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SUMMARY

We consider inference about the causal effect of a treatment or exposure in the presence of
interference, i.e., when one individual’s treatment affects the outcome of another individual.
In the observational setting where the treatment assignment mechanism is not known, inverse
probability-weighted estimators have been proposed when individuals can be partitioned into
groups such that there is no interference between individuals in different groups. Unfortunately
this assumption, which is sometimes referred to as partial interference, may not hold, and more-
over existing weighted estimators may have large variances. In this paper we consider weighted
estimators that could be employed when interference is present. We first propose a generalized
inverse probability-weighted estimator and two Hájek-type stabilized weighted estimators that
allow any form of interference. We derive their asymptotic distributions and propose consistent
variance estimators assuming partial interference. Empirical results show that one of the Hájek
estimators can have substantially smaller finite-sample variance than the other estimators. The
different estimators are illustrated using data on the effects of rotavirus vaccination in Nicaragua.

Some key words: Causal inference; Interference; Inverse probability-weighted estimator; Observational study.

1. INTRODUCTION

In causal inference it is often assumed that there is no interference between individuals, i.e., that
the treatment of one individual does not affect the outcome of another. However, this assumption
may not hold. For instance, in infectious disease studies, the vaccination status of one individual
may affect whether another individual becomes infected (Halloran & Struchiner, 1995). Simi-
larly, encouraging one individual to vote may increase the likelihood that another individual in
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the same household will vote (Nickerson, 2008). Interference may also occur between students in
the same classroom (Hong & Raudenbush, 2006) or between households in the same neighbour-
hood (Sobel, 2006), and in myriad other contexts (Rosenbaum, 2007; Luo et al., 2012; Manski,
2013).

Inference in the presence of interference is interesting, because a treatment may have multiple
types of effects, but difficult, because individuals may have many potential outcomes. Recently,
methods have been developed for the setting where individuals can be partitioned into groups such
that there may be interference between individuals in the same group but not between individuals
in different groups; this is sometimes called partial interference (Sobel, 2006). Assuming partial
interference, Hudgens & Halloran (2008) defined the direct, indirect, total and overall causal
effects of a treatment in randomized studies. Inference about these types of causal effects has
subsequently been considered by VanderWeele & Tchetgen Tchetgen (2011), VanderWeele et al.
(2012), Halloran & Hudgens (2012), Liu & Hudgens (2014) and P. M. Aronow and C. Samii in
an unpublished 2013 paper (arXiv:1305.6156), among others. For observational settings where
the treatment assignment mechanism is not known, Tchetgen Tchetgen & VanderWeele (2012)
proposed inverse probability-weighted estimators of these causal effects based on group-level
propensity scores. These weighted estimators can be viewed as a generalization of the usual
inverse probability-weighted estimator of the causal effect of a treatment in the absence of inter-
ference. However, in general, weighted estimators are known to have relatively large variance.
Additionally, in some settings the partial interference assumption may be dubious. In this article
we consider alternative weighted-type estimators that allow for general forms of interference and
tend to be less variable.

2. PRELIMINARIES

Consider a finite population of n individuals, and suppose that each individual may receive
some treatment or exposure. Let Zi (i = 1, . . . , n) be the random variable such that Zi = 1 if
individual i received treatment and Zi = 0 otherwise. Suppose that interference may be present
between the n individuals, and define the interference set χi = {i1, i2, . . .} for individual i to
be an ordered set of all other individuals whose treatment received might affect the outcome of
individual i. Assume that there is no interference between individual i and individuals not in χi.
There may or may not be interference between individual i and individuals in χi. A central goal
of the inferential methods described below is to quantify the extent to which such interference
is present. Let Si = (Zi1 , Zi2 , . . .) denote the vector of treatment indicators for individuals that
possibly interfere with individual i; that is, the outcome of individual i is allowed to depend
not only on Zi but also on Si. For example, if the outcome of individual 1 possibly depends on
their own treatment status as well as that of individuals 2 and 3 but not on that of individuals
4, . . . , n, then χ1 = {2, 3} and S1 = (Z2, Z3). The interference sets χ1, . . . ,χn are assumed to be
known a priori. Denote possible values of Zi and Si by zi and si. Let yi(zi, si) denote the potential
outcome of individual i if they receive treatment zi and their interference set receives si. This
potential outcome notation is general enough to encompass any possible interference structure,
of which partial interference is a special case. Let Yi = yi(Zi, Si) denote the observed outcome.
The potential outcomes yi(zi, si) are assumed to be deterministic functions of zi and si, and the
observed outcome Yi is considered to be random because it depends on the random variables Zi
and Si. Let

∑
Si be the sum over all the components of Si, and let |Si| denote the dimension of

the vector Si. For example, if S1 = (Z2, Z3), then
∑

S1 = Z2 + Z3 and |S1| = 2.
In the absence of interference, a common causal estimand is the average treatment effect,

which contrasts the average outcome for the counterfactual scenario where every individual
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in the population is treated with that of the counterfactual scenario where every individual in
the population is not treated. Similarly, in the presence of interference, causal estimands can
be defined in terms of counterfactual scenarios corresponding to different treatment allocation
strategies (e.g., Hong & Raudenbush, 2006; Sobel, 2006; Hudgens & Halloran, 2008; Tchet-
gen Tchetgen & VanderWeele, 2012). For example, the indirect effect, defined formally below,
contrasts average outcomes of untreated individuals for the counterfactual scenario where one
allocation strategy is adopted in the population with those for the counterfactual scenario where
some other allocation strategy is adopted in the population. Such estimands quantify interference,
if present, at the population level and can be used to inform policy decisions regarding a treatment
or exposure. The allocation strategy of interest will in general depend on the setting.

Here we consider Bernoulli allocation strategies proposed by Tchetgen Tchetgen & Vander-
Weele (2012), where strategy α corresponds to the counterfactual scenario in which individuals
independently receive treatment with probability α. It is not assumed that the observed treat-
ment indicators Z1, . . . , Zn are independent Bernoulli random variables; rather, the distribution
of treatment under Bernoulli allocation is used below to define the counterfactual estimands of
interest. By analogy, direct standardization of mortality rates could entail using the 2010 United
States census age distribution, which may differ from the age distribution giving rise to the
observed data. Corresponding to Bernoulli allocation, let π(si;α) = α�si(1 − α)|si|−�si denote
the probability of the interference set for individual i receiving treatment si under allocation
strategy α. Let π(zi;α) = αzi(1 − α)1−zi and π(zi, si;α) = π(zi;α)π(si;α) denote, respec-
tively, the probability of individual i receiving treatment zi and the probability of individual
i together with their interference set receiving joint treatment (zi, si) under allocation strategy
α. Define ȳi(z,α) = ∑

si
yi(zi = z, si)π(si;α) to be the average potential outcome of individ-

ual i under allocation strategy α, where the summation is over all 2|Si| possible values of si.
Returning to the example where S1 = (Z2, Z3), the average potential outcome of individual 1
is a weighted average of potential outcomes under different combinations of treatment Z1 = z
and (Z2, Z3) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, with the weights being the corresponding probabil-
ities under Bernoulli allocation. Averaging over all individuals, define the population average
potential outcome as ȳ(z,α) = ∑n

i=1 ȳi(z,α)/n. Similarly, define the marginal average potential
outcome for individual i under allocation strategy α by ȳi(α) = ∑

zi ,si
yi(zi, si)πi(zi, si;α) and

define the population marginal average potential outcome as ȳ(α) = ∑n
i=1 ȳi(α)/n.

Various causal effects can be defined by contrasts in the population average potential out-
comes. In particular, define the direct effect of treatment under allocation strategy α to be
D̄E(α) = g{ȳ(1,α), ȳ(0,α)}, where g(· , ·) is some continuous contrast function. A commonly
used contrast function is g(x1, x0) = x1 − x0; in vaccine trials with a binary outcome it is typical
to use g(x1, x0) = 1 − x1/x0. The direct effect compares the average potential outcomes when an
individual receives treatment versus not under allocation strategy α. For two allocation strategies
α1 and α0, let ĪE(α1,α0) = g{ȳ(0,α1), ȳ(0,α0)} be the indirect or spillover effect, which contrasts
average potential outcomes when individuals do not receive treatment under different allocation
strategies. In the context of vaccines, the indirect effect is sometimes referred to as herd immu-
nity and describes the effect of the proportion of individuals vaccinated, e.g., 30% versus 50%,
on the average outcome among unvaccinated individuals. An indirect effect can also be defined
for when individuals receive treatment, z = 1, but for simplicity we do not consider such indi-
rect effects here. The total effect T̄E(α1,α0) = g{ȳ(1,α1), ȳ(0,α0)} incorporates both direct and
indirect effects, and reflects the difference between the average potential outcomes when indi-
viduals receive treatment under one allocation strategy versus when they go without treatment
under another allocation strategy. Finally, define ŌE(α1,α0) = g{ȳ(α1), ȳ(α0)} to be the overall
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effect, which describes the contrast in average outcomes under one allocation strategy relative
to another.

3. INVERSE PROBABILITY-WEIGHTED AND HÁJEK-TYPE ESTIMATORS

In this section we propose inverse probability-weighted and Hájek-type estimators which
allow for general interference; that is, no assumption is made regarding the structure or form of
interference that might be present. When there is partial interference and the groups are of the
same size, the inverse probability-weighted estimators defined below reduce to those proposed
by Tchetgen Tchetgen & VanderWeele (2012). Aronow and Samii (arXiv:1305.6156) considered
similar estimators in the setting where interference may be present, but where treatment is assigned
randomly according to a known experimental design.

Let li denote a vector of pretreatment covariates of individual i, and let lχi = (li1 , li2 , . . .).
Assume that conditional on covariates li, the treatment allocation for individual i is indepen-
dent of all potential outcomes and other covariates; that is, pr(Zi = zi | li) = pr{Zi = zi |
l1, . . . , ln, y1(·), . . . , yn(·)}. Likewise, assume pr(Zi = zi, Si = si | li, lχi) = pr{Zi = zi, Si = si |
l1, . . . , ln, y1(·), . . . , yn(·)}. Define f (zi | li) = pr(Zi = zi | li) and f (zi, si | li, lχi) = pr(Zi =
zi, Si = si | li, lχi) to be the propensity scores of individual i and of individual i and their inter-
ference set, respectively. Assume that f (zi | li) > 0 and f (zi, si | li, lχi) > 0 for all zi, si, li and
lχi . Define the inverse probability-weighted estimator for treatment z under allocation strategy α
to be

Ŷ ipw(z,α) = n−1
∑

i

yi(Zi, Si)1(Zi = z)π(Si;α)

f (Zi, Si | li, lχi)
(z = 0, 1), (1)

and define the inverse probability-weighted marginal estimator under strategy α to be

Ŷ ipw(α) = n−1
∑

i

yi(Zi, Si)π(Zi, Si;α)

f (Zi, Si | li, lχi)
, (2)

where
∑

i means
∑n

i=1. If the propensity scores are known, then (1) and (2) are unbiased as
stated in the following proposition.

PROPOSITION 1. If f (Zi, Si | li, lχi) is known for all i, then E{Ŷ ipw(z,α)} = ȳ(z,α) and
E{Ŷ ipw(α)} = ȳ(α).

In the absence of interference, the Hájek (1971) estimator of the mean of a finite population
replaces the denominator n of the Horvitz & Thompson (1952) inverse probability-weighted
estimator with the sum of the inverse of the sampling probabilities, which tends to reduce the
variance relative to the Horvitz–Thompson estimator. Returning to the current context, let n̂1z =∑

i 1(Zi = z)/f (Zi | li) and note that E(n̂1z) = n even if interference is present. This suggests
replacing n in (1) with n̂1z to obtain a stabilized Hájek-type estimator. Alternatively, notice that
the weighted estimator (1) involves f (Zi, Si | li, lχi), which suggests replacing n with the unbiased
estimator n̂2z = ∑

i 1(Zi = z)π(Si;α)/f (Zi, Si | li, lχi) instead. Therefore, we will consider two
different Hájek-type estimators of the population average outcome for treatment z and allocation
strategy α, defined by

Ŷ haj
h (z,α) = n̂−1

hz

∑
i

yi(Zi, Si)1(Zi = z)π(Si;α)

f (Zi, Si | li, lχi)
(h = 1, 2).
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Here and below we assume that there exists at least one i such that Zi = z for z = 0, 1. Similarly, let
n̂1 = ∑

i π(Zi;α)/f (Zi | li) and n̂2 = ∑
i π(Zi, Si;α)/f (Zi, Si | li, lχi), and note that E(n̂h) = n

(h = 1, 2), which suggests the following estimators of the population average marginal outcome
for allocation strategy α:

Ŷ haj
h (α) = n̂−1

h

∑
i

yi(Zi, Si)π(Zi, Si;α)

f (Zi, Si | li, lχi)
(h = 1, 2).

Note that n̂2z, n̂1 and n̂2 depend on α, but we suppress this dependence for notational convenience.
In what follows, Ŷ haj

1 (·) and Ŷ haj
2 (·) will be referred to as the Hájek 1 and Hájek 2 estimators.

An appealing property of Ŷ haj
2 (z,α) and Ŷ haj

2 (α) is the preservation of the bounds of the potential
outcome yi(·). Specifically, suppose there exist constants ml and mu such that ml � yi(·) � mu

(i = 1, . . . , n); then ml � Ŷ haj
2 (z,α) � mu and ml � Ŷ haj

2 (α) � mu. For example, if yi(·) is

binary, then Ŷ haj
2 (z,α), Ŷ haj

2 (α) ∈ [0, 1]. In contrast, preservation of the bounds is not guaranteed

for Ŷ ipw(·) or Ŷ haj
1 (·).

Another attractive property of the Hájek 2 estimators is preservation of linear transformations
of the outcome. In particular, suppose that the observed outcomes Yi are transformed by the
function L(x) = ax + b (a, b ∈ R). Then Hájek 2 estimators computed using the transformed
responses will equal L{Ŷ haj

2 (z,α)} and L{Ŷ haj
2 (α)}, where Ŷ haj

2 (z,α) and Ŷ haj
2 (α) are computed

on the original, untransformed observed outcomes. In contrast, the inverse probability-weighted
and Hájek 1 estimators have this property only when b = 0.

Define D̂E
ipw
(α) = g{Ŷ ipw(1,α), Ŷ ipw(0,α)} to be the inverse probability-weighted estima-

tor of the direct effect. Define ÎE
ipw
(α1,α0) = g{Ŷ ipw(0,α1), Ŷ ipw(0,α0)}, T̂E

ipw
(α1,α0) =

g{Ŷ ipw(1,α1), Ŷ ipw(0,α0)} and ÔE
ipw
(α1,α0) = g{Ŷ ipw(α1), Ŷ ipw(α0)} to be the weighted

estimators of the indirect, total and overall effects. Hájek-type causal effect estimators are
defined similarly. For example, define Hájek-type estimators of the direct effect by D̂E

haj
h (α) =

g{Ŷ haj
h (1,α), Ŷ haj

h (0,α)} (h = 1, 2). If the contrast function is g(x1, x0) = x1 − x0, then by the
property described in the preceding paragraph, the values of Hájek 2 causal effect estimators
are invariant under location shift. This is not the case for the inverse probability-weighted and
Hájek 1 causal effect estimators.

4. ASYMPTOTIC DISTRIBUTIONS

In this section the large-sample properties of the inverse probability-weighted and Hájek-type
estimators are derived assuming partial interference. In particular, assume that individuals can
be partitioned into groups such that there is no interference between individuals in different
groups. Within groups no additional structure is assumed regarding interference, so there may be
interference between any two individuals within a group. That is, we assume the following.

Assumption 1. There exists a partition {Cv}m
v=1 of {1, . . . , n} such that χi = Cv \ {i} (i ∈ Cv;

v = 1, . . . , m).

Let Nv = |Cv| denote the number of individuals in group v. Let Yvi denote the observed
outcome for individual i in group v, and write Ỹv = (Yv1, . . . , YvNv). Let Lvi and Zvi denote the
observed covariates and treatment for individual i in group v, and define L̃v and Z̃v analogously
to Ỹv. Assume that Nv is one of the baseline covariates included in Lvi.
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To derive the large-sample properties of the inverse probability-weighted and Hájek-type
estimators, assume that the m groups are a random sample from an infinite superpopulation of
groups such that the observable random variables (Ỹv, Z̃v, L̃v) (v = 1, . . . , m) are independent
and identically distributed. Let F denote the distribution function of (Ỹv, Z̃v, L̃v).

Let Yvi(z, s) denote the potential outcome for individual i in group v, where z denotes treatment
received by individual i and s denotes the vector of treatment indicators for all other individuals
in group v. Unlike in § § 2 and 3, here the potential outcomes are considered random variables
because of the assumed random sampling of the m groups from a superpopulation. Denote the
observed outcome for individual i by Yvi = Yvi(Zvi, Svi), where Svi is the subvector of Z̃v with Zvi
removed. Note that Svi is a function of Z̃v, which for notational simplicity is left implicit. Assume
conditional exchangeability, i.e., Yvi(z, s) ⊥⊥ Z̃v | L̃v, where X1 ⊥⊥ X2 | X3 means that X1 and X2
are independent conditional on X3.

Under Assumption 1, the inverse probability-weighted estimator for treatment z and strategy
α equals

Ŷ ipw(z,α) = n−1
m∑

v=1

Nv∑
i=1

Yvi1(Zvi = z)π(Svi;α)

f (Z̃v | L̃v)
,

which can be expressed as a solution for μ to the estimating equation
∑m

v=1 G0
zα(Ỹv, Z̃v, L̃v;μ) =

0, where

G0
zα(Ỹv, Z̃v, L̃v;μ) =

Nv∑
i=1

{
Yvi1(Zvi = z)π(Svi;α)

f (Z̃v | L̃v)
− μ

}
.

Letμzα be the solution to
∫

G0
zα(ỹv, z̃v, l̃v;μzα) dF(ỹv, z̃v, l̃v) = 0. It is straightforward to show that

μzα = k−1E{∑Nv
i=1 Ȳvi(z,α)}, where k = E(Nv) is the mean group size in the superpopulation and

Ȳvi(z,α) = ∑
s Yvi(z, s)π(s;α), with the summation being taken over all vectors s ∈ {0, 1}Nv−1. If

Y ∗
v (z,α) ⊥ Nv where Y ∗

v (z,α) = ∑Nv
i=1 Ȳvi(z,α)/Nv, i.e., if the average potential outcome within

a group is independent of the number of individuals within the group, thenμzα = E{Y ∗
v (z,α)}. In

other words, μzα is the mean group average potential outcome in the superpopulation, analogous
to ȳ(z,α) defined in § 2. Define the direct effect in the superpopulation by D̄E(α) = g(μ1α ,μ0α);
the indirect, total and overall effects in the superpopulation can be defined analogously.

The Hájek-type estimators can also be expressed as solutions to estimation equations.
Specifically, under Assumption 1,

Ŷ haj
h (z,α) = n̂−1

hz

m∑
v=1

Nv∑
i=1

Yvi1(Zvi = z)π(Svi;α)

f (Z̃v | L̃v)
(h = 1, 2),

where now

n̂1z =
m∑

v=1

Nv∑
i=1

1(Zvi = z)

f (Zvi | Lvi)
, n̂2z =

m∑
v=1

Nv∑
i=1

1(Zvi = z)π(Svi;α)

f (Z̃v | L̃v)
·
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It follows that Ŷ haj
h (z,α) solves

∑m
v=1 Gh

zα(Ỹv, Z̃v, L̃v;μ) = 0, where

G1
zα(Ỹv, Z̃v, L̃v;μ) =

Nv∑
i=1

{
Yvi1(Zvi = z)π(Svi;α)

f (Z̃v | L̃v)
− μ

1(Zvi = z)

f (Zvi | Lvi)

}
,

G2
zα(Ỹv, Z̃v, L̃v;μ) =

Nv∑
i=1

{
Yvi1(Zvi = z)π(Svi;α)

f (Z̃v | L̃v)
− μ

1(Zvi = z)π(Svi;α)

f (Z̃v | L̃v)

}
.

It is straightforward to show that μzα also satisfies
∫

Gh
zα(ỹv, z̃v, l̃v;μzα) dF(ỹv, z̃v, l̃v) = 0 (h =

1, 2).
The asymptotic distributions of the inverse probability-weighted and Hájek-type estimators can

be derived from standard estimating equation theory (Stefanski & Boos, 2002; Perez-Heydrich
et al., 2014). For example, the proposition below establishes that the three direct effect estima-
tors are asymptotically normal and gives closed-form expressions for the asymptotic variances
when the propensity scores are known. The proposition entails the vector estimating equation
Gh
α(Ỹv, Z̃v, L̃v; θ) = {Gh

0α(Ỹv, Z̃v, L̃v; θ1), Gh
1α(Ỹv, Z̃v, L̃v; θ2)}T, where θ = (θ1, θ2).

PROPOSITION 2. Suppose that Assumption 1 holds, the propensity scores are known, and the
regularity assumptions in the Appendix hold. Then m1/2{D̂E

ipw
(α) − D̄E(α)} converges in distri-

bution to N (0,�D
0 ) and m1/2{D̂E

haj
h (α)− D̄E(α)} converges in distribution to N (0,�D

h ) (h = 1, 2)
as m → ∞, where

�D
h = τU−1

h Vh(U
−1
h )Tτ T

with τ = {∂g(x1, x0)/∂x1, ∂g(x1, x0)/∂x0}, Uh = E{∂Gh
α(Ỹv, Z̃v, L̃v; θ0)/∂θ0} and Vh =

E{Gh
α(Ỹv, Z̃v, L̃v; θ0)

⊗2} (h = 0, 1, 2); here θ0 = (μ0α ,μ1α).

A comparison between �D
h (h = 1, 2) and �D

0 explains why the Hájek-type estimators can
vary less than the inverse probability-weighted estimator. For example, suppose that the contrast
g is the difference function. Denote G0

zα(Ỹv, Z̃v, L̃v; θ0) by G0
zα and note that �D

0 = E(G0
1α −

G0
0α)

2/k2 and �D
h = E(G0

1α − G0
0α − Wh)

2/k2 (h = 1, 2), where Wh = μ1α{N̂hv(1,α) −
Nv} − μ0α{N̂hv(0,α) − Nv} with N̂1v(z,α) = ∑Nv

i=1 1(Zvi = z)/f (Zvi | Lvi) and N̂2v(z,α) =∑Nv
i=1 1(Zvi = z)π(Svi;α)/f (Z̃v | L̃v). Thus, the Hájek estimators will have smaller asymptotic

variance if and only if var(Wh) < 2E{(G0
1α − G0

0α)Wh}, and so are expected to be less variable
when G0

1α − G0
0α and Wh are strongly correlated. In the extreme scenario of Yvi(z, s) = cz

(v = 1, . . . , m; i = 1, . . . , Nv), we have W2 = G0
1α − G0

0α and �D
2 = 0 but �D

0 > 0 in general.
In observational studies, the mechanism by which individuals select treatment is in general

not known, so that f (Z̃v | L̃v) and f (Zvi | Lvi) must be estimated in order to construct inverse
probability-weighted estimators. In practice, due to the curse of dimensionality, one might assume
a parametric model for the propensity scores (Tchetgen Tchetgen & VanderWeele, 2012). Let
G(Z̃v, L̃v; γ ) denote the score function for the likelihood under the assumed propensity score
model indexed by a finite-dimensional parameter vector γ , and let γ0 denote the true param-
eter value, which is the solution to

∫
G(z̃v, l̃v; γ ) dF(z̃v, l̃v; γ ) = 0. Now consider the vector

estimating equation G∗h
α (Ỹv, Z̃v, L̃v; θ) = {Gh

0α(Ỹv, Z̃v, L̃v; θ1), Gh
1α(Ỹv, Z̃v, L̃v; θ2), G(Z̃l , L̃l; θ3)}T

(h = 0, 1, 2) where θ = (θ1, θ2, θ3).
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PROPOSITION 3. Suppose thatAssumption 1 holds, the parametric propensity score model is cor-
rectly specified, and the regularity assumptions in theAppendix hold.Then m1/2{D̂E

ipw
(α)−D̄E(α)}

converges in distribution to N (0,�∗D
0 ) and m1/2{D̂E

haj
h (α)− D̄E(α)} converges in distribution to

N (0,�∗D
h ) (h = 1, 2) as m → ∞, where

�∗D
h = τ ∗U ∗−1

h V ∗
h (U

−1
h )Tτ ∗T

with τ ∗ = (τ , 0p), U ∗
h = E{∂G∗h

α (Ỹv, Z̃v, L̃v; θ0)/∂θ0} and V ∗
h = E{G∗h

α (Ỹv, Z̃v, L̃v; θ0)
⊗2} (h =

0, 1, 2); here θ0 = (μ0α ,μ1α , γ0), 0p denotes the 1 × p zero vector, and p is the dimension of γ .

Proposition 3 establishes the asymptotic normality of D̂E
ipw
(α), D̂E

haj
1 (α) and D̂E

haj
2 (α)when the

propensity score is correctly modelled. The asymptotic variance can be estimated consistently
using empirical sandwich estimators, i.e., by replacing U ∗

h and V ∗
h with their empirical coun-

terparts (Stefanski & Boos, 2002). In the Appendix the asymptotic variance of D̂E
ipw
(α) when

the propensity score is estimated is shown to be no greater than when the propensity score is
known. This is analogous to the well-known result about weighted estimators in the absence of
interference; that is, even if the propensity scores are known, it is more efficient to use estimates
of the propensity scores when computing inverse probability-weighted estimators. This relation-
ship between the asymptotic variances when the propensity scores are known and when they are
unknown but correctly modelled also holds for the Hájek-type estimators. Asymptotic normality
of the indirect, total and overall effect estimators can be derived similarly.

5. SIMULATION STUDY

A simulation study was conducted to investigate the bias, empirical standard error and average
estimated standard error of the different estimators discussed in § 4. In the simulations the inverse
probability-weighted and Hájek-type effect estimators were computed using the true propensity
score, an estimated propensity score based on a correct model, and an estimated propensity
score based on a misspecified model. Simulations were conducted under partial interference, i.e.,
Assumption 1, for both continuous and binary outcomes. The simulation study for a continuous
outcome was carried out in the steps described below.

Step 1. A random sample of m = 500 groups was created as follows. First, the
group size Nv was randomly sampled from {2, 3, 4, 5, 6} with corresponding probabilities
1/8, 1/8, 1/2, 3/16, 1/16. For each individual in each group, εvi was randomly sampled from
N (0, 1) (v = 1, . . . , m; i = 1, . . . , Nv). Then the potential outcomes for individual i in group v
were set to Yvi(zvi, svi) = 5 + 3zvi + 2

∑
svi + εvi.

Step 2. The covariate vectors Lvi = (Lvi1, . . . , Lvi4) were randomly sampled from N (0, I4)

(v = 1, . . . , m; i = 1, . . . , Nv), where I4 denotes the 4 × 4 identity matrix.

Step 3. Treatment variables Zvi were simulated from a Bernoulli distribution with mean
logit−1(γ0 +γ1Lvi1 +γ2Lvi2 +γ3Lvi3 +γ4Lvi4 +bv), where the random effects bv were randomly
sampled from N (0, 1) (v = 1, . . . , m) and (γ0, γ1, γ2, γ3, γ4) = (0·5, −1, 0·5, −0·25, −0·1).

Step 4. A correctly specified logistic regression model logit{f (1 | b, L)} = γ0 + γ1Lvi1 +
γ2Lvi2+γ3Lvi3+γ4Lvi4+bv and a misspecified logistic regression model logit{f (1 | b, L)} = γ0+
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Table 1. Empirical bias (×10), empirical standard error, and average estimated
standard error of the estimators of D̄E(α) with a continuous outcome

α = 0·1 α = 0·5 α = 0·9
Known f Bias ESE ASE Bias ESE ASE Bias ESE ASE

D̂E
ipw
(α) 0·4 1·4 1·4 0·1 0·7 0·7 0·2 1·7 1·7

D̂E
haj
1 (α) 0·6 1·5 1·5 0·1 0·6 0·6 0·5 1·6 1·6

D̂E
haj
2 (α) 0·1 0·3 0·3 0·0 0·2 0·2 0·0 0·3 0·3

Correct f Bias ESE ASE Bias ESE ASE Bias ESE ASE

D̂E
ipw
(α) 4·1 1·5 1·4 0·7 0·6 0·6 7·3 1·3 1·3

D̂E
haj
1 (α) 3·8 1·5 1·5 0·5 0·6 0·8 7·6 1·3 1·5

D̂E
haj
2 (α) 0·2 0·3 0·3 0·8 0·2 0·2 0·5 0·3 0·3

Mis f Bias ESE ASE Bias ESE ASE Bias ESE ASE

D̂E
ipw
(α) 0·4 1e1 1e1 20 1e3 1e3 10 2e2 1e2

D̂E
haj
1 (α) 5·2 2e0 1e1 10 1e3 1e3 30 3e2 2e2

D̂E
haj
2 (α) 0·3 0·3 0·3 0·8 0·3 0·3 0·3 0·5 0·5

ESE, empirical standard error; ASE, average estimated standard error; Known f , true propensity score
known; Correct f , propensity score unknown but correctly modelled; Mis f , propensity score incorrectly
modelled.

γ1Xvi1+γ2Xvi2+γ3Xvi3+γ4Xvi4+bv, where Xvi1 = exp(Lvi1/2), Xvi2 = Lvi2/{1+exp(Lvi1)}+1,
Xvi3 = (Lvi1Lvi3/1·5 + 0·6)3 and Xvi4 = (Lvi1 + Lvi4 + 2)2, were fitted to the simulated data.

Step 5. The causal effect estimators and their corresponding variance estimators were cal-
culated for α1 = 0·1, 0·5, 0·9 and α0 = 0·1 using the known propensity score, the estimated
propensity score from the correctly specified mixed-effects model and the estimated propensity
score from the misspecified mixed-effects model.

Step 6. Steps 1–5 were repeated 10 000 times, and the empirical bias, empirical standard error
and average estimated standard error were calculated for the estimators in Step 5.

From the potential outcome model specified in Step 1 it follows thatμzα = 5+3z +2(η−1)α
and μα = 5 + (2η + 1)α where η = E(N 2

v )/E(Nv). Hence D̄E(α) = 3 for any α ∈ (0, 1),
ĪE(α1,α0) = 2(η−1)(α1−α0), T̄E(α1,α0) = 3+2(η−1)(α1−α0) and ŌE(α1,α0) = (2η+1)(α1−
α0). Simulation results for the direct effect estimators are given in Table 1. All three estimators
are approximately unbiased when the propensity scores are known or correctly modelled, but
are biased if the propensity scores are incorrectly modelled. For all three estimators the average
estimated standard error is also relatively close to the empirical standard error when the propensity
scores are known or correctly modelled. Note that D̂E

haj
2 (α) has substantially smaller empirical

standard error than D̂E
ipw
(α) and D̂E

haj
1 (α). For example, when α = 0·1 and the propensity scores

are known, the empirical standard errors of D̂E
ipw
(α) and D̂E

haj
1 (α) are 1·4 and 1·5, whereas

the empirical standard error of D̂E
haj
2 (α) is only 0·3. Similar results hold when the propensity

scores are treated as unknown and either correctly or incorrectly modelled. The results in Table 1
demonstrate that, as well as having smaller empirical standard error, D̂E

haj
2 (α)may be more robust

than D̂E
ipw
(α) and D̂E

haj
1 (α) with respect to misspecification of the propensity score model.
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Table 2. Empirical bias, empirical standard error, and average estimated standard
error of the estimators of D̄E(α)with a binary outcome; all values have been multiplied

by 100
α = 0·1 α = 0·5 α = 0·9

Known f Bias ESE ASE Bias ESE ASE Bias ESE ASE

D̂E
ipw
(α) 0·2 9·7 9·7 0 4·7 4·8 0·1 9·3 9·2

D̂E
haj
1 (α) 0·3 9·6 9·7 0 4·6 4·5 0·1 8·4 8·4

D̂E
haj
2 (α) 0·1 7·0 6·9 0 3·9 3·9 0 5·4 5·3

Correct f Bias ESE ASE Bias ESE ASE Bias ESE ASE

D̂E
ipw
(α) 1·4 10·2 9·8 0·1 4·5 4·3 3·5 7·4 7·2

D̂E
haj
1 (α) 1·3 10·1 9·8 0·2 4·5 4·5 3·5 7·3 7·5

D̂E
haj
2 (α) 0·1 7·3 7·1 0·5 3·8 3·6 0·9 5·2 5·0

Mis f Bias ESE ASE Bias ESE ASE Bias ESE ASE

D̂E
ipw
(α) 1 1e2 1e2 1 5e2 3e2 1e1 3e4 2e4

D̂E
haj
1 (α) 1 4e1 1e2 10 5e2 3e2 2e1 3e4 2e4

D̂E
haj
2 (α) 0·1 7·4 7·3 1·2 6·8 6·4 1 9·7 9·5

The simulation study described above was repeated for a binary outcome. Specifically, Step 1
was replaced with the following, while all other steps remained the same.

Step 1. A random sample of m = 500 groups was created as follows. First, the group size
Nv was randomly sampled from {2, 3, 4, 5} with corresponding probabilities 1/8, 1/8, 1/2, 1/4.
Then the potential outcomes Yvi(zvi, svi)were set to 0 with probability 0·2, 1 with probability 0·2,
and 1(Zvi = 1,

∑
Svi = |svi|) (v = 1, . . . , m; i = 1, . . . , Nv) with probability 0·6.

For this potential outcome model, μ1α = 0·6λ+ 0·2, μ0α = 0·2 and μα = 0·6αλ+ 0·2 with
λ = E(αNv−1Nv)/E(Nv). Simulation results for this scenario are given in Table 2. Similar to the
continuous outcome simulations, the empirical standard error for D̂E

haj
2 (α) is smaller than that

for D̂E
ipw
(α) and D̂E

haj
1 (α) in all three scenarios, and D̂E

haj
2 (α) also tends to be more robust with

respect to misspecification of the propensity score model than the other two estimators. Similar
results, not shown here, were observed for the other causal effect estimators.

6. ROTAVIRUS VACCINE STUDY IN NICARAGUA

Rotavirus diarrhoea is a major health problem in Nicaragua (Espinoza et al., 1997). The
pentavalent rotavirus vaccine was introduced in 2006. Nicaraguan infants are offered the vaccine
at two, four and six months of age as part of the country’s Expanded Program on Immunization.
In 2010, a study to assess the impact of the immunization programme was carried out in León,
Nicaragua’s second largest city, with an estimated population in 2010 of close to 200 000. The
Health and Demographic Surveillance Site-León was employed to obtain a simple random sample
of households from 50 out of 208 randomly selected geographical clusters of equal size in León
(Becker-Dreps et al., 2013). For simplicity, in the following analysis the cluster sampling used to
obtain these data is ignored. There were 530 households in the study, and any child in a selected
household under the age of five was eligible to participate. Information was collected about each
household, including water source, sanitation system, maternal education level, and the dates of
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Table 3. Effect estimates for the rotavirus vaccine study; all values have been
multiplied by 10

α = 0·2 α = 0·4 α = 0·6 α = 0·8
Est SE Est SE Est SE Est SE

D̂E
ipw
(α) −0·79 1·30 −0·62 0·97 −0·42 0·67 −0·18 0·44

D̂E
haj
1 (α) −0·81 1·31 −0·63 0·98 −0·43 0·68 −0·20 0·45

D̂E
haj
2 (α) −0·52 1·11 −0·44 0·84 −0·32 0·59 −0·14 0·41

ˆIEipw
(α, 0·1) −0·13 0·17 −0·40 0·50 −0·69 0·84 −0·98 1·18

ˆIEhaj
1 (α, 0·1) −0·13 0·17 −0·41 0·50 −0·69 0·84 −0·99 1·18

ˆIEhaj
2 (α, 0·1) −0·04 0·16 −0·15 0·45 −0·28 0·73 −0·45 1·01

T̂E
ipw
(α, 0·1) −0·93 1·46 −1·02 1·45 −1·11 1·45 −1·17 1·45

T̂E
haj
1 (α, 0·1) −0·94 1·47 −1·04 1·46 −1·12 1·46 −1·18 1·46

T̂E
haj
2 (α, 0·1) −0·56 1·25 −0·59 1·24 −0·61 1·25 −0·59 1·25

ÔE
ipw
(α, 0·1) −0·20 0·28 −0·56 0·73 −0·85 1·05 −1·04 1·25

ÔE
haj
1 (α, 0·1) −0·20 0·28 −0·57 0·73 −0·86 1·06 −1·05 1·25

ÔE
haj
2 (α, 0·1) −0·09 0·24 −0·27 0·63 −0·42 0·91 −0·51 1·08

Est, point estimate; SE, estimated standard error.

birth of study participants. Each individual in the study was visited fortnightly by a fieldworker
for approximately one year. At each visit information about diarrhoea episodes in the past 14 days
was recorded. The primary outcome Y was whether a child had at least one diarrhoea episode
during the study.

For each child we assumed their interference set to be other children in the same household. A
mixed-effects logistic regression model of the probability of having received all three scheduled
doses was fitted conditional on the following baseline covariates: child’s age, categorized as 0–
11 months, 12–23 months, or 24–59 months; mother’s education level, categorized as primary
education only or at least some secondary education; dirt household floor or not; dry or wet season;
household indoor toilet, latrine, or none; indoor municipal water supply or not; and breastfeeding
or not. Likelihood ratio tests from the fitted logistic model indicated that the odds of having
all three doses of vaccine was higher among children whose mothers were more educated, with
p = 0·01.

Effect estimates and estimated standard errors are reported inTable 3 for the inverse probability-
weighted and the two Hájek estimators for contrast function g(x1, x0) = x1 − x0. The Hájek 2
estimates are closer to the null value of zero and, as expected, have 15–20% smaller estimated
standard errors than the inverse probability-weighted and Hájek 1 estimates. The direct effect esti-
mates indicate the expected difference in the proportions of children who will acquire rotavirus
diarrhoea among vaccinated versus unvaccinated children for a fixed level of vaccine coverage
α. The estimated direct effects become closer to the null as α increases, suggesting that the direct
protective effect of vaccination decreases as additional children in the household are vaccinated.
The indirect effect estimates approximate the expected difference in the proportions of unvacci-
nated children who will acquire diarrhoea when vaccine coverage is α% versus 10%. The total
effect estimates indicate the expected difference in the proportions of vaccinated children who
will acquire diarrhoea when vaccine coverage is α% compared with unvaccinated children when
vaccine coverage is 10%. The overall effect estimates provide simple summary comparisons
between any two allocation strategies; for example, according to the Hájek 2 estimates, 5·1 fewer
cases of diarrhoea per 100 individuals per year would be expected if on average 80% of children
in a household were vaccinated than if on average only 10% of children were vaccinated.
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7. DISCUSSION

The inverse probability-weighted estimator and two Hájek-type estimators in § 3 allow for any
form of interference between individuals, with the former being unbiased in a finite-population
model with known propensity scores. Assuming partial interference and random sampling of
groups from a superpopulation, all three estimators are consistent and asymptotically normal
when the propensity scores are known or correctly modelled. Empirical results demonstrate
that the second Hájek estimator can have substantially smaller finite-sample variance than the
other two estimators. One avenue of future research entails deriving the estimators’ large-sample
properties without assuming partial interference. Another future direction might involve devel-
oping estimators which are robust with respect to misspecification of the propensity score model.
Throughout this work conditional exchangeability is assumed, i.e., treatment is assumed to be
independent of potential outcomes conditional on an observable set of covariates. In future work
one could investigate relaxing this assumption, perhaps via sensitivity analysis or instrumen-
tal variable methods. Finally, the target parameters in this paper utilize the Bernoulli allocation
strategy proposed by Tchetgen Tchetgen & VanderWeele (2012). These estimands consider the
counterfactual scenario where individuals independently select treatment with equal probabil-
ity. In scenarios where interference is present, it is unlikely that individual treatment selections
would be independent. Therefore further interference-related research might target alternative
parameters.
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APPENDIX

Proof of Proposition 1

To show that Ŷ ipw(z,α) is unbiased, observe that

E{Ŷ ipw(z,α)} = n−1
∑

i

∑
zi ,si

yi(zi, si)1(zi = z)π(si;α)

f (zi, si | li, lχi )
f (zi, si | li, lχi )

= n−1
∑

i

∑
si

yi(z, si)π(si;α) = ȳ(z,α).

That Ŷ ipw(α) is unbiased can be proved similarly.

Proof of Propositions 2 and 3

To prove Proposition 2, assume that there exist constants c1, c2, c3 < ∞ and δ > 0 such that −c1 <

Yvi < c2, Nv < c3, δ < f (Z̃v | L̃v) and δ < f (Zvi | Lvi) with probability 1. Let θ̂ 0 = {Ŷ ipw(0,α), Ŷ ipw(1,α)}
and θ̂ h = {Ŷ haj

h (0,α), Ŷ haj
h (1,α)} (h = 1, 2). Let Gh(θ) = {Gh

0(θ), Gh
1(θ)}T denote the vector estimating

equation Gh
α(Ỹv, Z̃v, L̃v; θ). Let Ġh(θ0) = ∂Gh(θ0)/∂θ

T
0 and write ‖v‖2 = v2

1 + · · · + v2
p for any vector v of

length p.
First we show that the following four conditions hold for h = 0, 1, 2: (i) E{Ġh(θ0)} exists and

is nonsingular; (ii) Gh(θ) is twice continuously differentiable with respect to θ for every (ỹv, z̃v, l̃v);
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(iii) |∂2Gh
z (θ)/(∂θi∂θj)| � ψ for some integrable measurable function ψ ; and (iv) E‖Gh(θ0)‖2 < ∞.

It is straightforward to show that E{Ġh(θ0)} = −I2E(Nv), where I2 is the 2 × 2 identity matrix, implying
(i). Note that ∂2Gh

z (θ)/(∂θi∂θj) = 0, so (ii) holds and (iii) is satisfied for the function ψ = 0. To show (iv),
observe that

E‖G0(θ0)‖2 =
1∑

z=0

E

{
Nv∑
i=1

Yvi1(Zvi = z)π(Svi;α)

f (Z̃v | L̃v)
− Nvμzα

}2

.

From the boundedness assumptions on Yvi, Nv and f (Z̃v | L̃v), it follows that E‖G0(θ0)‖2 < ∞. Similar
results can be established for h = 1, 2.

Next, note that G0
zα(Ỹv, Z̃v, L̃v;μzα) is a linear function of μzα with slope −Nv. For h = 1, 2,

Gh
zα(Ỹv, Z̃v, L̃v;μzα) is also a linear function of μzα with finite, nonzero slope, because by assumption

f (Z̃v | L̃v) > 0 and there exists at least one i such that Zvi = z. Hence, the solution for θ to
∑m

v=1 Gh(θ) = 0
is unique for h = 0, 1, 2. Therefore, because (i)–(iv) hold, by Theorem 5.4.2 of van der Vaart (1998), θ̂ h

converges in probability to θ0. Proposition 2 then follows from Theorem 5.4.1 of van der Vaart (1998) and
the delta method.

Similar reasoning can be used to prove Proposition 3 under the following additional assumptions about
the parametric propensity score model: γ0 is in an open subset of Euclidean space; E{Ġ(γ0)} exists and
is nonsingular, where Ġ(γ0) = ∂G(Z̃v, L̃v; γ0)/∂γ

T
0 ; G(z̃v, l̃v; γ ) is twice continuously differentiable with

respect to γ and |∂2G(z̃v, l̃v; γ )/(∂γi∂γj)| � ψ for some integrable measurable functionψ for every (z̃v, l̃v);
and E‖G(Z̃v, L̃v; γ0)‖2 < ∞.

Proof of reduction in variance with a correctly specified propensity score model

Using block matrix notation, write

U ∗
0 =

(
U0 Uμγ

0p×2 Uγ

)
, V ∗

0 =
(

V0 Vμγ
V T
μγ Vγ

)
,

where 0p×2 is the p × 2 matrix of zeros. It is straightforward to show that Uγ = −Vγ and Uμγ = −Vμγ . It
follows that

U ∗−1
0 =

(
U −1

0 −U −1
0 VμγV −1

γ

0p×2 U −1
γ

)

and therefore

U ∗−1
0 V ∗

0

(
U ∗−1T

0

) =
{

U −1
0 V0

(
U −1T

0

)− U −1
0 VμγV −1

γ V T
μγ

(
U −1T

0

)
�

� �

}
,

where � denotes quantities not expressed explicitly. Hence

�∗D
0 = �D

0 − τU −1
0 VμγV −1

γ V T
μγ

(
U −1T

0

)
τ T.

Since Vγ = E{G(Z̃v, L̃v; γ0)
⊗2} is positive semidefinite, so is V −1

γ . Therefore�D
0 � �∗D

0 . The same approach
can be used to show that �D

h � �∗D
h for h = 1, 2.
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