the
Cochrane Handbook.22 The protocol was registered on
PROSPERO (CRTN42022370251). After a systematic
search, we deviated slightly from the protocol, extending
our analysis to include additional outcomes beyond
those initially defined.23

Eligibility criteria
To formulate our clinical question, we utilised the PICO
framework (patients, intervention, control, outcomes).24

Studies with PC patients were included, and various
prognostic prediction approaches were considered as
‘intervention’ and ‘control’. The area under the receiver
operating characteristic curve (AUROC) of 1- (short-
term), 2-, 3- (mid-term), 5-year (long-term) OS and
event-free survival (EFS), 10-year OS, non-time depen-
dent OS and EFS prediction were the primary outcomes.
The concordance index (C-index) of OS, EFS, and
cancer-specific survival (CSS) predictions were selected
as secondary outcomes.

Peer-reviewed studies were included if patients were
younger than 21 years (more than half of them/mean/
median age) and were diagnosed with a primary ma-
lignant tumour. The AUROC or C-index had to be
presented on the accuracy of a prognostic model or
factor, with additional statistical data (standard error
(SE), standard deviation (SD), 95% confidence interval
(CI), sensitivity, specificity, positive/negative predictive
value, true/false positive/negative cases, number of
dead/alive or event/no event patients) either numeri-
cally or as figures. If a study analysed training and
validation sets, it was included if statistical data were
provided in the validation set. For more details see
Supplementary Methods S3.

Information sources
Our systematic search was conducted in four main da-
tabases: Embase, MEDLINE (via PubMed), Cochrane
Central Register of Controlled Trials (CENTRAL), and
Scopus, on 22 November 2022. In addition, a backward
citation search was performed using a reference-
checking tool25 on 7 June 2023 to identify all potential
references of the originally included articles that met
our eligibility criteria. We have updated our search on
28 June 2024 to find studies published after the original
date of the search. No language restrictions were
applied.

Search strategy
Our search key included four main domains: paediatric,
cancer, prognosis, and accuracy (see the whole search
key in Supplementary Table S1).

Data extraction
Relevant data from eligible studies were extracted
independently by two groups (P.V. and T.K.+Sz.K.D.).
Disagreements were resolved by the corresponding
www.thelancet.com Vol 78 December, 2024
author (E.T.). All data were manually collected and
entered into an Excel spreadsheet (Office365, Microsoft,
Redmond, WA, USA). Prognostic factors and models
were divided into distinct categories. In Category-1,
models rely on conventional clinical and genetic
factors, whereas those in Category-2 utilise NGS.
Category-3 models can use both clinical and NGS-based
genomic-transcriptomic factors but during the model
building, machine-learning (ML) and AI
(Supplementary Fig. S1) methods are implemented for
choosing the most appropriate set of factors. In order to
obtain a comprehensive overview of the evolution of
childhood cancer prognostics, we added Category-0:
factors with weak prognostic power present in certain
studies as a comparison to the models developed by the
authors without the intention of using these factors for
prognosis prediction. Screening, selection, and data
items are explained in Supplementary Methods S1.

Study risk of bias assessment
The risk of bias assessment (ROB) was independently
conducted by two groups (P.V. and Á.T.+G.M.). For
studies focusing on a single prognostic factor, the
Quality in Prognosis Studies (QUIPS) tool was
employed,26 whereas for studies analysing complex
prognostic models using several factors combined, the
Prediction model Risk Of Bias Assessment Tool (PRO-
BAST) tool was chosen.27 In case of disagreement,
consensus was reached after discussion with the corre-
sponding author (E.T.).

Synthesis methods
Statistical analyses were performed using R statistical
software (version 4.1.2.).28 A p-value of less than 0.05
was considered significant for all statistical analyses.
Due to the large number of performed statistical tests,
false significant results can be present in the manu-
script. The p-value has an important role in this respect:
the smaller the significant p-value the less likely that the
finding is false. We separately analysed the AUROC
values of the predictions corresponding to different time
points. We estimated the SDs of the AUROC values
using the CIs. If no CI was available, based on published
KM curves and scatter plots, we estimated the number
of patients with and without the investigated event and
using the formula published by Hanley and McNeil.29

The results were visualised in forest plots.
We also meta-analysed C-index statistics analogously

to AUROC, using the advice of Debray et al.30 We
assessed publication bias by creating funnel plots. Due
to the complexity of the data the conventional hetero-
geneity analysis is not appropriate. Nevertheless, to get a
glimpse into the heterogeneity, we calculated conven-
tional heterogeneity statistics in a few cases. See details
in the Supplementary Methods S4.

Studies were classified primarily by the disease of
interest (HM, CNST, NCNSST) and the category of the
3
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model (Categories-1-2-3). To address confounding bias
caused by certain study characteristics, we sorted the
articles into subgroups, considering validation type (in-
ternal/external/composite) and whether the proposed
model included the success or failure of treatment as a
prognostic factor (yes/no). To assess whether a specific
dataset could provide advantage in model construction,
we compared commonly used, publicly available
training and validation dataset pairs containing NB31–33

or osteosarcoma31,34–37 patients with each other (within
tumour type) and with other datasets (patients of the
authors or less common public databases).

Role of the funding source
There was no funding source for this study. The corre-
sponding author, M.O., T.K., Sz.K.D. and V.P. had ac-
cess to all the data and had responsibility for the
decision to submit the study for publication.
Results
Altogether, 10,870 applicable studies were identified by
our systematic search of four databases, an additional
7986 were found eligible among the references and
1252 during the updated search. In total 385 articles
were included, 358, 92 of which was included during the
updated search, in the meta-analysis and 27 additional
ones in the systematic search (PRISMA Flowchart
Fig. 1).
Fig. 1: PRISMA flowchart of the article selection process.
Most (379) included studies were retrospective
cohort studies and we had 5 eligible prospective cohort
studies and 1 cross-sectional study, covering the period
from 1991 to 2024. Studies from various regions were
included, with the largest proportion (73.25%) from
China. Of the included studies, most (272 studies)
aimed to predict the prognosis of NCNSST, whereas
only 81 and 32 focused on HM and CNST, respectively.
In the articles included in the meta-analysis, the pre-
dominant prediction approach was Category-2 (168
studies), followed by Category-1 (145 studies) and
Category-3 with significantly fewer, only 45 studies. The
ratio of the included studies during the updated search
was similar to the original one, both in the aspect of
model categories and tumour types. The basic charac-
teristics of the included studies are presented in
Supplementary Table S2.

As for NCNSST, consistent pooled AUROC
(pAUROC) values characterized 1-year OS predictions
across all model categories: 0.8 (CI: 0.75–0.85) in
Category-1, 0.85 (CI: 0.80–0.91) in Category-2 and 0.81
(CI: 0.74–0.88) in Category-3. No significant differences
were shown between any of the categories (Category-1
VS -2 p = 0.169; Category-1 VS -3 p = 0.831; Category-2
VS -3 p = 0.245). At the 2-year mark, Category-2 models
demonstrated robust performance with a pAUROC of
0.80 (CI: 0.72–0.89), whereas Category-3 models showed
a decrease to 0.76 (CI: 0.64–0.88) but the difference was
not significant (p = 0.659).
www.thelancet.com Vol 78 December, 2024
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After 3 years, Category-1 decreased to 0.77 (CI:
0.73–0.80), whereas Category-2 maintained its high
pAUROC of 0.84 (CI: 0.81–0.86), while Category-3 pre-
sented a pAUROC of 0.77 (CI: 0.73–0.80), respectively.
The difference was statistically significant only between
Categories- 1 and -2, favouring the latter (p = 0.035)
(Category-1 VS -3 p = 0.552; Category-2 VS -3 p = 0.061).

For 5-year OS predictions, which can be considered a
gold standard in PC prognosis prediction and was
therefore chosen as a key Forest plot that we included in
the main text (Fig. 2), a good performance was man-
ifested in Category-2 with pAUROC values of 0.85 (CI:
0.82–0.88) and 0.82 (CI: 0.77–0.88) in Category-3, while
Category-1 showed a decreased value, 0.75 (CI:
0.72–0.79). Similarly to 3-year OS, in the case of 5-year
OS, we could show a significant difference between
Category-1 and -2, also favouring the latter (p < 0.001).
Considering this outcome, the performance of Category-
3 models was nearly significantly better than Category-1
models (p = 0.0511). Category-2 models still showed
remarkable efficacy over the 10-year horizon (pAUROC:
0.79 (CI: 0.74–0.85)).

The assessment of prediction model efficacy for HM
was hindered by limited data. For 1-year OS, sufficient
data could only be pooled from Category-2 articles, with
a pAUROC value of 0.71 (CI: 0.63–0.79). In addition,
predictions for 3-year OS revealed comparable perfor-
mance between Category-1 and Category-2 models, with
corresponding pAUROC values of 0.73 (CI: 0.69–0.77)
and 0.75 (CI: 0.67–0.82) (Category-1 VS -2 p = 0.824). At
the 5-year mark (Fig. 2), a pAUROC value for Category-1
was 0.76 (CI: 0.69–0.83), and for Category-2 0.74 (CI:
0.71–0.77) (Category-1 VS -2, p = 0.562).

For CNST, only Category-2 provided sufficient data
to predict 1-year OS, yielding a high pAUROC of 0.8 (CI:
0.71–0.88). Both Category-1 and -2 predicting 3- and 5-
year OS could be analysed, with similar pAUROC
values predicting both outcomes, Category-1 yielded
0.74 (CI: 0.71–0.77) and 0.75 (CI: 0.72–0.78), while
Category-2 presented worse pAUROC values, 0.69 (CI:
0.63–0.76) and 0.64 (CI: 0.63–0.65) (Category-1 VS -2,
3-year OS p = 0.282; the difference was significant in the
case of 5-year OS, p = 0.0141) (Fig. 3A).

A statistically significant difference was also shown
between predicting 1-year OS with Category-2 models in
NCNSST and HM, favouring NCNSST (NCNSST VS
HM p = 0.046). Category-2 models could predict 5-year
OS significantly better in NCNSST than CNST
(NCNSST VS HM p = 0.003).

In the subgroup analysis, in addition to model types,
groups were further subdivided according to validation
type (I-internal/E-external/C-composite) and treatment
outcome as a prognostic factor (yes/no). For CNST, we
could compare 2-no-I and 2-no-E subgroups but we
found no significant differences (1-year OS, p = 0.691;
3-year OS, p = 0.694; 5-year OS, p = 0.556) (Fig. 4A),
whereas for HM, no significant differences were
www.thelancet.com Vol 78 December, 2024
detected between the subgroups, based on neither
model nor validation type (3-year OS: 1-no-I VS 2-no-I,
p = 0.501, 2-no-I VS 2-no-E, p = 0.520; 5-year OS: 1-no-I
VS 2-no-I, p = 0.995, 2-no-I VS 2-no-E, p = 0.448)
(Fig. 4B).

Considering NCNSST, for 10-year OS, we had
insufficient data for meaningful comparisons. However,
a statistically significant difference was found when
predicting 3- and 5-year OS between the 2-no-I and 1-no-
I groups (p < 0.001 for both outcomes), with the former
performing better. A similar difference was observed
between the 2-no-I and –C groups in predicting 3-year
OS (p = 0.0074). Regarding the prediction of 3- and
5-year OS (Fig. 5), we found similar differences between
2-no-I and -E (p < 0.001 for both outcomes).

We have found no differences between 1-yes-I and
1-no-I subgroups that differed based on the inclusion of
therapy details as prognostic factors (3-year OS,
p = 0.479; 5-year OS, p = 0.276). We found statistically
significant difference in the prediction of 2-year OS
regarding both model categories and validation types
(2-no-E VS 3-no-E, p = 0.031; 2-no-E VS 2-no-I,
p < 0.001). No significant difference was observed be-
tween Categories-2 and -3 in the rest of the subgroups
(1-year OS: 2-no-I VS 3-no-I, p = 0.983; 3-year OS: 2-no-E
VS 3-no-E, p = 0.126; 2-no-I VS 3-no-I, p = 0.617; 5-year
OS: 2-no-E VS 3-no-E, p = 0.2997; 2-no-I VS 3-no-I,
p = 0.353) (Fig. 3B).

Amongst NCNSST, data for 1-year EFS Category-2
models could be pooled, resulting in a pAUROC of
0.70 (CI: 0.60–0.80), while for 3-year EFS, enough data
was available for both Category-1 and -2 models yielding
pAUROCs of 0.69 (CI: 0.66–0.73) and 0.76 (CI:
0.72–0.80), respectively (no statistically significant dif-
ference, p = 0.065. For 5-year EFS, both Category-1 and
Category-2 models showed similar performance, with
pAUROC values of 0.74 (CI: 0.68–0.80) and 0.77 (CI:
0.74–0.81), respectively (no statistically significant dif-
ference, p = 0.32). In terms of HM, a pAUROC of 0.73
(CI: 0.68–0.79) for Category-2 models predicting 1-year
EFS, 0.67 (CI: 0.52–0.82) and 0.77 (CI: 0.71–0.82) was
observed for Category-1 and -2 models (Category-1 VS -2
difference was not significant, p = 0.302), respectively,
predicting 2-year EFS and 0.77 (CI: 0.66–0.88) for
Category-1 predicting 5-year EFS (Fig. 6A).

We had markedly less data available for each sub-
group for these outcomes and were unable to make any
meaningful statistical comparisons. There is a slight
difference in 2-no-E subgroup results in NCNSST pa-
tients, as the pAUROC value of 1-year EFS prediction
(0.74 (CI: 0.54–0.95)) is smaller than 3- and 5-year EFS
(0.77 (CI: 0.69–0.85) and 0.77 (CI: 0.73–0.81)) (Fig. 6B).

In terms of non-time dependent OS of NCNSST,
Category-3 models emerged as frontrunners with a
pAUROC value of 0.85 (CI: 0.83–0.87), whereas
Category-1 and 2 performed similarly, resulting in
pAUROC values of 0.76 (CI: 0.71–0.81) and 0.78 (CI:
5
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Fig. 2: Area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI) of predicting 5-year OS in paediatric
patients with non-central nervous system (non-CNS), haematological malignancies, central nervous system (CNS) tumours with three model
categories.1–3 I-internal validation, E-external validation, C-composite validation.
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Fig. 3: Summary forest plot demonstrating the accuracy of three model categories1–3 predicting
1-, 2-, 3-, 5- and 10-year overall survival of paediatric cancer patients, with haematological
malignancies, non-central nervous system solid tumours or central nervous system tumours.
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0.73–0.83) (Category-1 VS -2, p = 0.578), respectively.
The difference was statistically significant as well
(Category-1 VS -3, p = 0.014; Category-2 VS -3, p = 0.035)
Category-1 and Category-2 models performed compa-
rably in HM, with pAUROC values of 0.74 (CI:
0.64–0.84) and 0.72 (CI: 0.67–0.77) (Category-1 VS -2,
p = 0.805), respectively.

When we examined EFS, the NCNSST cohort pro-
vided data across all model categories. The results were
similar, 0.77 (CI: 0.74–0.81), 0.81 (CI: 0.74–0.89), and
0.78 (CI: 0.75–0.82) for Categories-1 to −3 (Category-1
VS -2, p = 0.377; Category-1 VS -3, p = 0.715), respec-
tively. In HM, pAUROC values of 0.81 (CI: 0.74–0.88)
and 0.78 (CI: 0.74–0.81) were estimated in Categories-1
and -2 (p = 0.454), respectively (Fig. 7A).

For the non-time dependent EFS in the subgroup
analysis, we could only make one meaningful statistical
comparison, due to the scarcity of data, which resulted
in no significant difference (1-no-I VS 1-no-C, p = 0.62).
The prediction of OS showed no significant difference
between the 2- and 3-no-E groups (p = 0.063), similar to
time-dependent OS. However, we did see a notable,
although not statistically significant, difference in the
prediction of OS, between Categories-1 and -2 in both
HM and NCNSST patients. Interestingly, for HM pa-
tients, Category-1 methods produced better results
(1-no-C VS 2-no-C, p = 0.339) compared to NCNSST
patients (1-no-C VS 2-no-C, p = 0.345) (Fig. 7B).

As a secondary outcome, the C-index provides
further insights into predictive efficacy across OS, EFS,
and CSS. In NCNSST patients, robust performance was
observed across all model categories for OS predictions,
with Category-3 models attaining a pooled C-index (pC-
index) of 0.81 (CI: 0.74–0.80), compared to 0.74 (CI:
0.71–0.76) in Category-1 and 0.77 (CI: 0.74–0.80) in
Category-2. For OS-predictions for HM and CNST,
which were predominantly facilitated by Category-1
models, pC-indices of 0.73 (CI: 0.68–0.78, HM) and
0.69 (CI: 0.63–0.75, CNST) were observed. OS in HM
was also predicted with Category-2, yielding a pAUROC
of 0.71 (CI: 0.64–0.78, HM). The C-index of EFS pre-
diction in NCNSST patients with Category-1 models was
analysed, with pC-index values of 0.75 (CI: 0.68–0.80) In
HM patients, both Category-1 and -2 models were ana-
lysed, with pC-indices of 0.67 (CI: 0.63–0.71) and a
higher 0.74 (CI: 0.67–0.80), respectively. A pC-index of
0.76 (CI: 0.71–0.79) was observed in the prediction of
CSS in NCNSST with Category-1 models (Fig. 8A).

For CSS, we could not make comparisons due to
scarce data, whereas for EFS, we could make one com-
parison without statistical significance (NCNSST pa-
tients 1-no-C VS 1-no-I, p = 0.277).

In the subgroup analysis, the most common
outcome measured with C-index was OS. We could not
detect any statistical difference between Category-1
(1-no-E) and −2 (2-no-E) in NCNSST patients, the
latter even showing a slightly worse performance
www.thelancet.com Vol 78 December, 2024 7
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(pC-index of 0.81 (CI: 0.75–0.94) VS 0.74 (CI:
0.68–0.80), p = 0.1916). We also did not observe the
marked differences between validation methods pre-
sented earlier, with studies using external validation
performing better on Category-1 models than internal
validation users (1-no-I VS 1-no-E pC-index 0.72 (CI:
0.69–0.76) VS 0.81 (CI: 0.75–0.94), p = 0.11). We
examined the effect of using therapy details as prog-
nostic factors, the inclusion of these factors provided
better results, but we found no statistically significant
difference (1-no-I VS 1-yes-I pC-index 0.72 (CI:
0.69–0.76) VS 0.75 (CI: 0.72–0.76), p = 0.059). Sufficient
articles focusing on HM were identified with this
outcome for statistical comparison between validation
types, but the difference was not significant (1-no-E VS
1-no-I, p = 0.5553) (Fig. 8B).

The ROB assessment showed low (ROB) in the
participants and outcome domains due to strict inclu-
sion criteria. However, high ROB was identified in the
Predictors and Analysis domains, mainly due to inap-
propriate variable handling, use of univariable analysis,
and internal validation methods. Further details and the
results of the ROB assessment are presented in
Supplementary Fig. S41 (QUIPS) and Supplementary
Fig. S42 (PROBAST).

See results for Category-0, subgroup analysis of
specific training and validation dataset pairs, systematic
review studies in the Supplementary Results.
Discussion
Our study provides the first Level II evidence38 on the
predictive accuracy of prognosis in PO. We examined
385 studies for short-, mid-, and -long-term survival and
various unfavourable events. The superior performance
of progressive, Category-2 and-3 models was shown in
case of 5-years OS in NCNSST (Category-1 VS -2,
p < 0.001; Category-1 VS -3 p = 0.0511), with Category 3
proven to be the best-performing predictor for non-time
dependent OS (Category-1 VS -3, p = 0.014; Category-2
VS -3, p = 0.035). The strong signifying effect of the
validation method was also demonstrated by comparing
model performance after internal and external valida-
tion (3- and 5-year OS, 2-no-I VS 2-no-E (p < 0.001 for
both outcomes).

In recent years, better biological understanding due
to genetic and molecular data collection has improved
histological classification, prognosis prediction and risk
n tumour type and model category. B: Subgroup analysis with the
ion and the use of therapy outcome as prognostic factor. AUC: area
ing characteristic curve. N: number of articles in a certain group. N
alues in a certain group. CI: confidence interval. OS: overall survival.
alidation. E: external validation. C: composite validation. Non-CNS:
em solid tumours. Hemat: haematological malignancies. CNS: cen-
urs. White: Category-1. Red: Category-2. Green: Category-3.
stratification.39 Extensive research on this was observed
in the literature, as 161 of our included studies used
modern, Category-2 and -3 methods. Classic Category-1
modelling with robust statistics was already present
before 2000, with the earliest eligible articles from the
1990s. After 2020, the number of articles has multiplied,
with Category-2 being the most prevalent study type in
this period (56.5% of 184 studies from the 2020s) as the
use of NGS became more widespread. We note that
Category-1 is still popular, with almost half of Category-
1 articles (45.45%) written after 2020. Category-3 has not
seen a significant increase over time. Although studies
employing this approach date back to as early as 2004,
we could identify only a total of 50 (45 for the meta-
analysis and 5 for the systematic review) articles, har-
nessing AI.

We observed a rapid evolution in model building
from Category-0 to −3, with next-generation methods
such as NGS (present in both Categories-2 and -3)
examining hundreds of factors, compared to traditional
clinical models (Category-1) which consider significantly
fewer factors. Starting from the origin, the authors of
these papers also considered basic prognostic factors,
which were typically employed as a comparison to the
scoring systems developed by themselves (categorised as
Category-0). These generally tend to perform signifi-
cantly lower than the actual models (data not shown).
However, the established clinical scoring systems
continue to provide a solid foundation in paediatric
cancer care for the upcoming decades40 to date. We
observed that Category-1 models that included patho-
logical (e.g., histology, stage) or radiomic characteristics
performed particularly well. Indeed, for non-time-
dependent OS, Category-1 showed better results than
Category-2 in HM. Given the relative prevalence of
HMs8 compared to other pediatric oncology complica-
tions, even Category-1 models in this subgroup are
already well-developed and incorporate more accurate
predictive factors. In our analysis, the majority of arti-
cles fell into Category-2, where models frequently
derived prognostic scores from thousands of genes or
RNA sequences, integrated with clinical factors or
staging systems. This combination resulted in more
accurate and comprehensive models. Nonetheless,
Category-3 models, which integrate clinical characteris-
tics, biomarkers, and genomic-transcriptomic data us-
ing an AI approach, were less common in the articles,
they still showed comparable efficiency to Category-2
models.

The rarity of PC occurrences7 and the limited avail-
ability of data are major obstacles in developing accurate
prognostic models. Enriching data sources with the least
prevalent paediatric tumours, such as those in the
NCNSST20,41 subclass focusing on predicting OS may be
a deliberate strategy. Unlike HMs, where OS rates are
relatively high,5 the recommended prediction targets are
EFSs, which correlates not only with survival but also
www.thelancet.com Vol 78 December, 2024
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Fig. 4: A: Area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI) of predicting 5-year OS in paediatric
patients with central nervous system (CNS) tumours. I-internal validation, E-external validation, C-composite validation. B: Area under the
receiver operating characteristics curve (AUC) with 95% confidence interval (CI) of predicting 5-year OS in paediatric patients with haema-
tological malignancies. I-internal validation, E-external validation, C-composite validation.

Articles
with quality of life. In terms of short-, mid- and long-
term predictions for patients with NCNSST, all model
categories accurately predicted OS after one year, but
differences emerged after 3 and 5 years, with Category-1
models showing a decline. Interestingly, this difference
was not observed for HM, although this finding should
be treated with caution, based on the significant bias-
effect of the type of validation. Category-1 models may
have shown an advantage in HM for both OS and EFS-
predictions, but in most of the articles these models
were subject to internal validation. These results are
therefore skewed towards appearing better or similarly
good than the almost exclusively externally validated
advanced models. The best practice in today’s prog-
nostic model building is the use of separate external
validation sets, which was confirmed by our meta-
analysis.

As already highlighted, advanced prognostic models
have demonstrated greater effectiveness in NCNSST
prognostics, especially in predicting OS, which remains
the gold standard in oncology prognostic practice. Risk-
stratification upon this outcome is essential for opti-
mizing complex treatment protocols for each individual
cases.10,11 Our analysis demonstrated statistically signif-
icant superiority in 5-year OS prediction using both
www.thelancet.com Vol 78 December, 2024
Category-2 and Category-3 models, with Category-3
outperforming Category-2 in non-time dependent OS
predictions. However, our updated systematic search
conducted in late June revealed that many studies
published within the past 1.5 years still relied on
Category-1 (30 new articles found) prognostics for OS
prediction, even in NCNSST. Given these insights, we
advocate for the inclusion of second- or third-generation
sequencing advantages for improving paediatric cancer
prognostics, whenever the resources allow for it. While
AI-driven models leveraging comprehensive sequencing
datasets hold the potential for even greater accuracy, the
current meta-analysis lacks a sufficient number of
studies to fully validate this hypothesis (Category-2 VS
Category-3168 VS 45 studies in the meta-analysis alto-
gether). Moreover, there has been a marked increase in
the number of published articles on HM predictions
utilising Category-2 models between 2022 and 2024 (10
articles added to the previous 17), underscoring this as a
rapidly evolving research area. These models, however,
statistically not proven, appeared to provide more accu-
rate EFS estimates compared to OS predictions. How-
ever, as previously noted, no studies have yet assessed
the performance of Category-3 models in this tumour
subclass. Given the increasing body of evidence
9
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Fig. 5: Area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI) of predicting 5-year OS in paediatric
patients with non-central nervous system (non-CNS) tumours. I-internal validation, E-external validation C-composite validation.
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Fig. 6: Summary forest plot demonstrating the accuracy of three model categories1–3 predicting 1-, 2-, 3-, 5-year event-free survival of paediatric
cancer patients, with haematological malignancies or non-central nervous system solid tumours. A: main analysis based on tumour type and
model category B: subgroup analysis with the addition of model validation and the use of therapy outcome as prognostic factor. AUC: area
under the receiver operating characteristic curve. N: number of articles in a certain group. N (AUC): number of AUC values in a certain group. CI:
confidence interval. EFS: event-free survival. var.: variable. I: internal validation. E: external validation. C: composite validation. Non-CNS: non-
central nervous system solid tumours. Hemat: haematological malignancies. White: Category-1. Red: Category-2. Green: Category-3.

Articles
supporting EFS as a reliable surrogate endpoint in
various HMs42–44 it is strongly recommended that
research efforts now focus on evaluating the potential of
Category-3 models.

The method of data processing and factor selection is
as important in model building as the factors chosen.
Using univariate Cox regression and then multivariate
Cox regressions with the chosen variables, although
quite common, may introduce bias by ignoring re-
lationships between factors. This finding supports the
use of other mathematical methods to eliminate this
bias. In addition, internally validated models outper-
form externally validated ones, indicating reduced ac-
curacy when applied to different populations. A bias
www.thelancet.com Vol 78 December, 2024
from therapy outcome as a prognostic factor was
observed, but not statistically significant due to limited
use in articles.

Systematic, quality-assured bio-resources are crucial
for biomedical science and personalised therapies, yet
they are under-utilised and lack data harmonisation,
especially for vulnerable populations.41,45 Our observa-
tions show that such databases (e.g., Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET) and Surveillance, Epidemiology, and End
Results (SEER) Database) are fundamental for devel-
oping accurate prediction models. Further international
data collection and sharing is therefore necessary to
establish large, quality-assured databases for training
11
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Fig. 7: Summary forest plot demonstrating the accuracy of three model categories1–3 predicting overall and event-free survival of paediatric
cancer patients with haematological malignancies or non-central nervous system solid tumours. A: Main analysis based on tumour type and
model category. B: Subgroup analysis with the addition of model validation and the use of therapy outcome as prognostic factor AUC: area
under the receiver operating characteristic curve. N: number of articles in a certain group. N (AUC): number of AUC values in a certain group. CI:
confidence interval. OS: overall survival. EFS: event-free survival. var.: variable. I: internal validation. E: external validation. C: composite vali-
dation. Non-CNS: non-central nervous system solid tumours. Hemat: haematological malignancies. White: Category-1. Red: Category-2. Green:
Category-3.
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AI-driven algorithms. With emphasis on appropriate
validation, modern models offer improved prediction
accuracy in clinical settings.46,47

We included a large number of articles and out-
comes to provide a thorough review of the available
literature, including many up-to-date state-of-the-art
studies. Several subgroups were considered when per-
forming the analysis to address heterogeneity and bias.
A rigorous methodology was applied following well-
established guidelines. Most of the included studies
used publicly available quality-assured datasets, making
their work transparent and reliable.

We encountered a number of statistical challenges
requiring adequate resolution. Standard errors of
AUROC and C-index values were frequently missing,
necessitating estimation from various available data
types. The consistent presence of moderate-to-high ROB
is another limitation. Stringent quality control was
implemented throughout data collection and analysis,
accompanied by transparent reporting of biases. The
www.thelancet.com Vol 78 December, 2024
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Fig. 8: Summary forest plot demonstrating the accuracy of three model categories1–3 predicting overall, event-free, and cancer-specific survival of
paediatric cancer patients with haematological malignancies, non-central nervous system solid tumours or central nervous system tumours. A:
Main analysis based on tumour type and model category. B: Subgroup analysis with the addition of model validation and the use of therapy
outcome as a prognostic factor. C-index: concordance index. N: number of articles in a certain group. N (C-index): number of C-index values in a
certain group. CI: confidence interval. OS: overall survival. EFS: event-free survival. CSS: cancer-specific survival. var.: variable. I: internal vali-
dation. E: external validation. C: composite validation. Non-CNS: non-central nervous system solid tumours. Hemat: haematological malig-
nancies. CNS: central nervous system tumours. White: Category-1. Red: Category-2. Green: Category-3.

Articles
absence of individual tumour type analysis introduces
variability into the results, potentially masking associa-
tions existing in specific cancer subtypes, which can be
uncovered by conducting subgroup analyses for indi-
vidual tumour types.

Our results demonstrated the superior predictive
power of genomic-transcriptomic and principally,
www.thelancet.com Vol 78 December, 2024
AI-based prognostic models in the case of the NCNSST.
Our subgroup analysis clearly demonstrated significant
differences in accuracy based on validation type,
favouring internal validation for improved but poten-
tially biased results. While AI-based prognostic ap-
proaches have yet to be fully integrated into standard
practice, our results suggest they can achieve similar
13
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levels of accuracy to NGS-based prognostics, indicating
the additional benefit of AI in paediatric cancer outcome
prediction. This, however, urges the need for structured
data collection and their ethical exchange to address data
scarcity and limited availability, emphasizing the
importance of high-quality paediatric cancer registries
and biobanks.

Overall, while this systematic review and meta-
analysis does not provide definitive conclusions for
every tumour type, it remains the most extensive and
up-to-date meta-analysis in the field, offering valuable
insights and clear directions for future investigation.

Contributors
Petra Varga: conceptualisation, project administration, methodology,
formal analysis, visualisation, accessing and verifying the data, writing –
original draft; Mahmoud Obeidat: conceptualisation, methodology, vis-
ualisation, writing – review & editing; Vanda Máté: conceptualisation,
methodology, writing - review & editing; Tamás Kói: conceptualisation,
formal analysis, data curation, visualisation, accessing and verifying the
data, writing – original draft; Szilvia Kiss-Dala: conceptualisation,
formal analysis, data curation, visualisation, accessing and verifying the
data, writing - review & editing; Gréta Szilvia Major: conceptualisation,
data curation, writing - review & editing; Ágnes Eszter Tímár:
conceptualisation, data curation, writing - review & editing; Xinyi Li:
conceptualisation, data curation, writing - review & editing; Ádám Szi-
lágyi: conceptualisation, data curation, writing - review & editing; Zsófia
Csáki: conceptualisation, data curation, writing - review & editing;Marie
Engh: conceptualisation, writing - review & editing; Miklós Garami:
conceptualisation, writing - review & editing; Péter Hegyi: con-
ceptualisation, writing - review & editing; Ibolya Túri: conceptualisation,
writing - review & editing; Eszter Tuboly: conceptualisation, supervi-
sion, accessing and verifying the data, writing – original draft.

All authors certify that they have participated sufficiently in the work
to take public responsibility for the content, including participation in
the concept, design, analysis, writing, or revision of the manuscript.

Availability of data
All the data are available in the full text and Supplementary Materials of
the included studies.

Data sharing statement
All extracted data supporting the findings of this specific systematic
review and meta-analysis are available upon request after approval of a
proposal from the corresponding author (E.T., tuboly.eszter@
gyerekklinika.com).

Declaration of interests
All authors declare no competing interests.

Acknowledgements
None to declare. No funding.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.eclinm.2024.102902.
References
Citations of the included articles can be found in Supplementary
material.
1 Blattner-Johnson M, Jones DTW, Pfaff E. Precision medicine in

pediatric solid cancers. Semin Cancer Biol. 2022;84:214–227.
2 Zou H, Poore B, Broniscer A, Pollack IF, Hu B. Molecular het-

erogeneity and cellular diversity: implications for precision treat-
ment in medulloblastoma. Cancers. 2020;12(3):643.
3 Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ,
Lafage-Pochitaloff M. Cytogenetics of pediatric acute myeloid leu-
kemia: a review of the current knowledge. Genes. 2021;12(6):924.

4 Erdmann F, Frederiksen LE, Bonaventure A, et al. Childhood
cancer: survival, treatment modalities, late effects and improve-
ments over time. Cancer Epidemiol. 2021;71(Pt B):101733.

5 Oskarsson T, Soderhall S, Arvidson J, et al. Relapsed childhood
acute lymphoblastic leukemia in the Nordic countries: prognostic
factors, treatment and outcome. Haematologica. 2016;101(1):68–76.

6 Krzyszczyk P, Acevedo A, Davidoff EJ, et al. The growing role of
precision and personalized medicine for cancer treatment. Tech-
nology. 2018;6(03n04):79–100.

7 Steliarova-Foucher E, Colombet M, Ries LAG, et al. International
incidence of childhood cancer, 2001–10: a population-based registry
study. Lancet Oncol. 2017;18(6):719–731.

8 Wu Y, Deng Y, Wei B, et al. Global, regional, and national child-
hood cancer burden, 1990–2019: an analysis based on the Global
Burden of Disease Study 2019. J Adv Res. 2022;40:233–247.

9 Lupo PJ, Spector LG. Cancer progress and priorities: childhood
cancer. Cancer Epidemiol Biomarkers Prev. 2020;29(6):1081–1094.

10 Chen K, Huang B, Yan S, et al. Two machine learning methods
identify a metastasis-related prognostic model that predicts overall
survival in medulloblastoma patients. Aging. 2020;12(21):21481–
21503.

11 Liu Z, Liang M, Grant CN, Spiegelman VS, Wang H-G. Inter-
pretable models for high-risk neuroblastoma stratification with
multi-cohort copy number profiles. Inform Med Unlocked. 2021;25:
100701.

12 Scrideli CA, Queiroz RGDP, Bernardes JE, Valera ET, Tone LG.
PCR detection of clonal IgH and TCR gene rearrangements at the
end of induction as a non-remission criterion in children with ALL:
comparison with standard morphologic analysis and risk group
classification. Med Pediatr Oncol. 2003;41(1):10–16.

13 Bulzico D, De Faria PAS, De Paula MP, et al. Recurrence and
mortality prognostic factors in childhood adrenocortical tumors:
analysis from the Brazilian National Institute of Cancer experience.
Pediatr Hematol Oncol. 2016;33(4):248–258.

14 Morandi F, Corrias MV, Levreri I, et al. Serum levels of cytoplasmic
melanoma-associated antigen at diagnosis may predict clinical
relapse in neuroblastoma patients. Cancer Immunol Immunother.
2011;60(10):1485–1495.

15 Zhang WB, Han FM, Liu LM, Jin HB, Yuan XY, Shang HS.
Characterizing the critical role of metabolism in osteosarcoma
based on establishing novel molecular subtypes. Eur Rev Med
Pharmacol Sci. 2022;26(8):2926–2943.

16 Qi W, Yan Q, Lv M, Song D, Wang X, Tian K. Prognostic signature
of osteosarcoma based on 14 autophagy-related genes. Pathol Oncol
Res. 2021;27:1609782.

17 Qian H, Lei T, Hu Y, Lei P. Expression of lipid-metabolism genes is
correlated with immune microenvironment and predicts prognosis
in osteosarcoma. Front Cell Dev Biol. 2021;9:673827.

18 O’Donohue T, Farouk Sait S, Glade Bender J. Progress in precision
therapy in pediatric oncology. Curr Opin Pediatr. 2023;35(1):41–47.

19 Quintás G, Yáñez Y, Gargallo P, et al. Metabolomic profiling in
neuroblastoma. Pediatr Blood Cancer. 2020;67(3):e28113.

20 Wang X, Wu X, Li T, et al. Identification of biomarkers to construct
a competing endogenous RNA network and establishment of a
genomic-clinicopathologic nomogram to predict survival for chil-
dren with rhabdoid tumors of the kidney. BioMed Res Int.
2020;2020:1–27.

21 Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020
statement: an updated guideline for reporting systematic reviews.
BMJ. 2021;372:n71.

22 Chandler J, Hopewell S. Cochrane methods - twenty years experi-
ence in developing systematic review methods. Syst Rev.
2013;2(1):76.

23 Booth A, Clarke M, Dooley G, et al. PROSPERO at one year: an
evaluation of its utility. Syst Rev. 2013;2(1):4.

24 Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What kind
of systematic review should I conduct? A proposed typology and
guidance for systematic reviewers in the medical and health sci-
ences. BMC Med Res Methodol. 2018;18(1):5.

25 Haddaway NR, Grainger MJ, Gray CT. Citationchaser: a tool for
transparent and efficient forward and backward citation chasing in
systematic searching. Res Synth Methods. 2022;13(4):533–545.

26 Hayden JA, Van Der Windt DA, Cartwright JL, Côté P,
Bombardier C. Assessing bias in studies of prognostic factors. Ann
Intern Med. 2013;158(4):280.
www.thelancet.com Vol 78 December, 2024

mailto:tuboly.eszter@gyerekklinika.com
mailto:tuboly.eszter@gyerekklinika.com
https://doi.org/10.1016/j.eclinm.2024.102902
https://doi.org/10.1016/j.eclinm.2024.102902
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref1
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref1
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref2
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref2
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref2
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref3
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref3
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref3
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref4
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref4
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref4
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref5
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref5
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref5
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref6
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref6
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref6
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref7
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref7
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref7
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref8
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref8
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref8
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref9
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref9
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref11
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref11
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref11
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref11
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref12
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref12
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref12
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref12
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref13
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref13
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref13
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref13
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref13
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref14
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref14
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref14
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref14
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref15
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref15
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref15
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref15
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref16
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref16
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref16
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref16
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref17
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref17
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref17
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref18
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref18
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref18
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref19
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref19
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref20
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref20
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref21
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref21
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref21
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref21
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref21
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref22
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref22
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref22
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref23
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref23
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref23
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref24
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref24
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref25
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref25
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref25
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref25
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref26
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref26
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref26
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref27
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref27
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref27
http://www.thelancet.com


Articles
27 Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess
the risk of bias and applicability of prediction model studies. Ann
Intern Med. 2019;170(1):51.

28 Team RCR. A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing; 2021.

29 Hanley JA, McNeil BJ. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):
29–36.

30 Debray TP, Damen JA, Riley RD, et al. A framework for meta-
analysis of prediction model studies with binary and time-to-
event outcomes. Stat Methods Med Res. 2019;28(9):2768–2786.

31 Genomic data commons, therapeutically applicable research to
generate effective treatments 2007-2024. Available from: https://
www.cancer.gov/ccg/research/genome-sequencing/target.

32 Zhang W, Shi L, Hertwig F, et al. SuperSeries GSE47792; SubSeries
GSE49710, GSE49711, GSE62564. 2014.

33 Hammerschmidt W, Buschle A. E-MTAB-8428. 2021.
34 Davis S. SuperSeries GSE16102; SubSeries GSE16091. 2009.
35 Buddingh EPK, Marieke L, Duim RAJ, et al. Anne-marie series

GSE21257. 2011.
36 Kelly A. SuperSeries GSE39058. 2013.
37 Ho D, Kõks S, Phung P, et al. Series GSE99671. 2017.
38 Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role

in evidence-based medicine. Plast Reconstr Surg. 2011;128(1):305–310.
39 American Cancer S. Cancer facts & figures 2023. Atlanta: American

Cancer Society; 2023.
40 Lehrnbecher T, Robinson PD, Ammann RA, et al. Guideline for the

management of fever and neutropenia in pediatric patients with
www.thelancet.com Vol 78 December, 2024
cancer and hematopoietic cell transplantation recipients: 2023 up-
date. J Clin Oncol. 2023;41(9):1774–1785.

41 Joseph N, Roberts CK, Graham Kathryn, et al. Biobanking in the
twenty-first century: driving population metrics into biobanking
quality. In: Karimi-Busheri F, ed. Biobanking in the 21st century.
Advances in experimental medicine and biology. vol. 864. Cham:
Springer; 2015:95–114.

42 Maurer MJ, Ellin F, Srour L, et al. International assessment of
event-free survival at 24 Months and subsequent survival in pe-
ripheral T-cell lymphoma. J Clin Oncol. 2017;35(36):4019–4026.

43 Zhu J, Yang Y, Tao J, et al. Association of progression-free or event-
free survival with overall survival in diffuse large B-cell lymphoma
after immunochemotherapy: a systematic review. Leukemia.
2020;34(10):2576–2591.

44 Norsworthy KJ, Gao X, Ko CW, et al. Response rate, event-free
survival, and overall survival in newly diagnosed acute myeloid
leukemia: US food and drug administration trial-level and patient-
level analyses. J Clin Oncol. 2022;40(8):847–854.

45 Rush A, Byrne JA, Watson PH. Applying findable, accessible, inter-
operable, and reusable principles to biospecimens and biobanks. Bio-
preserv Biobank; 2024.

46 Hegyi P, Eross B, Izbeki F, Parniczky A, Szentesi A. Accelerating
the translational medicine cycle: the Academia Europaea pilot. Nat
Med. 2021;27(8):1317–1319.

47 Hegyi P, Petersen OH, Holgate S, et al. Academia europaea posi-
tion paper on translational medicine: the cycle model for trans-
lating scientific results into community benefits. J Clin Med.
2020;9(5):1532.
15

http://refhub.elsevier.com/S2589-5370(24)00481-4/sref28
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref28
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref28
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref29
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref29
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref30
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref30
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref30
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref31
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref31
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref31
https://www.cancer.gov/ccg/research/genome-sequencing/target
https://www.cancer.gov/ccg/research/genome-sequencing/target
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref33
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref33
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref34
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref35
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref36
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref36
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref37
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref38
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref39
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref39
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref40
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref40
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref41
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref41
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref41
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref41
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref45
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref45
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref45
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref45
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref45
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref42
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref42
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref42
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref43
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref43
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref43
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref43
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref44
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref44
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref44
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref44
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref46
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref46
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref46
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref47
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref47
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref47
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref48
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref48
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref48
http://refhub.elsevier.com/S2589-5370(24)00481-4/sref48
http://www.thelancet.com

	From simple factors to artificial intelligence: evolution of prognosis prediction in childhood cancer: a systematic review  ...
	Introduction
	Methods
	Eligibility criteria
	Information sources
	Search strategy
	Data extraction
	Study risk of bias assessment
	Synthesis methods
	Role of the funding source

	Results
	Discussion
	ContributorsPetra Varga: conceptualisation, project administration, methodology, formal analysis, visualisation, accessing  ...
	Availability of dataAll the data are available in the full text and Supplementary Materials of the included studies.
	Data sharing statementAll extracted data supporting the findings of this specific systematic review and meta-analysis are a ...
	Declaration of interests
	Acknowledgements
	Appendix A. Supplementary data
	References


