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Estrogen plays an essential role in the growth and maturation of the mammalian oocyte, and recent studies suggest
that it also influences follicle formation in the neonatal ovary. In the course of studies designed to assess the effect of
the estrogenic chemical bisphenol A (BPA) on mammalian oogenesis, we uncovered an estrogenic effect at an even
earlier stage of oocyte development—at the onset of meiosis in the fetal ovary. Pregnant mice were treated with low,
environmentally relevant doses of BPA during mid-gestation to assess the effect of BPA on the developing ovary.
Oocytes from exposed female fetuses displayed gross aberrations in meiotic prophase, including synaptic defects and
increased levels of recombination. In the mature female, these aberrations were translated into an increase in
aneuploid eggs and embryos. Surprisingly, we observed the same constellation of meiotic defects in fetal ovaries of
mice homozygous for a targeted disruption of ERb, one of the two known estrogen receptors. This, coupled with the
finding that BPA exposure elicited no additional effects in ERb null females, suggests that BPA exerts its effect on the
early oocyte by interfering with the actions of ERb. Together, our results show that BPA can influence early meiotic
events and, importantly, indicate that the oocyte itself may be directly responsive to estrogen during early oogenesis.
This raises concern that brief exposures during fetal development to substances that mimic or antagonize the effects
of estrogen may adversely influence oocyte development in the exposed female fetus.
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Introduction

The link between exposure to synthetic chemicals that
mimic the actions of endogenous hormones and risks to
human health is a growing concern. As early as 1970, Herbst
and Scully reported vaginal clear-cell adenocarcinoma in six
14- to 21-y-old women exposed in utero to the synthetic
estrogenic drug diethylstilbestrol (DES) [1]. This rare cancer
had been reported previously only in elderly women, and
subsequent studies confirmed an increased incidence among
daughters of women given DES during pregnancy to prevent
miscarriage (reviewed in [2]). Other reproductive effects have
been suggested, but definitive evidence has been obtained
only in experimental animals (reviewed in [3]). The DES
experience has not only heightened awareness of the possible
health effects of synthetic compounds that mimic the actions
of hormones, but, importantly, it demonstrates the difficulty
of assessing effects in humans—even when the exposure is of
known duration and dose.

Bisphenol A (BPA) was formulated around the same time as
DES, but, because it was considered a less potent estrogen, it
was never used clinically. We are, however, exposed to BPA
daily; it is a component of polycarbonate plastics, resins
lining food/beverage containers, and additives in a variety of
consumer products. Over 6 billion pounds are produced
worldwide annually, and several studies have reported levels
of BPA in human tissues in the parts per billion range [4–6].

Short-term exposure to environmentally relevant doses of
BPA has been linked to a variety of reproductive effects in
laboratory rodents, including reduced sperm production,
alterations in prostate development, and increased suscept-
ibility to prostate carcinogenesis in the male [7,8] and

alterations in mammary gland organization, brain develop-
ment, and estrous cyclicity in the female [9–11].
Our laboratory is interested in the possible effects of BPA on

the genetic quality of gametes. Low-dose BPA exposure in vivo
during the final stages of oocyte growth [12] or in vitro during
the resumption andcompletion of thefirstmeiotic division [13]
disrupts meiotic chromosome behavior, resulting in the
production of chromosomally abnormal eggs. Mammalian
oogenesis, however, is a complex process that is initiated
during fetal development but not completed until after
fertilization.Hence, defining critical exposureperiods requires
assessment of the effects of fetal, neonatal, and adult exposures.
We summarize here the results of meiotic studies of females
exposed to low (20 lg/kg/day), environmentally relevant doses
of BPA during a 1-wk fetal exposure. Our studies reveal a
unique set of meiotic defects in BPA-exposed females and
demonstrate that a knockout of one of the two known estrogen
receptors phenocopies fetal BPA exposure. Together, these
findings provide the first known demonstration that early
meiotic events in the fetal ovary are responsive to estrogen.
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Results

Aberrant Meiotic Prophase in BPA-Exposed Females
During fetal development, germ cells in both sexes undergo

massive mitotic proliferation. Subsequently, germ cells in the
testis enter mitotic arrest and remain quiescent until after
birth, while those in the ovary initiate meiosis. The prophase
events of female meiosis (i.e., pairing, synapsis, and recombi-
nation between homologous chromosomes) occur during
fetal development. By the time of birth, oocytes have entered
a protracted period of meiotic arrest, where they remain
until just prior to ovulation. Resumption and completion of
the first meiotic division occurs only after an extensive period
of follicle growth in the adult ovary, and this occurs weeks,
years, or even decades (depending on the species) after the
initiation of meiotic arrest.

To assess the effect of BPA exposure during the fetal stages
of oogenesis, we implanted time-release BPA pellets (de-
signed to leach a low, environmentally relevant dose of 20 lg/
kg body weight/day, as used in our previous studies of BPA
exposure in young adult females [12]) or placebo pellets in
pregnant C57BL/6 females at gestation day 11.5. Because the
first cohort of cells initiates meiosis at 13.5 d of gestation, this
ensured low-level, continuous exposure of all oocytes during
meiotic prophase. To test the efficacy of this delivery system,
we used an oral dosing strategy [12] on a subgroup of
pregnant females. The results of the two exposure paradigms
were indistinguishable (unpublished data), and all data
presented here were obtained using the pellet delivery
method. For the prophase studies detailed below, five
replicate experiments were conducted. In each, fetuses from
one BPA and one placebo-treated pregnant female were
examined, with the number of females per litter ranging from
one to three. Significant variation among experiments was
not observed, and the data presented below represent the
pooled data.

To analyze meiotic prophase, ovaries were isolated from
female fetuses at 18.5 d of gestation and meiotic preparations
made as described previously [14]. We analyzed the relative

proportion of cells in the prepachytene, pachytene, and
diplotene stages and found similar profiles in ovaries from
placebo and BPA-exposed females, suggesting that the rate of
progression through prophase was not affected by BPA
exposure (unpublished data).
We focused subsequent analyses on pachytene oocytes, the

stage at which synapsis between homologous chromosomes is
complete and the sites of exchange between homologs
become detectable as MLH1-positive foci (reviewed in [15]).
Using SCP3 and MLH1 antibodies to visualize the synapto-
nemal complex (SC) and detect exchanges, respectively [15],
we analyzed pachytene cells from placebo and BPA-exposed
female fetuses. We found a highly significant increase in
synaptic abnormalities in oocytes from BPA-exposed females
(16.0% versus 52.0% of cells in placebo and BPA, respectively;
v2 ¼ 134.8; p , 0.0001; Figure 1A), largely attributable to
increases in two categories of abnormality: ‘‘incomplete
synapsis,’’ in which a single chromosome pair remained
unsynapsed in an otherwise normal pachytene cell (0.5% in
placebo versus 11.0% in BPA; Figure 1C), and cells with end-
to-end associations between nonhomologous SCs (7.7% in
placebo versus 25.6% in BPA; Figure 1D). Synaptic aberra-
tions, including the partial or complete synaptic failure of a
single chromosome pair, have been reported in a number of
meiotic mutants (reviewed in [16]). To our knowledge,
however, the end-to-end association abnormality has not
been described previously. Although associations were
observed in the placebo group, they were markedly different,
involving fewer SCs and ‘‘looser’’ associations. Indeed, as the
analysis progressed, this aberration became diagnostic of BPA
exposure, allowing a blinded scorer to correctly identify a
significant proportion of cells as ‘‘exposed.’’ The significance
of these associations is unclear. Meiotic cells undergo nuclear
reorganization as prophase progresses, with telomeres clus-
tering at the onset of prophase in a ‘‘bouquet’’ formation [17].
Thus, the increase in end-to-end associations as a result of
BPA exposure may reflect the failure of normal chromosome
movements at the onset of prophase.
Pachytene oocytes from exposed females also displayed

striking aberrations in recombination, as assessed by the
number and distribution of MLH1 foci along the SCs. A total
of 124 cells were analyzed from nine placebo-exposed
females, with a pooled mean of 26.0 6 2.3 foci per cell;
MLH1 foci counts were significantly elevated in BPA-exposed
females, with a mean of 29.0 6 3.7 foci per cell from the
analysis of 155 cells from ten females (t ¼ 7.7; p , 0.0001).
There was no significant interindividual variation in either
group.
Recombination is regulated by crossover interference, a

mechanism that ensures at least one exchange per chromo-
some pair and controls the proximity of multiple exchanges
on a given chromosome (reviewed in [18]). To analyze the
distribution of exchanges, we compared the frequency of
chromosomes with zero, one, two, or three MLH1 foci (E0, E1,
E2, and E3, respectively) in oocytes from placebo and BPA-
exposed females (Table 1; Figure 2A). For both groups, the
proportion of E0, E1, E2, and E3 bivalents differed
significantly from a Poisson distribution (v2 ¼ 1727.9 and v2

¼ 1568.8 in placebo and BPA, respectively; p , 0.0001 in each
group), consistent with strong, positive interference. How-
ever, we found a modest but significantly altered distribution
in exposed females, with an increase in E0s, E2s, and E3s, and
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Author Summary

The potential effects on reproduction of chemicals with hormone-
like activity is a growing concern. One estrogenic chemical,
bisphenol A (BPA), has received considerable attention because
low-dose exposures have been reported to induce a variety of
reproductive effects in rodents. In the course of studies to assess the
effects of BPA on the mouse oocyte, we have uncovered a novel
‘‘grandmaternal’’ effect: exposure to BPA during pregnancy disturbs
oocyte development in unborn female fetuses. When these fetuses
reach adulthood, the perturbations are translated into an increase in
chromosomally abnormal eggs and embryos. Thus, low-dose BPA
exposure during pregnancy has multigenerational consequences; it
increases the likelihood of chromosomally abnormal grandchildren.
Our studies also provide mechanistic insight, and, surprisingly,
suggest that BPA acts in the fetal ovary not by mimicking the
actions of estrogen but by interfering with the function of one of
the known estrogen receptors. Thus, our data suggest that estrogen
plays a far earlier role in oocyte development than previously
suspected and, importantly, raise the possibility that a variety of
substances—both synthetic and naturally occurring—that mimic
the actions of estrogen or act as estrogen antagonists may affect
early oocyte development.



a corresponding drop in E1s (v2¼ 147.7; p , 0.0001; Table 1),
suggesting that BPA exposure disrupts the regulation of
exchange placement.

Recombination Aberrations Verified by Metaphase I

Analysis

Previous studies have demonstrated that MLH1 foci at
pachytene accurately reflect the sites of exchange [15].

However, the effect of BPA exposure on recombination was
unexpected. To verify this observation, we examined recom-
bination using an alternative approach: At metaphase I, both
the number and placement of chiasmata can be scored
(Figure 2B) and homologous chromosomes that have failed to
recombine are easily identified as unpaired univalents. Based
on the results of pachytene studies, we predicted that BPA-
exposed females would exhibit both an increase in the

Figure 1. Pachytene Analysis

(A) Frequency of synaptic abnormalities in 402 pachytene cells from ten placebo mice and 648 cells from ten BPA-exposed females.
(B) Pachytene oocyte from placebo-exposed female immunolabeled with SCP3 (red) and MLH1 (green) and showing normal synapsis.
(C and D) Pachytene oocytes from BPA-exposed females showing incomplete synapsis of a single pair of chromosomes (arrow) (C) and abnormal end-
to-end associations involving multiple SCs (arrows) (D).
doi: 10.1371/journal.pgen.0030005.g001
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average number of chiasmata per cell and in univalents. To
assess this, three pregnant females implanted with placebo
and five implanted with BPA pellets were allowed to go to
term, and their offspring were fostered at birth to untreated,
lactating females. Oocytes analyzed at 4 wk of age from these
in utero–exposed females revealed significant increases in
both the average number of chiasmata per cell (25.2 6 2.5 in
placebo versus 27.0 6 3.1 in BPA; t ¼ 3.1; p , 0.01; Table 2)
and in the frequency of univalents (0.0% in placebo versus
4.4% in BPA; v2 ¼ 4.6; p , 0.05; Table 2). Further, the
frequency of bivalents with three chiasmata was also
increased, although not significantly (Table 3). None of the
values precisely matched the pachytene data (e.g., compare
Tables 1 and 3); however, this likely reflects the difficulty of
accurately counting chiasmata, especially when exchanges are
closely placed [19]. Nevertheless, both approaches (i.e., MLH1
and chiasmata counts) provide evidence that BPA exposure
elevates recombination frequency and disturbs exchange
distribution.

Increased Aneuploidy in Eggs and Embryos from Adult
Females

In humans, aberrations in recombination are associated
with meiotic nondisjunction. Both differences in the number
of exchanges and their placement along the length of the
chromosome (i.e., too close to the centromere or too close to
the telomere) have been reported to play a role in the genesis
of human trisomy (reviewed in [20]). On this basis, we
predicted that the meiotic defects induced by fetal BPA
exposure would act to increase aneuploidy in eggs and
embryos from adult females.

To assess meiotic nondisjunction, ten pregnant females
implanted with placebo and 16 implanted with BPA pellets
were allowed to go to term and their offspring (17 placebo
and 24 BPA-exposed females) were fostered at birth as
described above. At 4–5 wk of age, these females were used
either as oocyte or embryo donors for analysis of air-dried
chromosome preparations from metaphase II–arrested eggs
and two-cell embryos, respectively.

Because analysis of eggs is limited to a single cell,
aneuploidy levels are usually estimated by doubling the
frequency of hyperploidy to avoid artifacts introduced by
chromosome loss. Typical aneuploidy levels for eggs in the
laboratory mouse are between 0.5% and 1.0% [21]. We found
a significant increase in the level of hyperploid eggs in the
BPA group: 1.8% of cells had more than the expected 20
chromosomes in the placebo group compared to 21.4% in the

BPA group (v2¼ 11.0; p , 0.001; Table 4; Figure 2C and 2D).
Assuming that hyperploidy represents one half of all non-
disjunction, our data suggest that as many as 40% of eggs
from females exposed to BPA in utero may be chromosomally
abnormal.
To assess aneuploidy in embryos from exposed females, we

superovulated 4- to 5-wk-old females, mated them with wild-
type males, and analyzed two-cell embryos. The level of
hyperploidy in embryos closely matched the level in eggs (0/13
or 0.0% in placebo versus 4/19 or 21.1% in BPA-exposed;
Figure 2E) but the difference between groups was not
significant due to the small sample size.

Studies of Estrogen Receptor Knockout Mice
BPA is considered a ‘‘weak’’ estrogen due to its low binding

affinity for the known estrogen receptors; however, its ability

Table 1. Distribution of MLH1 Foci in Pachytene Cells from
Placebo and BPA-Exposed Females

Group Number of SCs E0 E1 E2 E3

Placebo 2,480 27 1,690 750 13

(1.1%) (68.1%) (30.2%) (0.5%)

BPA 3,100 74 1,686 1,230 109

(2.4%) (54.4%) (39.7%) (3.5%)

E0, E1, E2, and E3 represent the proportion of SCs with zero, one, two, or three foci,
respectively.
doi: 10.1371/journal.pgen.0030005.t001

Figure 2. Disturbances in Exchange Frequency and Placement Influence

Meiotic Chromosome Segregation

(A) Distribution of MLH1 foci. Proportion of SCs with zero, one, two, or
three MLH1 foci (exchanges) in pachytene cells from placebo and BPA-
exposed females.
(B–E) Air-dried chromosome preparations from BPA-exposed females. (B)
Diakinesis cell containing a bivalent with three chiasmata (arrow). (C–D)
Hyperploid metaphase II eggs with (C) 21 chromosomes and (D) 20
chromosomes plus one prematurely separated sister chromatid (arrow).
(E) Hyperploid blastomere with 41 chromosomes from two-cell embryo.
doi: 10.1371/journal.pgen.0030005.g002
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to act as a highly potent estrogen mimic at very low
concentrations has been demonstrated (reviewed in [22]).
Further, in some cases, BPA-induced responses can be
mediated through nongenomic mechanisms [23]. To deter-
mine whether BPA exerts its effect on the prophase oocyte
via a classical estrogen receptor–mediated mechanism, we
utilized mice with targeted disruptions of the two known
receptors, aERKO and bERKO [24]. Our assumption was that,
if BPA acts through one of these receptors, absence of the
receptor would make null females insensitive to BPA.

Although the data from aERKO females paralleled that of
wild-type females (unpublished data), bERKO mice yielded a
surprising meiotic phenotype that did not fit our expectation:
Pachytene oocytes from unexposed ERb�/� females exhibited
virtually identical defects to BPA-exposed wild-type females.
Specifically, we observed similar levels of synaptic aberrations
(57.0% of pachytene cells from unexposed ERb�/� females, as
compared to the 52.0% level in BPA-exposed wild-type
females in Figure 1A) and increased levels of recombination
(Figure 3A). Further, BPA exposure elicited no additional
effect in the mutant (Figure 3B). Two important conclusions
derive from these findings. First, the meiotic phenotype of
the bERKO female implies that ERb (and, hence, estrogen)
plays an important role in the prophase events necessary for
recombination during female meiosis. Although sex-specific
differences in recombination rate are well documented [15],
little is known about the control of recombination in
mammals, and, to our knowledge, estrogen has never been
implicated. Thus, our findings have important ramifications
for the study of recombination. Second, the finding that BPA
exposure mimics the effects of an ERb loss-of-function
mutation suggests that, in this system, BPA acts as an estrogen
antagonist, not an estrogen mimic.

Discussion

Previous studies in our laboratory of female mice exposed as
young adults [12] provided evidence that low-dose (20 lg/kg/
day) short-term BPA exposure during the final stages of oocyte
growth increases the likelihood of producing an aneuploid

gamete. Consistent with this observation, in vitro studies of
BPA exposures in both mitotically dividing somatic cells [25–
27] and oocytes undergoing the first meiotic division [13]
indicate that BPA adversely affects spindle formation, cen-
trosome dynamics, and chromosome alignment and segrega-
tion. Thus, it seems likely that BPA-related abnormalities
resulting from in vivo exposure during the late stages of oocyte
growth reflect similar effects on the cell division machinery.
In contrast, the studies described herein reveal an effect of

BPA on meiotic chromosome segregation by a second, and
completely independent, mechanism, that is, by disturbing
synapsis and recombination between homologs in the fetal
ovary. The finding that unexposed ERb-null females exhibit a
similar phenotype—and that the phenotype cannot be
enhanced by BPA exposure—suggests that BPA exerts its
effects on the fetal ovary by interfering with ERb-mediated
cellular responses. Knockouts of key meiotic genes involved
either in synapsis (e.g., [28,29]) or in the repair of double-
strand breaks as recombination events (e.g., [30]) also have
demonstrated synaptic and recombination defects. The
disturbances both in female fetuses exposed to BPA and in
ERb-null females are notable, however, for two reasons: first,
the end-to-end association between the centromeric ends of
nonhomologous chromosomes that we observed in a signifi-
cant proportion of pachytene cells suggests a fundamental
disturbance in the early events of chromosome pairing and
alignment. To our knowledge, this type of defect has not been
reported previously and further studies of early prophase
stages to understand this phenotype are in progress. Second,
and equally novel, is the finding that, despite disturbances in
synapsis, recombination levels are increased in oocytes from
exposed females and in females lacking ERb. This is in
marked contrast to other meiotic-disturbance scenarios—not
only in mice, but also in lower eukaryotes—in which
disturbances in synapsis are accompanied by a decrease in
recombination levels (e.g., [28,31,32]). Because little is known
about the control of recombination number and placement
in mammals, BPA-exposed and ERb-null females provide a
powerful tool, and expression studies to evaluate the gene

Table 2. Analysis of Metaphase I Oocytes from Placebo and BPA-Exposed Mice

Group Number of Mice Number of Cells Cells with Univalents Mean 6 SD Chiasmata Range Chiasmata

Placebo 6 101 0/101 (0.0%) 25.2 6 2.5a 20–32

BPA 10 159 7/159 (4.4%) 27.0 6 3.1 a 20–36

aChiasmata counts are based on the analysis of 63 and 133 cells from placebo and BPA-exposed females, respectively.
doi: 10.1371/journal.pgen.0030005.t002

Table 3. Analysis of Chiasmata Distribution at Metaphase I in Placebo and BPA-Exposed Females

Group Number of Chromosomes E0 E1 E2 E3

Placebo 1,260 0 (0.0%) 944 (75.0%) 315 (25.0%) 1 (;0.0%)

BPA 2,660 4 (0.2%) 1,728 (64.9%) 916 (34.4%) 12 (0.5%)

E0, E1, E2, and E3 indicate number and proportion of bivalents with zero, one, two, or three chiasmata, respectively.
doi: 10.1371/journal.pgen.0030005.t003
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changes that accompany the observed increase in recombi-
nation are currently ongoing.

Defects in synapsis and altered levels of recombination
have been correlated with increased aneuploidy in a variety
of eukaryotic species. In addition, in humans, subtle changes
in the placement of exchanges are correlated with meiotic
nondisjunction; indeed, aberrant recombination is the only
known molecular correlate of meiotic aneuploidy (reviewed
in [20]). To determine whether the altered synaptic and/or
recombination patterns in BPA-exposed females increased
the likelihood of segregation errors during the first meiotic
division, we analyzed females exposed in utero and fostered
at birth to untreated mothers. Consistent with studies in both
humans and mice (reviewed in [20]), the altered synaptic and
recombination profiles we observed at the onset of female
meiosis were correlated with increased aneuploidy in eggs
and embryos from mature females. Thus, our results provide
evidence for a multigenerational effect on chromosome
segregation, since daughters of treated pregnant females
have an increased risk of producing aneuploid offspring.

While these are worrying possibilities, the implications of
our findings are actually much broader: synaptic and
recombination defects typically result in the loss of a
significant proportion of oocytes prior to sexual maturation
[33], reducing the pool of oocytes in the adult female. Thus, in
addition to reducing the genetic quality of their eggs and
embryos, BPA may adversely influence the reproductive
lifespan of exposed females. Experiments to test this
prediction are currently ongoing.

Further, because oocytes in the fetal ovary are not yet
enclosed in primordial follicles, our findings raise the
intriguing possibility that, during the earliest stages of
oogenesis, the oocyte is directly responsive to estrogen and
to chemicals that can bind ERb. Although localization studies
of ERb in the adult mouse ovary demonstrate the presence of
the receptor largely in granulosa cells [34], previous studies of
fetal and adult oocytes in human, bovine, and hamster [35–
37] and of spermatocytes in adult rodents [38,39] suggest that
ERb is expressed in premeiotic germ cells and in prophase
gonia. These localization studies, coupled with our data
demonstrating significant meiotic disturbances in fetal
oocytes from ERb females and in females exposed to BPA,
provide compelling evidence that estrogen plays a role in
mouse oogenesis far earlier than previously suspected.

An obvious and important question is whether the effects
observed in mice can be translated to humans. BPA levels in

the parts per billion range have been reported in human
serum and amniotic fluid [4–6], and an association between
serum BPA levels and recurrent miscarriages in humans has
been suggested [40]. Assessing human risk is difficult, and
although our data do not allow us to draw conclusions about
BPA effects in humans, they demonstrate that a chemical
whose actions influence early germ cell development has the
potential to induce a three-generation effect when the
exposure occurs during pregnancy. Clearly understanding
the basis of this effect and, more generally, the influence of

Figure 3. Analysis of Exchanges in Pachytene Oocytes from Unexposed

and BPA-Exposed bERKO Females

(A) For unexposed animals, there was no difference in mean number of
MLH1 foci/cell between wild-type (26.3 6 3.0) and heterozygous (25.8 6
2.8) females, but unexposed mutants (28.7 6 3.2) were highly
significantly increased over wild type (t ¼ 6.0; p , 0.001). These data
represent the results from five unexposed pregnant females. For þ/þ
animals, 124 cells were analyzed from four females; forþ/�, 44 cells from
three females; and for�/�, 114 cells from four females. Data are provided
as mean 6 standard deviation.
(B) Among exposed animals, the mean values for the three genotypes
were virtually identical, but all had highly significantly elevated means
over that of unexposed wild-type animals (28.6 6 3.5, t¼ 3.5, p , 0.001;
28.1 6 3.5, t¼ 4.5, p , 0.001; 28.1 6 3.5, t¼ 3.9, p , 0.001 forþ/þ,þ/�,
and�/�, respectively). These data represent the results from six pregnant
females implanted with BPA pellets. For þ/þ animals, 35 cells were
analyzed from two females; for þ/�, 136 cells from six females; and for
�/�, 89 cells from five females. Data are provided as mean 6 standard
deviation.
doi: 10.1371/journal.pgen.0030005.g003

Table 4. Aneuploidy Analysis

Group Number

of Mice

Number

of Cells

Total

Chromosomes

20 �21 20.5 19.5

Placebo 10 57 56 1 0 0

BPA 16 56 43 10 2 1

Metaphase II cells were classified as normal (20 chromosomes) or hyperploid (with �21
chromosomes or 20 chromosomes plus one or more prematurely separated sister
chromatid). Hypoploid cells were excluded from the analysis, although a single cell with
19 chromosomes and one prematurely separated sister chromatid (19.5) was observed in
the BPA-exposed group and has been included in the table.
doi: 10.1371/journal.pgen.0030005.t004
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estrogen on the early stages of oocyte development are
essential first steps in evaluating the potential risk of in utero
exposure to chemicals that mimic the action of this hormone.

Materials and Methods

Mouse information. All wild-type mice used in the study were on
the C57BL/6 inbred strain background. They were housed in
ventilated rack caging in a pathogen-free facility, with drinking
water provided in glass water bottles and mouse chow (Purina 5010,
http://www.purina.com) provided ad libitum. aERKO and bERKO
mice were created by Ken Korach and generated for these studies
from heterozygous breeding pairs obtained from Taconic (http://www.
taconic.com). Offspring were genotyped by PCR analysis of genomic
DNA from ear punch or tail snip tissue using primer sequences
provided by Taconic. All animal experiments were approved by the
Institutional Animal Care and Use Committee of Case Western
Reserve University or Washington State University. Both institutions
are fully accredited by the American Association for Accreditation of
Laboratory Animal Care.

Exposure information. For exposures, BPA or placebo pellets
(Innovative Research of America, www.innovrsrch.com) were im-
planted according to manufacturer guidelines in pregnant females at
11.5 d of gestation. Pellets were designed to release 400 ng of BPA
daily, with doses calculated assuming an average weight of 20 g for
sexually matured females. This dose was chosen based on our
previous studies of BPA exposure in young adult females [12]. For
prophase, metaphase I, and metaphase II analyses, exposure experi-
ments were replicated a minimum of three times. Within litters, only
female pups of similar developmental stage/weight were included in
the analysis (e.g., developmentally delayed or growth-retarded
females were excluded). There was no obvious difference in litter
size between BPA- and placebo-treated mothers.

Isolation, culture, and analysis of oocytes/embryos. To obtain
prophase oocytes, pregnant females were killed at 18.5 d of gestation
and fetal ovarian tissues prepared as described previously [14]. For
analysis of metaphase I, metaphase II, or early cleavage divisions,
female offspring were delivered at term, fostered to untreated,
lactating females, and matured to 4–5 wk of age. For analysis of
metaphase I and metaphase II, germinal vesicle-stage oocytes were
retrieved and cultured for 1–2 or 16 h, respectively, as described
previously [41]. For analysis of early cleavage stages, embryos were
retrieved from oviducts of superovulated females [42]. All chromo-
some preparations were made using a modification of the Tarkowski
technique [43] and scoring was done by two independent observers
who were blinded with respect to the status (placebo or BPA-exposed)
of the specimen.

Pachytene analysis. Synaptonemal complex preparations were
made [14] and immunostained with antibodies to SCP3 and MLH1 to
analyze synapsis and recombination, respectively, as described
previously [44,45]. Analysis of meiotic prophase was conducted in
three steps. To assess meiotic progression, 100 meiotic cells were
selected at random and substaged as leptotene, zygotene, pachytene,
or diplotene on the basis of SCP3 staining. In the second phase of the
analysis, cells staged as being at the pachytene stage were scored for
synaptic defects. The pachytene-stage cells were grouped into four
categories on the basis of synaptic phenotype: 1) normal, if all 20
bivalents exhibited complete synapsis; 2) incomplete synapsis, if one
or two pairs of homologs remained unsynapsed in an cell that
otherwise exhibited complete synapsis; 3) end-to-end associations, if
two or more bivalents exhibited an end-to-end association with no
greater than the width of an SC separating them; and 4) other minor
synaptic defects such as gaps or fragmentation of the SC. In the final
stage of the analysis, MLH1 foci were scored in the subset of
pachytene cells exhibiting normal synapsis; this aspect of scoring was
conducted by two independent observers who were blinded with
respect to the status (placebo versus BPA-exposed and wild type
versus mutant).

Statistical analysis. Statistical evaluations of possible between-
group differences in the mean numbers of MLH1 foci or chiasmata
were carried out using standard t-test analyses. Goodness-of-fit
analyses were used to assess possible between-group differences in
the proportion of synaptic defects, distribution of bivalents with zero
to three MLH1 foci, proportion of univalents at metaphase I, and
proportion of hyperploidy at metaphase II. In any instance in which
multiple comparisons were made (e.g., see Figure 3), we adjusted the
significance level by applying the Bonferroni correction.
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