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Abstract: Substance abuse has an enormous impact on economic and quality of life 
measures throughout the world. In more developed countries, overutilization of the most 
common forms of substances of abuse, alcohol and tobacco, is addressed primarily through 
prevention of substance use initiation and secondarily through the treatment of those with 
substance abuse or dependence. In general, these therapeutic approaches to substance abuse 
are deemed effective. However, there is a broad consensus that the development of 
additional tools to aid diagnosis, prioritize treatment selection and monitor treatment 
response could have substantial impact on the effectiveness of both substance use prevention 
and treatment. The recent demonstrations by a number of groups that substance use exposure 
is associated with robust changes in DNA methylation signatures of peripheral blood cells 
suggests the possibility that methylation assessments of blood or saliva could find broad 
clinical applications. In this article, we review recent progress in epigenetic approaches to 
substance use assessment with a particular emphasis on smoking (and alcohol) related 
applications. In addition, we highlight areas, such as the epigenetics of psychostimulant, 
opioid and cannabis abuse, which are markedly understudied and could benefit from 
intensified collaborative efforts to define epigenetic biomarkers of abuse and dependence. 
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1. Introduction 

Substance use disorders are significant contributors to disability and mortality in the United States 
and across the globe (Figures 1 and 2). According to the Institute for Health Metrics and Education, 
tobacco smoking, alcohol use, and illicit drug use caused approximately 10.2 million deaths globally in 
2010, with the majority being due to smoking (7 million deaths) and alcohol (3 million deaths) use [1]. 
In the United States, it is estimated that approximately 70 million individuals use tobacco products,  
75 million individuals engage in heavy or binge drinking, and 22 million individuals aged 12 or over 
engage in some illicit drug use on a monthly basis. Over 400,000 premature deaths yearly are due to 
medical disorders directly attributable to the effects of smoking, including heart disease, chronic 
obstructive pulmonary disease, and cancer. Similarly, each year, 100,000 premature deaths are 
attributable to the downstream effects of alcohol, including deaths from both accidents and chronic 
illness such as cirrhosis [2]. 

 

Figure 1. Global disability-adjusted life years (DALYs) annually by risk factor. 
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Figure 2. Global deaths annually by risk factor. 

The economic burden of substance use is equally substantial. In the United States, both smoking 
and alcohol use result in over $200 billion dollars of lost wages, treatment and other economic costs  
annually [3]. The criminal justice system is significantly burdened by the costs of incarceration of 
those with substance use disorders. Among these, approximately one million individuals are addicted 
to cocaine and nearly 1.5 million abuse or are dependent on heroin or prescription opiates [4]. 

There is hope on the horizon for the relief of these scourges, but there are barriers to treatment and 
prevention implementation. Evidence-based treatments for substance use disorders include both 
pharmacologic and behavioral components. Despite the existence of these effective treatments, the 
lack of ability to reliably detect problematic substance use hinders clinical efforts to direct patients 
toward appropriate care. Additionally, after identification of the disorder and the initiation of 
treatment, clinicians often have difficulty monitoring the patient’s response to treatment and success in 
maintaining abstinence. This inability to detect relapse can lead to delays in making appropriate 
treatment adjustments to improve patient outcomes. 

Identifying substance use disorders in primary care contexts is difficult for multiple reasons. Like 
other psychiatric disorders, substance use disorders are typically not associated with objective physical 
findings, and laboratory test results alone are not sufficient to make a diagnosis or monitor response to 
treatment. Furthermore, in contrast to most other psychiatric disorders, patient with substance use 
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disorders often attempt to conceal rather than reveal true patterns of use, both in primary care and 
specialty settings. Even in acute clinical situations where evidence of a substance use disorder is 
readily apparent, such as hospitalization for alcohol withdrawal, users may under-report their overall 
pattern of use, particularly with respect to comorbid illicit substance use [5]. As a result, for each 
individual identified as needing treatment for a substance use disorder, a large number of other users 
never come to clinical attention. This is particularly concerning in child and adolescent populations, 
where there is the greatest potential for a change in an individual’s long-term psychosocial and 
physical health trajectory as well as for clinical outcomes. 

The limitations of current technology in detecting smoking, alcohol use, and illicit substance use are 
well documented and further contribute to difficulty in identifying patients in need of treatment. 
Cotinine, a metabolite of nicotine, is detectable in blood and urine, but the window for detection is 
only 48 h [6,7]. Exhaled carbon monoxide has an even shorter window of detection with a half-life of  
4.5 h [7,8]. Similarly, there are serious deficiencies in current algorithms to detect problematic alcohol 
use, including biomarkers such as serum aspartate aminotransferase, carbohydrate-deficient transferrin, 
and gamma-glutamyl transferase, which are limited by invasiveness of testing (blood versus urine), 
poor sensitivity and specificity, and high cost [9]. For other substances, screening generally relies on 
urine testing, for which urine immunoassays exist but have similar limitations, including a number of 
potential false-positives and false-negatives [10]. In the case of a positive result on urine immunoassay, 
which is currently recommended as the first-line screening test for illicit substances [10], confirmatory 
testing can be done using gas chromatography/mass spectrometry (GC/MS), which is more accurate 
but substantially more expensive and time consuming [11]. Also, limiting some practical applications 
is relatively slow detection. With the exception of heavy, chronic marijuana use, the timeframe for 
detection of most illicit substances by either immunoassay or GC/MS is on the order of a few days [10]. 

Despite clear evidence of the public health burden of substance use disorders, difficulty in detecting 
these across the lifespan is likely to continue given the current legal and social milieu. Illicit substance 
use carries legal and occupational risks, which creates tension for patients who are motivated to 
continue using despite these risks due to addiction. Many require routine urine drug testing, such as 
those in the transportation industry or those requiring the use of heavy equipment, and positive tests for 
illicit substances may be grounds for dismissal. In addition, although tobacco smoking is legal, many 
organizations, particularly large organizations tasked with providing healthcare for employees, have 
begun to routinely monitor for tobacco use in order to incentivize cessation. Although beneficial from 
the perspective of motivating cessation, such policies also create incentives to avoid detection despite 
ongoing use, impairing clinicians’ ability to intervene appropriately. Social stigma provides an 
additional incentive to conceal substance use, and in the case of adolescents, fear of disciplinary 
intervention does as well. Thus, although individuals as well as private and public organizations all 
share an interest in improving current technology to accurately detect substance use patterns, 
improvement in detection is unlikely to improve significantly without the development of improved 
means of detecting these problems. 

1.1. Biomarkers 

In order to meet the challenges posed by substance use disorders, it is essential that we develop 
improved biomarkers to allow detection of these disorders. As reviewed by Mikeska and Craig [12],  
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a biomarker is an objectively measurable characteristics of an organism that allows monitoring of a 
biological process related to normal physiology, pathophysiology, or disease. Clinically relevant 
biomarkers may serve a variety of purposes, such as indicating disease latency, onset, stage, response 
to treatment, may serve as a surrogate endpoint for intervention, or may help stratify individuals 
according to risk or prognosis. For maximum public health impact, biomarkers should be accurately 
measurable across individuals and populations. Ideal biomarkers will have high sensitivity and 
specificity, a high area under the curve (AUC) in a receiver-operator characteristic (ROC) analysis, and 
a high positive predictive value (PPV). 

Put in the language of healthcare economics, in order to be clinically useful, biomarkers must 
balance the competing vertices of the “iron triangle of health care”: cost, quality, and access [13]. That 
is, firstly, biomarkers should be affordable enough to be used effectively in the population and disease 
in question. Secondly, biomarkers should have adequate sensitivity and specificity to facilitate prudent 
clinical judgments in the population and disease in question. And thirdly, biomarkers should have 
broad applicability across individuals and populations whenever possible, and be from an easily 
obtainable tissue. 

Hemoglobin A1c, for example, may be considered a nearly ideal biomarker based on the above  
criteria [14]. It is relatively inexpensive and easy to assay, relevant across individuals and populations, 
and clinically useful within an individual across time in terms of both disease progression and treatment 
response. It also helps stratify individuals’ risks for diabetes-associated health risks and outcomes. 

In contrast, in the domain of psychiatry, clinically relevant biomarkers are scarce. For a few 
uncommon, Mendelian disorders such as Fragile X syndrome and Huntington’s disease, genetic testing 
is available. Recent work by Guintivano and colleagues has demonstrated that some psychiatric conditions 
such as suicidality may have emerging biomarkers, but such findings are not yet well-validated [15]. 
Similarly, pharmacogenomics, the study of differential response to medication treatment due to inborn 
differences in metabolism, is a developing field with potential relevance in psychiatry that has yet to 
prove its clinical relevance [16]. 

For substance use disorders, new biomarkers that improve on existing technology are highly 
desirable. But in addition to the general factors listed above, researchers must consider additional 
factors specific to substance use disorders when considering whether potential biomarkers will 
improve on current technology. First, given that substance use is often intermittent, biomarkers must 
offer adequate stability and persistence to allow detection at a future time point. Lack of persistence 
over time is a considerable weakness in current biomarkers for substance use (see Table 1). Next, 
specificity for the type of exposure is essential. For example, given frequent comorbid patterns of 
substance use, distinguishing between new-onset cannabis use in the setting of ongoing tobacco 
smoking may be needed. Third, specificity with respect to cumulative exposure is important, as for 
many substances such as tobacco and alcohol, adverse outcomes are most strongly related to 
cumulative exposure. Fourth, the ability to detect initial cessation of use and ongoing abstinence is 
essential in implementing appropriate monitoring and assessing response to treatment. Fifth, specificity 
with respect to the exposure window is an important consideration for the development of the ability to 
detect specific kinds of exposure such as prenatal exposure. 
  



Genes 2015, 6 996 
 

 

Table 1. Detection time windows and false positives for commonly used substances. 

Drug Detection Time (Urine) False Positives 
Alcohol   

- Ethanol Less than 12 h No 
- Ethyl glucuronide (metabolite) 5 days No 

Amphetamine/Methamphetamine 2–3 days 

Amantadine, bupropion, chlorpromazine, 
desipramine, fluoxetine, labetalol, 

methylphenidate, phentermine, phenylephrine, 
phenylpropanolamine, promethazine, 

pseudoephedrine, ranitidine,  
thioridazine, trazodone 

Cocaine  Topical anesthetics containing cocaine 
- Occasional use 2–3 days  
- Heavy use Up to 8 days  

Cannabis  
Dronabinol, ibuprofen, naproxen, sulindac,  

proton pump inhibitors 
- Single use 3 days  
- Less than daily Up to 1 week  
- Daily 1 to 2 weeks  
- Daily, heavy use >30 days  

Opioids  
Dextromethorphan, diphenhydramine, 

fluoroquinolones, poppy seeds, quinine,  
rifampin, verapamil (methadone assays only) 

- Codeine 2 days  
- Heroin (morphine) 2 days  
- Hydromorphone 2–4 days  
- Methadone 3 days  
- Morphine 2–3 days  
- Oxycodone 2–4 days  

Tobacco Up to 1 week 
Nicotine replacement therapy,  

nicotine vaporizers 
Note: Data from references [10,11,17]. 

Lastly, unlike other psychiatric disorders, substance use disorders can also be conceptualized more 
broadly as a type of exposure. Although substance use disorders are defined behaviorally as a user’s 
repetitive self-administration of substances despite negative consequences and/or resultant physiological 
dependence, biomarkers indicating disease or risks to health may be present in both the user and others 
inadvertently exposed through the same actions. Given that non-voluntary exposures such as prenatal 
alcohol exposure or secondhand smoke exposure also carry significant health and developmental 
consequences [18], detection of these kinds of exposures is therefore an additional public health 
priority, and merits additional consideration of the similarities and differences of biomarkers for 
various substance exposures in different developmental or environmental contexts. 
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1.2. Epigenetic Biomarkers 

Epigenetic biomarkers have the potential to address these critical issues. Epigenetics is the study of 
potentially heritable marks that provide structural and regulatory functions to the genome, but are 
distinct from changes in the base pair sequence of the genome [19]. Epigenetic marks include DNA 
methylation at CpG residues, histone tail modifications, small non-coding RNAs, and open versus 
closed chromatin packing. The basic concepts of epigenetics have been reviewed previously [12,18,20] 
and will not be discussed in detail here. Functionally, epigenetic changes affect the expression of 
genes, as measured by RNA and protein production, which in turn may affect cellular structure and 
function, which in turn may in turn lead to changes in higher level phenomena such as behavior. With 
respect to drug taking and drug seeking behavior, preclinical literature has demonstrated that changes 
in the expression of genes such as BDNF [21] and OPRM1 [22,23] alter the reinforcement properties 
of drugs such as alcohol, cocaine and heroin. Thus, in addition to having utility as biomarkers, 
epigenetic changes and resultant changes in gene expression can also contribute to our mechanistic 
understanding of addictions. 

Among epigenetic marks, DNA methylation changes are most likely to develop as ideal substance 
use disorder biomarkers. As reviewed by Ladd-Acosta, there is a broad evidence base supporting DNA 
methylation signatures as biomarkers of exposure that are likely to translate well to clinical practice [18]. 
Methylation signatures for different types of environmental exposures (including smoking) have been 
shown to exhibit temporal stability, specificity with respect to type of exposure, timing of exposure, 
cumulative dose and cessation time. Equally important, current DNA methylation assays can be used 
with a variety of accessible tissue types and are becoming more accurate and inexpensive, thus 
addressing the key core areas of cost, quality, and access. In contrast, assays of histone tail modifications 
and RNAs are more expensive and technically difficult. Therefore, for reasons of both cost and quality, 
we will focus this review on DNA methylation biomarkers rather than histone or RNA biomarkers. 
Additionally, for reasons of specificity, we will focus on methylation patterns at specific CpGs as 
opposed to measurement of global methylation levels. Changes in in global DNA methylation, often 
measured via digestion and analysis of repetitive DNA motifs distributed throughout the genome such 
as Long Interspersed Element-1 (LINE-1), have been reported in cancer, but these techniques lack 
adequate specificity for use in substance use disorders. 

Methylation at a given CpG residue is frequently reported as a percent methylated in a given 
sample, or beta value, with changes at the same location between individuals or groups often reported 
as a delta beta. Bisulfite pyrosequencing currently has a resolution of approximately 5%–10%, indicating 
that changes on this order of this magnitude may not be reliably detected. The resolution of array-based 
technologies such as Illumina’s HumanMethylation450 BeadChip is as precise as 1%–2% for comparison. 
A key issue for the development of clinically relevant biomarkers will be whether delta betas for a 
given association are of a sufficient magnitude to provide adequate sensitivity and specificity. 

In this review, we will present evidence that recently identified DNA methylation loci show great 
promise as biomarkers for smoking, meeting the above criteria for translation to clinical use. Next, we 
will demonstrate that current evidence for methylation changes as biomarkers for alcohol use is much 
more limited but emerging, and finally that the evidence for other substances is still more limited and 
not at a point where translation to clinical use is feasible. 
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For translation to clinical applications, several areas are important to consider in the development of 
epigenetic biomarkers for substance use disorders. First, although substance use disorders are brain-based 
disorders, brain tissue is not accessible in routine clinical practice. Therefore, this review will focus 
primarily on findings in tissues that are more easily accessible, such as peripheral leukocytes and 
saliva samples, with other tissues discussed as relevant to highlight the generalizability of findings. 
Peripheral tissues do have important limitations with respect to generalizability to other tissues of 
interest such as the brain [24], but there is increasing evidence that many epigenetic changes found in 
peripheral leukocytes and transformed lymphoblasts also correspond to changes in brain cells [25]. 

Second, when dealing with peripheral blood cells, it is important to note that differences in cell 
mixture may confound differences in methylation patterns due to substance use. Since this problem has 
been recognized, it has become routine to control for such differences in cell composition through 
either direct cell counts or through the method of Houseman and colleagues [26], by which methylation 
patterns in a given sample can be analyzed to infer the original cell mixture distribution. However,  
it is important to note that the effect of these measures in improving signal in some disorders is 
debatable [27–29] and the recent discovery that many lymphoid cells do not display traditional cell 
specific markers used to develop the methylation data used in the Houseman technique suggests a need 
to refine these cell correction approaches [30]. 

Third, in order to address generalizability of findings, we will focus on research in human subjects 
rather than animal or in vitro models. Similarly, research in different ethnic groups, ages, and sexes 
will be included. The majority of research in substance use epigenetics has been in adults of European 
ancestry, but a few studies have included other ethnic groups and ages for comparison. In addition, 
when studies report differential findings by sex, these will be included in the review. These are 
particularly important aspects as studies have reported differences in global methylation in different 
sexes and ethnicities [31]. In addition to demographic aspects of study design, temporal aspects such as 
the measurement of changes in individuals or groups over time prospectively lend important additional 
aspects to clinical generalizability and may contribute to understanding of the underlying etiology of 
substance use disorders. 

Lastly, we will comment on the status of specific biomarkers as to whether they are potential 
validated, replicated, candidate or proven clinical biomarkers, as defined by Mikeska and Craig [12]. 
When relevant, experiments that lend supporting evidence to methylation findings, such as changes in 
gene expression via RNA measurement, protein expression, and even DNA-protein complex binding, 
will also be included. The results of network and pathway analyses are also interesting because they 
lend support to the involvement of aspects of physiology such as the immune system in the 
pathogenesis of disease and their effect on measurable biomarkers. In addition, when supporting 
evidence of exposure, such as serum cotinine assays, is included, these data will be discussed. 

2. Methods 

PubMed searches were conducted with terms related to specific substance use disorders, epigenetics, 
and biomarkers. Resulting abstracts were reviewed and included for discussion if they appeared relevant 
to the specific topic of epigenetic biomarkers for substance use disorders. Citations mentioned within 
these publications were also reviewed for further inclusion in this review when appropriate. 
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3. Results 

3.1. Smoking 

In the process of smoking, thousands of chemicals, including carcinogenic polycyclic aromatic 
hydrocarbons (PAHs) and nitrosamines, are released into the human body [32]. Further downstream, 
nicotine exerts reinforcing effects in the CNS before being metabolized [33]. Interestingly, the 
presence of monoamine oxidase inhibitors (MAOIs) has also been demonstrated in tobacco [34], but 
the magnitude of their psychoactive effects and contribution to patterns of tobacco consumption 
remain unclear. Despite its widespread effects throughout the body, existing biomarkers for smoking 
have significant limitations. Exhaled carbon monoxide is detectable only for 3–4 h after smoking [6,7]. 
Cotinine, a metabolite of nicotine, can be assayed in serum or saliva, but can only be detected for 
approximately 48 h after last use [7], and the preferred method of detection, enzyme linked immunoassay 
(ELISA) is expensive and time consuming. 

It should also be noted that the rise of e-cigarettes, which deliver nicotine via an atomized solution 
of polyethylene glycol, has the potential to confound the detection of smoking, as it will lead to a 
positive test for cotinine. Because the differences and similarities in health risks due to smoking 
cigarettes versus e-cigarettes are not yet known, it is even more important that new biomarkers be 
developed to accurately ascertain smoking status. 

Research in epigenetic biomarkers for smoking encompasses three main waves of findings. First, 
many studies examined candidate genes such as Monoamine Oxidase A and B (MAO-A, MAO-B), often 
using bisulfite pyrosequencing techniques available in the 2000s to investigate the relationship between 
methylation at CpG islands and substance use disorders. Second, with the advent of array-based 
methylation detection technologies, a number of studies in varying populations, tissues, and sample 
sizes have been done. With the further development of arrays by Illumina and others, these studies 
have been able to expand from a limited number of CpG sites across the genome, generally focused in 
areas related to cancer, to a much broader range of sites. Third, based on the results of array-based 
studies, follow-up studies of promising loci have been done to more carefully delineate methylation 
patterns associated with smoking and investigate potential utility as biomarkers for smoking and 
related health risks. As it will be demonstrated in the rest of this review, this trajectory places smoking 
epigenetic biomarkers closest to translation into clinical practice, while other substance use disorders under 
study remain less developed. 

Findings from the first wave of candidate gene methylation studies for smoking (approximately  
2008–2012), generally using bisulfite pyrosequencing or mass spectrometry, established the existence 
of differences in methylation between cases and controls at the promoters of several candidate genes 
for smoking, including MAO-A and MAO-B. Two early studies by Philibert and colleagues [35,36] 
found that symptom counts for nicotine dependence were associated with decreased methylation at the 
MAO-A promoter, that genotype and sex-specific effects influenced methylation, and that changes in 
methylation pattern persisted over time after smoking cessation. There also did not appear to be a 
significant difference between methylation patterns in whole blood samples versus transformed 
lymphoblasts. Launay and colleagues [37] similarly found a decrease in MAO-B promoter methylation 
in peripheral blood mononuclear cells (PBMCs) due to smoking. At another candidate gene for 
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smoking, catechol-O-methyltransferase (COMT), specific CpGs showed differential methylation in 
smokers versus nonsmokers, with a delta beta of approximately 6% at the site with the greatest 
difference [38]. This study was done in an African-American (AA) population, highlighting the need 
to replicate findings to establish generalizability across differing ethnic groups. 

Extending candidate gene studies to other populations and tissue sources, researchers assessed the 
impact of maternal smoking on promoter methylation at brain-derived neurotrophic factor (BDNF) in 
adolescent offspring whole blood samples [39], and cytochrome P450 oxidase 1A1 (CYP1A1) in placental 
samples [40], finding hypomethylation in each case. Murphy and colleagues [41] examined differences 
in methylation at two loci, the imprinted domain at 11p15.5, expressing paternal Insulin-like Growth 
Factor II (IGF2), and maternal H19, a noncoding RNA, in smoking exposed versus non-exposed 
infants, finding that infants born to smokers had increased methylation at the IGF2 differentially 
methylated region (DMR) as composed to those who never smoked or quit during pregnancy. Finally, 
given the established link between smoking and cancer, cancer-related candidate genes were studied 
using exhaled breath condensate in smokers and non-smokers, showing differential patterns of 
methylation at ras association domain family 1 isoform A (RASSF1A) related to smoking status [42]. 

With the advent of the cancer-focused Illumina GoldenGate methylation platform, several 
groups examined genome-wide differences in methylation patterns in smokers versus non-smokers. In 
lung tissue, Christensen and colleagues [43] found a significant effect of pack years smoked on 
human mutL homolog 1 (MLH1) and receptor-interacting serine-threonine kinase 3 (RIPK3) 
methylation, and 138 loci in total with altered methylation in lung tissues of ever versus never 
smokers. Breton and colleagues [44] found differences in global methylation of LINE-1 and validated 
hypermethylation at two loci (tyrosine-protein kinase receptor UFO, receptor-type tyrosine-protein 
phosphatase O) by confirmatory pyrosequencing in buccal samples of children exposed versus non-exposed 
to smoking during pregnancy. 

Subsequently, two array-based platforms were developed which allowed a much broader investigation 
of differential methylation patterns across the genome: the Illumina 27k and 450k platforms. With the 
development of these platforms, several loci have emerged as robust indicators of smoking. The first 
consistent locus to emerge, coagulation factor II (thrombin) receptor-like 3 (F2RL3), was covered by 
both the 27k and 450k platforms, whereas the second, the aryl hydrocarbon receptor repressor 
(AHRR), was only covered by the 450k platform but has been more consistently replicated. Several 
other loci have been replicated in six or more studies as well, including the 2q37.1 region, 6p21.33 
region, growth factor independent 1 transcription repressor (GFI1), and myosin IG (MYO1G). 
However, as we will demonstrate below, the AHRR locus fulfills the greatest number of criteria as 
specified above as indicators of potential for a robust and flexible epigenetic biomarker of smoking. In 
total, this review identified seven studies using the 27k platform and a further 23 using the 450k 
platform. Based on the results of these studies, nine more in-depth investigations of promising loci 
were identified as part of the third wave of studies. Below, we review loci replicated by 7 or more 
studies, a cutoff chosen after review of our findings to help limit the scope of discussion. It should also 
be noted that none of the candidate genes investigated in earlier pyrosequencing have demonstrated 
replicated associations with smoking in later array-based studies. 
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3.2. F2RL3/cg03636183 

F2RL3 (coagulation factor II receptor-like 3), is located on chromosome 19p13.11, and is a member 
of the proteinase-activated receptor family. The consistent association of F2RL3 with smoking status 
has attracted interest because of the plausible relationship between coagulation pathways and the 
cardiovascular risks associated with smoking [45]. 

At this locus, a single CpG probe has emerged consistently: cg03636183. This review identified  
12 studies that included the probe among their list of significant results. Of those, the probe was the 
most significant finding in three [46–48], all of which used the 27k platform for discovery. Although 
subsequent studies with the 450k platform have not typically identified this probe as the most 
significantly associated with smoking, the overall finding has replicated in a number of these studies. 
The probe has been shown to be hypomethylated in adult smokers across a broad age range [27,28,46–54]. 
The probe is associated with smoking in studies in both men and women, men only [28], and women 
only [27,50,53,54]. The association is present in individuals of African ancestry [27,48], South Asian 
ancestry [28], and Arab ancestry [55] in addition to European ancestry. 

Additionally, although the majority of studies reporting associations with probe cg03636183 
have not used other biomarkers to confirm exposure to smoking, at least two used cotinine [45,46]. 
In addition, several studies controlled for blood cell mixture in their analyses, strengthening their 
findings [23, 24,42,45,47–49]. Confirmatory sequencing or spectrometry were done in four of the 
studies [46,49,50,52] and confirmatory qPCR in one [27]. 

Unfortunately, the association has not replicated in studies using non-adult age groups (including 
prenatal exposure), or tissues other than peripheral blood cells. This lack of generalizability represents 
a limitation when compared to the AHRR locus, as will be discussed below. Another limitation is that 
the maximum magnitude of the finding (absolute difference in average methylation level or delta beta) 
is reported to be in the range of 8% to 10%, which may limit its detection in smaller studies. Finally, 
none of the studies finding the association performed genotype by methylation (GxMeth) analyses to 
avoid confounding of findings by genotype. This is an important consideration because according to 
dbSNP, the CpG residue interrogated by cg03636183 is 46 bp from rs773902, a SNP which is in 
marked population disequilibrium [56]. 

However, despite this potential problem, the locus may have potential as a candidate clinical 
biomarker for heart disease. Follow-up studies by Breitling, Zhang and colleagues [45,57–59], using 
bisulfite conversion and spectrometry and DNA from European samples have shown that methylation 
is strongly associated with mortality from all causes, cardiovascular disease, and cancer [45,57–59]. 
The studies establish dose-effect relationships between methylation and current intensity of smoking,  
pack-years smoked, and years since quitting, and a dose-effect relationship between methylation level 
and mortality risk. This relationship also appeared to mediate the relationship between smoking 
intensity and risk of mortality. 

3.3. AHRR/cg05575921 

AHRR is located on chromosome 5p15.33. The gene is a key regulator of the aryl hydrocarbon 
receptor (AHR) pathway which is responsible for the detoxification of toxins such as polyaromatic 
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hydrocarbons and dioxins found in burnt products via the P450 cytochrome system [60]. AHRR is a 
complexly regulated gene, with 5 CpG islands, at least 21 known splice variants and 10 known protein 
isoforms. The exact relationship between methylation changes at each of these CpG islands to production 
of these isoforms is not well understood. But increased transcription of AHRR protein serves as a 
negative feedback loop for the AHR mediated activation of CYP1A1, CYP1A2 and CYP1B1 via 
competitive inhibition of AHR binding to its cognate nuclear receptor (aryl hydrocarbon nuclear 
translocator; ARNT) partner or occupation of AHR DNA binding motifs [60]. Interestingly, the most 
replicated association with this gene is for a probe located within intron 3 of AHRR, not in a promoter 
region, a region that contains an enhancer motif whose demethylation is associated with the recruitment 
of DNA Complex C2 and C3, with the subsequent increase in AHRR mRNA production [49,61]. 

Early array-based studies using the Illumina 27k platform did not identify any association between 
smoking and AHRR due to lack of coverage of this area. However, among the twenty studies using the 
450k platform to test for associations between a wide variety of smoking exposures across varying 
ages, tissues, ethnicities, and both sexes, only six failed to demonstrate the association between AHRR 
methylation and smoking. In 11 of those studies, a single probe, cg05575921, was identified as the 
most associated, and the probe was the second in another [27] and third in yet another [52]. Although 
significant associations between smoking and other probes in the AHRR region have been reported in 
a number of studies, in only one [61] were other AHRR probes ranked more highly. 

Among the remaining five array-based studies that did not replicate an association between smoking 
and cg05575921, two used a distinct cell type (buccal scrapings, fetal lung and placenta) [62,63], one 
examined newborns exposed in-utero [64], and in another, the probe was associated at p < 1 × 10�4 but 
did not reach statistical significance. The remaining study, no probes showed any significant associations 
(likely due to low power), but among all probes tested, probe cg05575921 was the most significantly 
associated [29]. Thus, findings of significant association between smoking and hypomethylation of 
cg05575921 have been the rule rather than the exception. 

Further supporting the AHRR locus and probe cg05575921 in particular is the variety of studies 
showing associations. As with F2RL3, studies have replicated the association in samples including  
men [28,65], women [27,50,52–54,61] and both sexes combined [49–51,53,66–72]. The association is 
present in smokers as young as age 19 [66] through age 60 and later [48]. The signal is robust across 
multiple ethnic groups [27,28,54], and different windows of exposure [67,69]. The association has 
excellent quantitative effects, with a high average delta beta of over 20% in many of the studies of 
older smokers [28,49,53], and effects of both cumulative pack years smoked and cessation time on 
methylation observable in former smokers [49,54,66]. Many studies have included additional experiments 
to bolster the validity of findings at this locus, including confirmatory bisulfite pyrosequencing [49,50,52], 
measurement of AHRR gene expression [27,50,51,53,54,62], statistical techniques to control for 
GxMeth effects [66] and for peripheral blood cell mixture [27,28,51,53,54,67,68], and replication of 
findings in additional samples [49,53]. 

Since the publication of the above array-based, several follow-up studies have gone on to confirm 
associations between smoking and AHRR and expand findings, often using sequencing or mass 
spectrometry. These studies once again confirm methylation changes related to prenatal smoking exposure, 
as measured by cotinine, both in newborns [69], and 18 months later [70]. Two groups combined several 
loci at AHRR and other genes to determine if combining signals could lead to an improved instrument 
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for assaying smoking exposure status. Shenker and colleagues [71] found that the combination of four 
CpGs, including cg05575921, provided the best AUC, whereas Philibert and colleagues [72] found 
cg05575921 to have excellent predictive properties as a single test, with an AUC of 0.99. 

What remains to be determined about cg05575921 to move it toward use as a clinical biomarker are 
better understanding of rates of baseline methylation and decay across populations and more detailed 
information about its predictive utility with regard to clinical outcomes above and beyond self-reported 
smoking status and history, as is the case with F2RL3. However, at this time, even as a simple 
indicator of the presence or absence of active smoking [72], cg05575921 may be considered a 
biomarker that is ready for candidate clinical status. In the recent study of Zhang and colleagues [59], 
cg05575921 was among the top two loci most associated with all-cause, cardiovascular, and cancer 
mortality. Therefore there is emerging evidence that this locus too may have meaningful clinical 
applications beyond prediction of smoking status, as does F2RL3. 

3.4. Other Regions 

As shown in Table 2, there were seven other genes or regions at which significant probes were 
identified in the literature reviewed. In general, delta beta values for these regions and probes were less 
than that of AHRR/cg05575921, making them less ideal as potential biomarkers. At some loci, such as 
2q37.1 CpGs cg05951221, cg2156664, and cg01940273, average delta beta values in the studies 
reviewed were in approximately the 10%–15% range, indicating some potential as adjunctive 
biomarkers, however. However, in the study of Philibert and colleagues [72], multi-marker models 
including all three of these CpGs, as well as AHRR CpGs cg05575921 and cg23576855, did not 
improve the AUC in receiver operating characteristic (ROC) analyses. In addition, at other loci such as 
6p21.33 CpG cg06126421, at least one study reported a delta beta value as high as 23% [28], but this 
magnitude has not been replicated in other studies. Interestingly, the same CpG was among the top two 
most associated with all-cause, cardiovascular, and cancer mortality in on recent study, although the 
delta beta for the CpG was only 13% (current versus never smokers) [59]. 

Table 2. Genes with significantly associated CpGs for smoking in seven or more studies. 

AHRR/cg05575921 15 studies 
F2RL3/cg03636183 13 studies 
2q37.1 10 studies 
CNTNAP2 10 studies 
GFI1 10 studies 
MYO1G 9 studies 
GPR15 9 studies 
6p21.33 8 studies 
GNG12 7 studies 

Continued investigation of the loci listed in Table 2 is warranted, as other loci may provide the  
ability to quantify other aspects of smoking behavior, such as cessation time and remote smoking 
behavior [28,49,50,54,62], and may offer differential sensitivity and specificity in different ethnic  
groups [28]. In addition, although not the primary purpose of biomarker studies, detection of weaker 
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signals may be useful in elucidating the underlying biology of smoking-associated disease, for 
example through the use of network and pathway analyses [27]. 

In summary, epigenetic biomarkers for smoking appear to meet the key criteria for potential 
successful clinical translation, particularly at the two sites with the most replicated associations, AHRR 
and F2RL3. Among the studies reviewed above, methodological issues are adequately addressed, 
including controlling for batch effects, cell mixture, confirming exposure with other biomarkers such 
as cotinine, controlling for other exposures such as cannabis, and most importantly performing careful 
phenotyping. The studies above include appropriate sensitivity and specificity analyses, demonstrate 
dose-response relationships between exposure and methylation, and capture both persistent signatures 
of past smoking and reversible signatures that indicate cessation time. In addition, these loci 
demonstrate the ability to predict important clinical outcomes such as mortality. In terms of 
generalizability, the studies include populations of different ages, ethnicities, sexes, use patterns, and 
periods of developmental exposure. Of note, findings at AHRR and F2RL3 did not replicate 
consistently across non-blood tissues, indicating that other loci may be more appropriate if other tissue 
sources are to be used clinically. However, on the whole, this review found sufficient evidence to 
recommend development of epigenetic biomarkers for smoking as clinical tools with the potential for 
tremendous public health impact. 

3.5. Alcohol 

In contrast to smoking, health risks associated with alcohol follow a U shaped curve, with modest 
drinking conferring lower overall levels of risk to health as compared to complete abstention and 
heavy drinking [73]. However, in many individuals, drinking becomes problematic, either through 
contributing to accidental injury, or through negative effects on health associated with chronic, heavy 
intake. The epidemiological link between heavy alcohol use and increased risk of cancer is well 
established [74]. Interestingly, in contrast to smoking, alcohol-associated cancer risk appears to decline 
more slowly over time than smoking-associated cancer risk, with 20 or more years required for the risk 
of head and neck cancers associated with drinking to equal that of abstainers [75]. Both the longevity 
of risk associated with heavy alcohol use, and its distinct U shaped curve for risk in relation to use 
pattern suggest that the underlying epigenetic mechanisms at work are distinct from smoking. 

Epidemiologic observations related to the comorbid smoking and drinking risks further suggest that 
distinct epigenetic mechanisms are at play in alcohol use disorders as compared to smoking. In 
combination, smoking one pack per day and heavy drinking (over 80 grams per day) act synergistically 
to increase risk of esophageal cancer by up to 44 times [76]. This consistent epidemiologic finding 
suggests that smoking and drinking have distinct toxicological mechanisms by which risk of disease is 
conferred. Similarly, it has been demonstrated that while the risks of cancer and other diseases due to 
smoking are due not to nicotine but to the cumulative effects of the thousands of toxic compounds 
found in smoke, the risks due to alcohol appear to be directly related to alcohol concentration and dose, 
with increasing concentration of alcoholic beverages (hence, less exposure to other compounds), 
conferring increasing risk [74]. From an epigenetic perspective, these findings have led investigators to 
pursue focused investigations of both candidate genes and broader investigations using array-based 
platforms to elucidate the underlying mechanisms at play. Relatedly, potential epigenetic biomarkers 
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for alcohol use disorders are likely to follow distinct patterns from those of smoking, as will be 
detailed below. 

Current biomarkers for alcohol are limited in their utility [9]. Perhaps the best characterized 
biomarker of alcohol is the measurement of alcohol in serum or breath. However, this type of 
measurement only detects current consumption and does not differentiate between acute consumption 
and chronic abuse. Other biomarkers of adverse effects related to alcohol have difficulties with 
sensitivity and specificity, and are not frequently used in clinical practice as screening methods. Given 
that the magnitude of costs to health and society related to problem drinking are so large, improved 
biomarkers are necessary. In particular, early identification of problematic drinking patterns, before 
behavior becomes entrenched, and the ability to monitor for relapse during long-term treatment are 
essential tools needed to improve prevention and treatment of this disorder. 

In reviewing the literature for studies assessing methylation changes associated with alcohol that 
have potential to translate into clinical biomarkers, several trends emerge. First, fewer studies have used  
array-based technologies in alcohol as opposed to smoking (10 found for this review). Second, fewer 
significant associations have been reported and effect sizes are generally more modest in alcohol as 
opposed to smoking, with top delta beta values frequently under 10%, leaving fewer loci as potential 
biomarker candidates. Third, the results of candidate gene studies, as listed above, have generally not 
replicated in later array-based studies. Fourth, many studies have been done using in vitro models, 
animal models, and post-mortem tissues. These have focused on the relationship between histone 
modifications and chronic alcohol exposure; findings which are likely further from clinical translation 
but suggest future avenues for research. 

Candidate gene based investigations into the biology of alcohol-related disease have focused in a 
few key areas. The most common focus is well-established neurotransmitter systems commonly studied 
in psychiatric disorders such as dopamine, serotonin, and glutamate, their receptors, transporters, and 
enzymes of degradation. The second most common area of investigation is that of more specialized 
neurotransmitters such as vasopressin, and orexin. A third common theme is genes related to one carbon 
metabolism. Fourth and fifth common areas of investigation are genes related to craving addiction, 
particularly with respect to the endogenous opioid system, or those related to neuronal growth  
and homeostasis. 

This review identified fifteen candidate gene methylation studies ranging across all of the above areas. 
Loci studied included alpha-synuclein [77], DNA methyltransferase 3b [78], homocysteine-induced 
endoplasmic reticulum protein [79], NMDA receptor subtype 2b [80], monoamine oxidase A [36], the 
serotonin transporter [81–83], the dopamine transporter [83–86], the H19 and IG differentially 
methylated regions [87], vasopressin and atrial natriuretic peptide [88], proopiomelanocortin [89], 
orexin A [90], nerve growth factor [91], MeCP2 [83], leptin [92], and the mu opioid receptor [93]. 
Studies generally reported small but significant changes in methylation at the above loci. A few loci, 
however, have had consistently negative results [81,82], failed to replicate previous associations [85,86], 
or found associations in subgroups only [36]. 

With the development of array-based methylation profiling, investigators have been able to look 
more broadly at candidate and genome-wide loci. Four studies using Illumina’s GoldenGate array 
platform for methylation were found. Two of the studies used the cancer candidate gene focused panel 
available from the manufacturer [43,94], while two others by the same group [95,96] used custom 
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arrays for alcohol-related candidate genes on the same platform. Although limited by a small sample 
size of 29, Christensen and colleagues [43] reported 12 hypermethylated CpGs and 20 hypomethylated 
CpGs at candidate cancer genes, the latter including HTR1B. The other study using the cancer candidate 
gene focused platform found no significant differences due to smoking, and only 5 sites with a delta 
beta of more than 5%. Interestingly, in a subgroup of alcoholic smokers versus their abstinent siblings, 
a significant difference was found in mean methylation. Among the two studies by the same group 
using the custom array, positive associations with HTR3A were found in one study, though in 
European Americans only [95], and in the other, no associations with alcohol use alone were found, 
but there appeared to be an effect of childhood adversity on methylation at two loci (CHRNA5, HTR1B) 
in the combined alcoholic and non-alcoholic European American sample [96]. 

Two studies using Illumina’s 27k platform were found. The first, using a small sample size of  
20 alcohol dependent cases versus controls [97] reported differential methylation occurring within individuals 
between two time points at 252 genes in controls, 200 in cases, and 3 in both. Unfortunately, the 
published article does not provide the specific gene list or corresponding P values (noting only that the 
reported genes had p values < 0.01). The second study [98] had a larger sample size of 128 participants, 
and reported significant associations at 1710 CpG sites (p < 0.005 after Benjamini-Hochberg correction 
and delta beta � 17%), also reporting that all of the 50 sites were hypomethylated. The authors report 
the differentially methylated loci to include two alcohol dehydrogenases, one aldehyde dehydrogenase, 
and CYP2A13, and five loci with delta beta values over 40%, including C8orf4, HCRTR1, FLJ38379, 
HSA277841, and TSC2, but do not include a list of methylation values, p values for association in the 
publication or supplemental materials. 

Four studies using Illumina’s 450k platform were found. Of these, one was previously reviewed [61], 
and reported as a non-primary outcome a nominal association of two probes with drinking after 
controlling for smoking. A second found no differences in methylation at CpG sites between groups 
stratified by alcohol intake, but did find one significant probe when pooling moderate and heavy 
drinkers versus abstainers, and found further evidence of association with the BLCAP region using an 
11-probe sliding window technique [99]. A third study [100] using AD-discordant siblings found 
865 hypomethylated and 716 hypermethylated sites, as defined by a DiffScore of 20 or greater (log 
transformation of P value, corresponding to 0.05 < p < 0.01 according to Illumina materials), with 
GABRP among the top thirty hypermethylated sites. 

The last study by Philibert and colleagues [101] was designed to overcome limitations of some of 
the above studies. Specifically, instead of looking at the trait of alcohol dependence in the presence or 
absence of recent alcohol use, it purposively selected active, heavy alcohol consumers entering and 
exiting treatment for alcohol use disorders versus community controls who were selected from an 
environment in which alcohol use was discouraged whose self-reports were confirmed by objective 
biomarkers for smoking and cannabis use. Methylation signatures on treatment entry were compared 
with those of controls and with those of the same alcohol-dependent individuals at 4 weeks following 
treatment entry. Although significant changes within individuals in the four weeks following treatment 
entry were not detected, 8626 probes were found to be differentially methylated between cases and 
controls after conservative Bonferroni correction, with top delta beta values generally less than 10%. 
Of note, the largest delta beta of approximately 15% was seen for GFI1, a gene reported in a number 
of smoking studies (see above), suggesting possible confounding at this locus. 
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The largest methylome-wide study to date was the recent study of Clark and colleagues [102], 
examining over 600 individuals at approximately 27 million CpG sites in approximately 4 million CpG 
“blocks” using a novel methyl-CpG-binding domain (MBD) protein-based sequencing technology as 
well as a genome-wide association study using the Affymetrix 6.0 chip. Unfortunately, despite the 
innovative technique employed to interrogate the methylome, phenotyping was a relative weakness of 
the study, which employed a binary question asking if participants had ever consumed alcohol regularly 
versus never consumed alcohol regularly. In their discovery sample, 94% of subjects answered 
affirmatively, as did 93% of those in the larger replication sample of 730 subjects. Although Clark and 
colleagues reported significantly different methylation at 33 “blocks” or DMRs at a FDR threshold of  
q < 0.1, there is no overlap with these blocks and the top CpGs in the second-largest array-based study 
of Philibert and colleagues [101] or that of Zhao and colleagues [100]. 

Lastly, although of limited usefulness as a clinical biomarker due to low specificity, six studies 
assessing global methylation levels were found. The first [103], found striking differences in global 
methylation, with hypermethylation of +10% as measured in HpaII/MspI digestion fragments and 
cytosine extension. A later study using the same technique found smaller (+7%) difference of 
methylation in alcoholics as compared to controls [79]. However follow-up studies by others [31,104] 
failed to replicate this difference when using a different method, bisulfite pyrosequencing of global 
LINE-1 elements, although a modest difference (0.2%) in Alu methylation was found by the same 
methods in one study [104]. It is likely that this difference is due in part to different techniques used.  
A fifth group [105] found no effect of stratified alcohol intake on global methylation, but did report a 
weak interaction between alcohol and folate intake on methylation. Postmortem studies in human brain 
tissue have shown mixed results regarding global methylation, with one showing global hypomethylation 
as measured by Qpcr [106], but another showing no significant differences [107]. Most recently, 
Semmler and colleagues also recently reported global hypermethylation in lymphocytes was correlated 
with alcohol consumption and smoking on treatment entry for alcohol detoxification [108]. 

There are numerous limitations apparent on review of the above literature, both in terms of quality 
and quantity of studies. The primary weakness is the direct lack of any replicated finding thus far for 
any pattern of alcohol use. However, promisingly, recently the top markers for alcohol consumption 
from Philibert (2014) have been shown to demonstrate the classic “U-shaped” curve effect on survival 
in a large community sample (n = 656) [109]. In general, candidate gene associations have not 
replicated well in array-based studies, although this may be in part due to lack of coverage. The 
literature using 27k data is unfortunately limited by lack of reporting of full findings and methods. 
Among the two more well-powered studies using Illumina’s 450k array, one used a non-primary 
source of DNA [99], transformed lymphoblasts, and suffered from potential weakness in characterizing 
alcohol use patterns (self-report over the last 6 months). The second study [101] addressed those issues 
and found a much larger number of associations, suggesting that some of these findings, if replicated, 
could point toward the development of clinical epigenetic biomarkers. It is interesting that the study of 
Philibert and colleagues [101], did not replicate the associations or large delta beta values (one over 
50%, 23 others over 20%) of the report of Zhao and colleagues [100], suggesting these differences 
may be due to study design or underlying population differences. Finally, in addition to the 
inconsistency of results, global methylation is unlikely to translate as a biomarker for alcohol use due 
to its lack of specificity. 
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Going forward, more and larger studies will be needed to determine if the very preliminary findings 
above can be replicated, as have been done for smoking. Building on the experience from the more 
successful studies of smoking in which state dependence of methylation changes are evident, studies of 
alcohol use phenotypes will likely benefit from careful attention to the effects of periods of abstinence 
on methylation signatures. 

3.6. Cannabis 

Cannabis is the most widely used illegal drug [4] in the United States. Cannabis abuse and dependence 
are also commonly comorbid with other substance use disorders, particularly smoking [110]. Cannabis 
use in the United States has increased in recent years, particularly among children and adolescents, 
raising concern about the effects of exposure on the developing brain. Recently, states such as 
Colorado have also taken steps to decriminalize cannabis, leading to concerns about the consequences 
of increased use in children and adolescents as well as adults [111]. 

The psychoactive components of cannabis are the cannabinoids, including delta-(9)-tetrahydrocannabinol 
(THC). Cannabinoid receptors CB1 and CB2 and their endogenous agonists such as anandamide have 
been discovered in recent years. THC and other exogenous cannabinoids can be measured in a number 
of tissues, including hair, saliva, blood, and, most commonly, urine [112]. 

In reviewing the available literature for potential epigenetic biomarkers of cannabis use, there were 
no array-based studies and only two studies using peripherally available sources of DNA in human 
subjects, both candidate gene studies by the same group. 

Noting emerging interest in the interaction between cannabinoids and orexins, a class of molecules 
involved in regulation of appetite, arousal, and energy regulation, Rotter and colleagues [113] 
examined a differences in Orexin A expression between cannabis dependent individuals, (tobacco) 
cigarette smokers, and non-smoking controls. Expression was measured by quantitative PCR in 
peripheral lymphocytes, and promoter methylation measured by methylation specific digestion and 
subsequent quantitative PCR. Cotinine, THC and metabolites of THC were not measured for 
comparison, nor were analyses adjusted for blood cell composition. Significant differences in Orexin A 
expression were found between all three groups. There was no difference found in mean Orexin A 
promoter methylation between groups, but their method precluded measurement of individual CpG 
methylation status to examine for differences between groups. Despite the lack of overall difference in 
methylation found, the differences in expression suggest that further investigation of this locus as a 
potential biomarker is warranted. 

In a parallel study, using the same subjects and general methods, Rotter and colleagues [114] also 
measured CB1 and CB2 expression and CB1 promoter methylation. CB1 expression was significantly 
different between all three groups, as was CB1 promoter methylation, with cannabis dependent 
subjects having the highest level of methylation (89%), followed by cigarette smokers (84.4%) and 
non-smokers (62.5%). CB1 promoter methylation was negatively correlated with expression in all 
three groups as a whole. CB1 expression levels also correlated significantly with clinical variables 
including craving. As in the previous study, cotinine and cannabinoids were not measured for 
comparison, analyses were not adjusted for blood cell composition, and site-specific CpG methylation 
levels could not be assessed. Despite this, these results suggest CB1 promoter methylation and gene 
expression as additional potential biomarkers for THC dependence. 
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Finally, although with less potential for clinical translation, one study using human fetal brain tissue 
was reviewed. DiNieri and colleagues [115] examined the effects of prenatal cannabis exposure in 
postmortem human fetal subjects and in rats prenatally exposed to cannabis. In the fetal subjects,  
in situ hybridization histochemistry was used to measure expression of DRD1, DRD2, PENK, and 
PDYN in the nucleus accumbens (NAc) in cannabis-exposed cases and controls. Cannabis exposure 
was confirmed by maternal self-report and/or urine THC and/or fetal meconium THC. Of the four genes 
studied, only DRD2 expression was significantly correlated with cannabis exposure, with decreased 
expression levels detected. In the rat model, increased 2meH3K9 and decreased 3meH3K4 and RNA 
polymerase II expression were found at the DRD2 locus, as well as decreased DRD2 expression. 

In summary, the literature on potential epigenetic biomarkers for cannabis use disorders and 
exposure are extremely limited and, in contrast to smoking, there do not appear to be any loci which 
meet the criteria outlined above for potential clinical translation. There was a single significant 
association found in one study between CB1 promoter methylation and cannabis dependence. 
Although the magnitude of change in methylation at this locus between cannabis-dependent subjects 
and non-smokers was appreciable at 26%, the difference between cannabis-dependent subjects and 
cigarette smokers was much more modest at less than 5%, casting doubt on the potential applicability 
of this finding. Nonetheless, there is a great deal of potential for the development of epigenetic 
biomarkers for cannabis use simply because no studies have been done using the larger array-based 
platforms to look more broadly for associations. There is some possibility that unique signatures may 
be found, particularly if studies are done with careful clinical characterization and confirmation of 
exposure via existing biomarkers such as ELISA for THC metabolites. It remains to be seen if these 
studies will be able to sufficiently distinguish a cannabis-related signature from that of tobacco 
smokers, which is a critical issue given the high comorbidity of tobacco smoking among cannabis 
users. The other design considerations, which include applicability across populations, the ability to 
find an epigenetic signature in accessible peripheral tissues, sensitivity, and specificity, as well as cost, 
all apply to this area as well and will need to be taken into consideration. 

3.7. Opioids 

Heroin and other opioids are highly reinforcing substances, which can cause substantial harm to 
individuals’ health over time. According to the Substance Abuse and Mental Health Services 
Administration (SAMHSA) [4], over two million individuals in the United States were dependent on 
or abused heroin and other pain relievers in 2010, with over 1 million of those reporting for treatment 
in the last year. Despite the widespread availability of pharmacologic and behavioral interventions for 
opioid addictions, significant challenges remain in tackling this public health problem. A key related 
public health issue is that chronic administration of opioids often takes place through intravenous 
injection, placing users at markedly higher risks for transmission of HIV, hepatitis C virus, and other 
infections, which collectively dramatically add to the health burden associated with this disorder. 
Additionally, dependence on prescription opiates being administered for acute or chronic pain is an 
emerging area of concern. Current biomarkers for opioid dependent are limited. The most commonly 
used screening tests in clinical practice are urine-based and have a detection limit of approximately  
3–4 days for most opioids [116]. 
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Opioids exert their psychoactive effects through opioid receptors in the brain. Of the three opioid 
receptor genes, OPRM1, OPRD1, and OPRK1, which encode the mu, delta, and kappa opioid 
receptors, OPRM1 is the most studied with respect to opioid addiction, as it is the main site of action of 
commonly used opioids such as heroin, morphine, and methadone [117]. It should also be noted that 
behavioral reinforcement via endogenous opioids plays a role in the formation and maintenance of 
many other types of substance use disorders, such as alcoholism [93]. 

In this review, four candidate gene studies assessing methylation patterns at CpG islands associated 
with the OPRM1 promoter region were identified. Two studies by the same group characterized associations 
between specific CpGs in Caucasians [118] and subsequently in Hispanics and African-Americans 
maintained on methadone [119], finding associations differed between ethnicities. Overall, differences 
were fairly small, with the largest reported as 7.1% at CpG �25 in Hispanic former heroin addicts 
versus controls, as compared to the largest being 5.6% at CpG +12 in African-Americans, who had 
significantly higher baseline rates of methylation across the CpG island as compared to Caucasians and 
Hispanics. Of note, the former study used both lymphocytes and whole blood, whereas in the latter 
lymphocytes only were used. 

In addition to the peripheral blood studies mentioned above, one study compared OPRM1 promoter 
methylation in whole blood and sperm among male heroin addicts. Significant hypermethylation was 
found at seven CpG sites in blood from addicts versus controls, whereas only a single CpG showed 
hypermethylation in sperm. Interestingly, overall methylation was significantly lower in sperm 
compared to blood. 

The final study consisted of a mix of methadone maintained former heroin addicts, healthy controls, 
opioid-treated chronic pain patients, and non-opioid treated chronic pain patients. DNA was extracted 
from whole blood and both global methylation at LINE-1 repeats and local methylation patterns at  
22 CpG loci in the OPRM1 promoter region were analyzed with respect to the above groups. Increased 
methylation at CpG +126 and global LINE-1 were seen in the methadone patients as compared with 
controls, and additional analyses including smoking as a covariate confirmed hypermethylation at  
LINE-1 but not CpG +126. Similarly, in the opioid-treated pain patients versus non-opioid-treated pain 
patients, global methylation at LINE-1 was significantly higher, as was local methylation at CpG +126. 
LINE-1 methylation but not OPRM1 methylation at any CpG was also higher in the methadone 
patients as compared to opioid-prescribed pain patients. Interestingly, LINE-1 methylation but not 
OPRM1 methylation in the chronic pain patients was significantly correlated with pain intensity, but 
not in the methadone patients. 

No studies of human subjects with opioid use disorders assessing methylation signatures via  
large-scale arrays such as the 27k or 450k platform were found. In summary, therefore, the literature 
on potential epigenetic biomarkers for opioid use disorders do not indicate any findings that are ready 
for potential clinical translation, for the reasons outlined above, despite the urgent need for improved  
clinical tools. 

3.8. Psychostimulants 

Psychostimulants is a loose category of substances that include cocaine and amphetamines which 
produce temporary increases in alertness or physical activity. SAMHSA estimates place the estimated 
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number of people addicted to cocaine in the United States at over one million as of 2010 [4]. Cocaine 
and amphetamines are potent sympathomimetic drugs which increase synaptic concentrations of 
dopamine, norepinephrine, and to a lesser extent, serotonin through multiple mechanisms. The potent 
reinforcing effects of these medications are thought to be related, in part, to epigenetic changes that can 
occur rapidly after initial administration. Recent reviews have outlined the spectrum of epigenetic  
findings, primarily using animal models and postmortem brain tissue, which have implicated a  
several distinct epigenetic changes occurring with exposure to psychostimulants, including histone  
modifications [120], as well as changes in methylation at specific genes [20] and changes in noncoding 
RNA expression [121]. It is also important to note that several recent studies, including seminal work by 
Feng, Nestler, and colleagues [122,123] have investigated the role of Tet1 and 5-hydroxymethylcytosine 
(5-hmc) cocaine addiction using animal models. These studies are important because demethylation, in 
addition to methylation, plays a role in gene regulation in substance use disorders. Unfortunately, these 
literature reviews and our own are limited by the lack of studies using peripheral tissues from living, 
human subjects in order to ascertain potential epigenetic biomarkers for psychostimulant use disorders. 
Review of these articles and our PubMed search did not find any studies using Illumina arrays that met 
those criteria. Therefore, at this time, we conclude that there is no epigenetic finding with clear 
potential for clinical translation for the assessment of psychostimulant use disorders, though there is 
certainly an important public health need for the development of these. 

4. Discussion 

Our review of the literature demonstrates that the search for epigenetic biomarkers for substance use 
disorders is progressing and in certain cases, shows considerable promise. The search for smoking 
biomarkers is the most advanced, with multiple sites showing replication and potential for translation 
to clinically validated biomarkers. The literature for alcohol is much more limited with a few more 
recent studies using Illumina’s methylation array platforms finding potential loci reflecting alcohol use 
patterns, albeit with more subtle signals as compared to smoking. Finally, for other substances such as 
cannabis, opioids, and psychostimulants, the evidence is still more limited, with either a few candidate 
gene studies (opioids, cannabis), or in the case of psychostimulants, no studies using peripherally 
available tissue from living human subjects. Clearly, the way forward is to conduct larger studies with 
careful phenotyping, using a variety of study designs and a variety of populations in order to capture 
more robust signals. Of note, supplemental network and pathway analyses may be useful even in the 
absence of highly significant findings in order to elucidate the underlying biology of chronic substance 
exposure if they point toward relevant underlying biological pathways. Below, we highlight several 
guidelines to consider when designing such studies, based on the results of our review, in order to 
maximize the chances of finding epigenetic biomarkers for substance use disorders, while also addressing 
issues of replicability, generalizability, and cost. We will also address challenges in the design and 
interpretation of such studies, and acknowledge important limitations of the current literature. 

To address the issue of replicability of findings, future studies will need to be more standardized to 
maximize the chance of replication, including best practices for handling data. Relevant study design 
issues include batch effects, normalization of signals, analysis of confounding variables, ascertainment 
bias, sample processing, genotype by methylation confounding (GxMeth) and controlling for cell 
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mixture. Fortunately good techniques exist to address these. The inclusion of other biochemical 
markers of exposure such as urine or serum cotinine is also recommended. 

In order to address issues of generalizability across populations, more studies using a variety of 
populations and tissue types are needed. It is likely to be increasingly challenging to find early, subtle 
signs of exposure to illicit substances due to their lower rates of use and users’ wish to avoid detection. 
For some substances such as prescription psychostimulants, it may be helpful to obtain pilot data from 
children and adolescents chronically being prescribed these medications, as there are likely to be fewer 
confounding exposures at earlier ages. 

To address the issue of cost, less expensive methods of assessing methylation patterns at loci that 
have been well-validated should be investigated. For example, quantitative PCR may be quite inexpensive 
and suitable for well-characterized loci such as AHRR. However, as the expense of methylome-wide 
arrays continues to fall, routine screening at a large number of loci may become more commonplace.  
If so, best practices for interpretation will be needed, as experience with rise of genetic testing 
marketed to individual consumers suggests there is great potential for misinterpretation of findings.  
It is also possible that the technology to assay other epigenetic biomarkers such as histone modifications 
may become less expensive and future studies may more routinely use these technologies to add to our 
understanding of the total picture of epigenetic regulation in the setting of substance use. 

Some potential challenges lie in the way of these goals, relating to the diverse nature of substance 
use disorders themselves, comorbid use patterns, and limitations of current technology. As noted 
above, smoking is unique in the number and type of toxic exposures it causes to human cells, which 
may account for our ability to detect to downstream epigenetic changes. In contrast, other substances 
such as cocaine may cause dramatic changes in behavioral patterns, both acutely and chronically, as 
well as cause physiologic dependence, but may not cause a robust epigenetic signature detectable by 
current technology. If so, this may be due to the fact that the mechanism of action of many such 
substances is mediated by tissue-specific receptors, as opposed to the toxic aromatic compounds found 
in burnt tobacco products, or alcohol, which is itself a solvent molecule able to penetrate cell membranes 
throughout the body. However, it is possible that other kinds of epigenetic changes such as histone 
modification, for which current assays are less advanced, will become detectable as technology improves. 

An additional challenge that has not been met by the current literature will be identifying use 
patterns for specific substance in the presence of poly-drug use. Although some of the studies 
mentioned above were able to identify the presence of poly-drug use through objective measures such 
as cotinine and hydroxyl-THC ELISA [101], it remains unclear how best to control for the presence of 
poly-drug use in epigenetic analyses targeted toward biomarker development. Specifically, with respect 
to smoking, the high rate of comorbid smoking among users of other substances and the relatively strong 
epigenetic signature of smoking may obscure detection of signals from other compounds. To overcome 
these challenges, careful study design using objective markers of use are essential. If methylation 
signatures of substances such as cocaine and opioids are relatively subtle, misclassification of use 
patterns in case versus control designs has the potential to seriously damage the power of such studies. 
From a bioinformatics perspective, it is also likely that more sophisticated algorithms will need to be 
developed to carefully distinguish the epigenetic signatures of different poly-drug use patterns, for 
example cannabis smoking in individuals who also smoke tobacco. 
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Lastly, two important limitations of the microarray-based studies reviewed above should be noted. 
First, some Illumina probes (up to 25% in some studies) have been identified as cross-reactive  
and non-specific [124–126]. Therefore, measurements using these probes will be influenced by 
methylation levels at multiple sites, which may cause false negative as well as false positives. A 
second limitation of current array-based technology is that it measures only a small proportion of CpGs 
in the genome. Future approaches such as whole-genome bisulfite sequencing may allow a much more 
thorough examination of epigenetic changes across the genome and could provide significantly 
improved biomarkers for substance use disorders, particularly those mentioned above for which the 
current technology has provided minimal results. 

5. Conclusions 

In summary, we have shown that the science of epigenetic biomarkers for substance use disorders is 
still in its infancy. For smoking, the substance which causes the greatest morbidity and mortality 
worldwide, several promising loci found using array-based technology have replicated across multiple 
studies and have potential for clinical translation. For alcohol, fewer studies have been done and 
epigenetic signatures appear to be more subtle, but there is potential for translation if recent findings 
are replicated. For other substance use disorders, despite active investigations in the areas of candidate 
gene studies and animal models, minimal study using array-based technology has been done and there 
are no loci with immediate potential for clinical translation. 

For smoking, the next step will be to translate these findings into clinical tools that can then be 
studied in interventions aimed at identifying smoking behavior, monitoring smoking cessation during 
and after treatment, and assessing risk for related health complications. For alcohol, further study and 
replication are needed to identify which loci should be developed for such clinical tools, but translation 
may occur in the near future. Other substance use disorders will require a significant increase in study 
and replication of any findings before translation can be considered. 

To that purpose, several guidelines, challenges, and limitations to consider in study design have 
been outlined above to help guide researchers in the pursuit of improved epigenetic biomarkers for 
substance use disorders. Substance use disorders continue to cause significant morbidity and mortality 
on a worldwide basis, and thus more study is urgently needed to provide clinicians with the tools to 
detect and treat these disorders. 
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