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Background: For decades, Anterior-Posterior/Posterior-Anterior (AP/PA) photon beams were standard-of-
care for flank irradiation in children with renal cancer. Recently, highly conformal flank target volumes
were defined correcting for postoperative organ shift and intra-fraction motion.
By radiotherapy treatment plan comparison, this study aims to estimate the clinical benefits and poten-

tial risks of combining highly conformal target volumes with Volumetric-Modulated Arc Therapy (VMAT)
versus conventional target volumes with AP/PA beams for flank irradiation.
Materials and Methods: Twenty consecutive renal tumor cases (left/right-sided:10/10; median

age:3.2 years) were selected. Highly conformal flank target volumes were generated for VMAT, while con-
ventional target volumes were used for AP/PA. For each case, the dose to the organs at risk (OARs) and
Total Body Volume (TBV) was calculated to compare VMAT with AP/PA treatment plans for a prescribed
dose (PD) of 14.4/1.8 Gy. Dose constraint violation of the tail of the pancreas and spleen (Dmean < 10 Gy),
heart (D50 < 5 Gy) or mammary buds (Dmean < 10 Gy) were prioritized as potentially beneficial for clinics.
Results: Highly conformal Planning Target Volumes (PTV) were smaller than conventional volumes
(mean DPTVAP/PA-PTVVMAT: 555 mL,D60%, p=<0.01). A mean dose reduction favoring VMAT was observed
for almost all OARs. Dose constraints to the tail of the pancreas, spleen, heart and mammary buds were
fulfilled in 8/20, 12/20, 16/20 and 19/20 cases with AP/PA, versus 14/20, 17/20, 20/20 and 20/20 cases
with VMAT, respectively. In 12/20 cases, VMAT prevented the dose constraint violation of one or more
OARs otherwise exceeded by AP/PA. VMAT increased the TBV receiving 10% of the PD, but reduced the
amount of irradiated TBV for all higher doses.
Conclusion: Compared to 14.4 Gy flank irradiation using conventional AP/PA photon beams, an estimated
clinical benefit by dose reduction to the OARs can be expected in 60% of the pediatric renal tumor cases
using highly conformal flank target volumes combined with VMAT.

� 2021 The Author(s). Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
Introduction

Renal cancer is diagnosed in five percent of children presenting
with cancer [1]. Patients treated according to protocols of the Inter-
national Society of Pediatric Oncology Renal Tumor Group (SIOP-
RTSG) receive 4 to 6 weeks of preoperative chemotherapy followed
by a nephrectomy with lymph node sampling. Depending on
tumor stage and histology, adjuvant chemotherapy is administered
with or without radiotherapy (RT) [2]. After successive studies,
increased awareness of side effects and better treatment outcomes
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have led to a safe reduction of treatment intensity for most renal
tumor types [2–7]. As of now, flank irradiation is administered to
20–25% of patients with pediatric renal tumors with cumulative
fractionated doses between 10.8 Gy and 25.2 Gy [2,8].

For decades, conventional two-opposing Anterior-Posterior/Pos
terior-Anterior (AP/PA) photon beams have been standard-of-care
to cover the flank target volume [9]. Based on current SIOP-
protocols, flank target volumes are generated from the projection
of the primary tumor after preoperative chemotherapy on a two-
or three-dimensional plane without adapting for postoperative
changes. However, renal tumors arise from the retroperitoneal area
and rarely invade the intraperitoneal structures. After preoperative
chemotherapy, the kidney is removed with a very limited risk of
intraoperative rupture and surrounding organs shift into the oper-
ative bed [10]. Consequently, most of the irradiated volume in case
of an AP/PA approach and conventional target volumes consists of
healthy tissue.

The increasing availably of rotational Intensity-Modulated
Radiotherapy techniques like Volumetric-Modulated Arc Therapy
(VMAT), and improved diagnostics like Magnetic Resonance Imag-
ing (MRI) and 4D-Computed Tomography (CT) have resulted in the
development of a highly conformal target volume definition for
flank irradiation [8]. Combined with modern RT techniques, these
new target volumes might reduce the dose and potentially associ-
ated late toxicity to healthy tissue (Fig. 1). While a single center
analysis provides encouraging evidence that an excellent locore-
gional control, equal to the SIOP-2001 and AREN0532 trials, can
be obtained by this approach, an estimation of the clinical benefit
of this approach is lacking [3,11,12].
Fig. 1. All diagrams show the axial CT-scan after surgery of one patient with a renal tu
conventional delineation approach (1A) are irradiated using an AP/PA photon beam dose
for postoperative shift of organs (1C) and irradiated using a VMAT dose distribution (1
yellow), 40% (5.8 Gy, green) and 20% (2.9 Gy, blue) of the prescribed dose. Abbreviation
Therapy; Gy, Gray; GTV, Gross Tumor Volume (green line); CTV, Clinical Target Volume (y
(red line); L, liver; I, intestines; CK, contralateral kidney; S, spleen. (For interpretation of t
of this article.)
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The combination of conventional versus (vs.) highly conformal
target volumes and AP/PA vs. VMAT techniques may result in four
different scenarios. Given the limited benefit of OAR sparing by the
use of highly conformal target volumes combined with an AP/PA
technique or VMAT without highly conformal target volumes with
adjustment for the organs at risk, this study aims to estimate the
clinical benefit and risk of combining highly conformal flank target
volumes with VMAT vs. conventional target volumes with AP/PA
beams.

Materials and methods

Patient selection

Twenty consecutively selected patients with unilateral renal
tumors who had received preoperative chemotherapy, nephrec-
tomy with lymph node sampling followed by postoperative
chemotherapy and flank irradiation at the University Medical Cen-
tre Utrecht and Princess Maxima Centre for Pediatric Oncology
(Utrecht, The Netherlands) between April 2015 and November
2017 were included in this analysis (institutional review board
approval number: WAG/mb/17/008865). In all patients, surgical
clips were placed at the lateral and superior border of the operative
bed to optimize highly conformal target volume delineation [2,8].

Image characteristics

For each patient, a T1-weighted MRI scan (Achieva 1.5 T, Philips
Medical Systems, Best, The Netherlands, slice thickness of 1.5 mm)
mor originating from the left kidney. Conventionally, target volumes based on the
distribution (1B). With the highly conformal method, target volumes are corrected

D). Isodoses are shown as 95% (13.7 Gy, red), 80% (11.5 Gy, orange), 70% (10.1 Gy,
s: AP/PA, Anterior-Posterior/Posterior-Anterior; VMAT, Volumetric-Modulated Arc
ellow line); ITV, Internal Target Volume (orange line); PTV, Planning Target Volume
he references to colour in this figure legend, the reader is referred to the web version
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with and without the administration of gadolinium contrast agent
was acquired after chemotherapy and before surgery. This MRI
scan was rigidly co-registered to a postoperative planning CT-
scan in supine RT treatment position (Brilliance, Philips Medical
Systems, Best, The Netherlands, slice thickness of 2–3 mm). Respi-
ratory trace measurements for pulmonary gating were obtained
using a deformable rubber belt fixed to the patient’s chest to allow
4D-CT imaging (Philips Bellow System, Best, The Netherlands).
Each complete respiratory cycle during spontaneous breathing
was captured as a series of ten equally distributed time intervals.
The planning-CT was generated by taking the pixel-by-pixel aver-
age of all ten phases of the 4D-CT. Both planning-CT and 4D-CT-
scans shared the same spatial coordinates, therefore, an additional
co-registration step was not necessary. For treatment positioning,
daily pre-treatment CBCT-scans were acquired with an arc of 200
degrees of 10 ms using 16 mAwith 100 kV and an acquisition time-
frame of 30 s for all treatment fractions using the Elekta XVI 4.5.1
on-board CBCT imaging system (Elekta, Stockholm, Sweden). All
patients were immobilized in supine position by a vacuum mat-
tress during treatment.

Delineation of target volumes, organs at risk (OARs) and Total body
volume (TBV)

Information on lymph node involvement and resection margins
was gathered from the surgery and pathology reports to determine
target volume extension. For each patient, two different
approaches for target volume delineation were used. For the AP/
PA plan, a gross tumor volume (GTVAP/PA) and a clinical target vol-
ume (CTVAP/PA) were delineated based on the SIOP-RTSG
UMBRELLA-2016 protocol recommendations and expanded with
a Planning Target Volume (PTVAP/PA) margin of 10 mm [2,13]. For
the VMAT plan, a GTVVMAT, a CTVVMAT and an Internal Target Vol-
ume (ITVVMAT) were generated according to the highly conformal
flank target volume definitions, as recently published [8]. The
PTVVMAT was defined as a 5 mm expansion from ITVVMAT. The
method of target volume delineation for both treatment modalities
is described in Supplementary Table 1.

The contralateral kidney, intestines, pancreas (head and tail),
spleen, liver, heart and both mammary buds were delineated as
OARs. The medial border of the pancreatic tail was defined by a
dorsoventral tangential to the left side of the vertebral body [14].
Intestines were delineated from the cranial to the caudal margin
of the PTVAP/PA, while the vertebrae were separately delineated
for each treatment plan from the cranial to caudal margin of the
corresponding PTV. A total body volume (TBV) was defined as
the external body contour 10 cm above and below the PTVAP/PA.
For the delineating target volumes and OARs, CT gray-level map-
ping was standardized to a window/level of 250/40 Hounsfield
units, respectively.

Treatment planning

Treatment plans were generated using the Monaco treatment
planning system (Elekta Instrument AB Stockholm, Sweden, ver-
sion 5.11.02). For in silico comparison of both techniques, a pre-
scribed dose (PD) of 14.4 Gy in 1.8 Gy fractions was used for all
cases, since it is indicated in the majority of patients that require
flank irradiation [2,3]. No additional boost doses were planned in
case of any residual macroscopic tumor. Conventional AP/PA plans
consisted of two-opposing 10 MV photon fields in anterior and
posterior direction. VMAT plans consisted of a full-arc 10 MV pho-
ton arc and were optimized for the dose constraints depicted in
Table 1. Target volume coverage was considered adequate if 95%
of the PD was given to at least 99% and 95% of the CTV (V95%�
99%) and PTV (V95%�95%), respectively. To avoid asymmetric
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growth, a homogenous dose corresponding to 95% of the PD was
used to enclose the vertebrae in the left–right and ventrodorsal
dimensions for both techniques .

Plan evaluation

For each case, dose-volume-histograms were calculated for
both AP/PA and VMAT treatment plans on the planning CT. For
all OARs, the mean dose was computed, while for the heart the
dose received by 50% of the volume (D50) was used in line with
Bates et al. [15]. The TBV receiving 100% to 10% of the PD (i.e.
V100% to V10%, respectively) was calculated using 10% decremen-
tal steps, as well as the integral dose of the TBV (TBVID). The TBVID

was defined as:

TBVID Gy � L½ � ¼ DmeanTBVq

where q is the body density which was assumed to be uniform (1 g/
cm3).

For subgroup comparison, individual patient data was collected
on tumor location (left- vs. right-sided) or lymph node involve-
ment (LN + vs. LN-). Fulfillment of the dose constraints of one or
more OARs in favor of one technique was considered to be of
potential clinical relevance based on the evidence summarized in
Table 1 [13,15–25].

Statistical analysis

The size of highly conformal and conventional target volumes
(in mL), as well as the mean dose to the OARs and TBV (in Gy)
between VMAT and AP/PA treatment plans, were compared. For
normally distributed data, paired samples T-test was used, while
the Wilcoxon Signed-Ranks Test was used in case of non-normal
distributed data. A two-tailed p-value of < 0.05 indicated statistical
significance. Data were analyzed using statistical software SPSS
version 25.0 for Windows (SPSS, INC, Chicago, IL, USA).
Results

Patient and tumor characteristics

Target volumes and two treatments plans were generated using
the planning CT’s of twenty consecutive cases with renal tumors
(median age: 3.2 years; male/female: 12/8; left/right-sided:
10/10; LN+/LN-: 15/5).

Target volume comparison

Highly conformal target volumes intended for VMAT were
smaller compared to target volumes used for the AP/PA (mean
GTVVMAT vs. GTVAP/PA: 52 mL vs. 261 mL, p = 0.04; mean CTVVMAT

vs. CTVAP/PA: 142 mL vs. 488 mL, p = <0.01; mean PTVVMAT vs.
PTVAP/PA: 376 mL vs. 931 mL, p = <0.01) (Table 2).

Target Coverage, dose to the OARs and TBV

The CTV and PTV coverage by the 95% isodose was adequate for
all patients and both treatment planning techniques (VMAT: mean
CTVV95%: 99.9%, range: 98.4% � 100.0%, mean PTVV95%: 99.5%,
range: 98.6% � 99.9% vs. AP/PA: CTVV95%: 99.9%, range: 98.6% �
100.0%; PTVV95%: 97.9%, range: 95.1% � 99.3%).

For the whole group of 20 cases, a mean dose reduction in favor
of VMAT was observed for the contralateral kidney (DAP/PA-
VMAT: 1.7 Gy, p = <0.01), intestines (DAP/PA-VMAT: 3.4 Gy, p =
<0.01), tail of the pancreas (DAP/PA-VMAT: 2.4 Gy, p = <0.01),



Table 1
Dosimetric criteria applied for the OARs and their associated increased risk of late effects in childhood cancer survivors.

OARs [reference] Constraints Late effects Reported risk increase [95% CI] Cumulative incidence

Contralateral kidney
[13,16]

Dmean < 12 Gy Renal function impairment Unknown Unknown

Intestines [17] Dmean < 20 Gy Intestinal occlusion requiring
surgery

20.0–29.9 Gy vs. 0 Gy: RR 2.2 [1.2, 4.3] 20.0–29.9 Gy: 5.8% at 35 years from
diagnosis

Pancreas (tail) [18,19] Dmean < 10 Gy Diabetes mellitus 10.0–19.9 Gy vs. 0 Gy: RR 6.8 [2.3, 19.9] 10.0–19.9 Gy: 12.7% at 45 years of age
Spleen [20,21] Dmean < 10 Gy Late infection-related mortality 10.0–19.9 Gy vs. 0 Gy: RR 5.5 [1.9, 15.4] 10.0–19.9 Gy: 1.1% at 35 years of age
Liver [13,22] Dmean < 20 Gy Hepatotoxicity Unknown Unknown
Heart [15,23] Dmean < 10 Gy

or
D50 < 5 Gy

Any cardiac disease 10.0–19.9 Gy vs. 0 Gy: RR 2.2 [1.6, 2.9]
or

D50 < 5 Gy vs. D50 > 5 Gy: RR 1.6 [1.1,
2.3]

10.0–19.9 Gy: 5.8% at 30 years
or

D50 > 5 Gy: 4.0% at 30 years

Mammary buds [24,25] Dmean < 10 Gy Invasive breast cancer 10.0–19.9 Gy vs. 0 Gy: OR 6.5 [2.3, 18.5] Unknown

Abbreviations: OARs, organs at risk; 95% CI, 95% Confidence Interval; Dmean, mean dose; Gy, Gray.

Table 2
Target volume comparison.

Target volumes VMAT (in mL) AP/PA (in mL) p-value

GTV*
mean 52 261 0.04
min–max 8–245 24–1149

CTV
mean 142 488 <0.01
min–max 34–681 138–1717

PTV
mean 376 931 <0.01
min–max 115–1529 320–2898

*The GTVAP/PA are based on the preoperative tumor dimensions (GTVpre), whereas
the GTVVMAT also accounts for postoperative changes (GTVpost).
Abbreviations: VMAT, Volumetric-Modulated Arc Therapy; AP/PA, Anterior-Poste-
rior/Posterior-Anterior; mL, milliliter; GTV, gross tumor volume; CTV, clinical target
volume; PTV, planning target volume.
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spleen (DAP/PA-VMAT: 1.7 Gy, p = 0.03) and heart (DAP/PA-VMAT:
2.4 Gy, p = <0.01) (Supplementary Table 2).

Compared to AP/PA, VMAT was more frequently able to fulfill
the constraints to the tail to the pancreas (AP/PA vs. VMAT: 8/20
vs 14/20), the spleen (AP/PA vs. VMAT: 12/20 vs 17/20), the heart
(AP/PA vs. VMAT: 16/20 vs. 20/20) and mammary buds (AP/PA vs
VMAT: 19/20 vs 20/20). In 12/20 cases, VMAT demonstrated a
potential clinical benefit by fulfilling the dose constraint of one
or more OARs otherwise violated by AP/PA (Table 3).

Fig. 2 illustrates that highly conformal target volumes irradiated
with VMAT increased the mean TBV receiving up to 10% of the PD
compared to conventional target volumes combined with AP/PA. In
contrast, mean TBV receiving doses above 20% of the PD were
always in favor of VMAT. The median TBVID was higher for AP/PA
(5.1 Gy * L) compared to VMAT (3.6 Gy * L, p = <0.01).

Discussion

Highly conformal delineation, taking the postoperative shift of
organs and intra-fraction motion into account, results in a signifi-
cant target volume reduction compared to a conventional
approach. When combined with VMAT, these new target volumes
also reduce the dose to the surrounding organs and the Total Body
Volume compared to the conventional approach. Even for a pre-
scribed dose as low as 14.4 Gy, an estimated clinical benefit can
be obtained with VMAT in 60% of the cases by fulfilling the dose
constraint of at least one OARs otherwise violated by AP/PA.

Although indications for flank irradiation have been refined and
doses reduced since SIOP-1 (1971–1974), RT by AP/PA photon
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beams has remained the gold standard up to now [9]. Due to the
limited conformity of this technique, target volumes used for con-
ventional flank irradiation have not been adapted to reflect the
postoperative situation [13]. Nevertheless, accurate CTV delin-
eation excluding uninvolved organs is of utmost importance to
capitalize on the favorable dose distributions of modern RT tech-
niques. For flank irradiation, the current study demonstrates that
the new flank target volume definition allowed a 60% mean
decrease in PTV compared to the PTV based on the conventional
flank target volume definition [8,13]. Over the last years, similar
efforts have been done to translate craniospinal axis target vol-
umes and Hodgkin lymphoma from the 2/3D period into the era
of high conformality [26–28].

Historically, two-thirds of the pediatric renal tumor survivors
who received abdominal RT developed late adverse effects
[6,7,29–32]. Musculoskeletal defects like scoliosis and tissue hypo-
plasia are among the most common late effects observed [6,33].
Since the PTVs overlap with the vertebrae and ribs and dose gradi-
ents on the primary ossifications centers of the vertebrae should be
restricted to 3 or 5 Gy, it is not expected that modern techniques
will alter the risk of musculoskeletal problems [34].

Waas et al. demonstrated that Wilms tumor and neuroblastoma
survivors who had received abdominal RT more frequently devel-
oped components of the metabolic syndrome (i.e. adiposity, hyper-
tension, dyslipidemia or insulin resistance/type 2 diabetes)
compared to unirradiated survivors, even if only a part of the pan-
creas had been irradiated [35]. These components of metabolic
syndrome are known risk factors of cardiovascular disease [36–
39]. De Vathaire et al. showed that the cumulative incidence of dia-
betes mellitus in survivors by the age of 45 that had received
between 10 and 19.9 Gy to the tail of the pancreas was 12.7% com-
pared to 1.3% in the unirradiated group [18]. In the current study,
50% less cases acquired a mean dose to the tail of the pancreas
above 10 Gy using VMAT instead of AP/PA. Moreover, in the study
of Bates et al., the risk of coronary artery disease and heart failure
was increased by 60% if>50% of the heart volume received a mean
radiation dose above 5 Gy [15]. In our study, this heart constraint
was not exceeded in any case using VMAT versus 20% of cases with
the AP/PA approach. This implies that VMAT might potentially
reduce the incidence of cardiovascular disease in survivors of pedi-
atric renal cancer, by respecting dose constraints to the tail of the
pancreas and the heart.

Furthermore, Weil et al. demonstrated that childhood cancer
survivors who had received a mean dose of 10–19.9 Gy to the
spleen had a 5.5 times higher risk of infection-related late mortal-
ity than the unirradiated survivors [20]. In the current study, 80%
of the left-sided cases using AP/PA had a spleen dose � 10 Gy



Table 3
Tumor characteristics and dose to the OARs; per case and per technique.

Cases Dose to the OARs (in Gy)

# Laterality LN Technique Contra-
lateral
kidney

Intestines Tail of
pancreas

Spleen Liver Heart Heart Mammary
bud, left

Mammary
bud, right

mean mean mean mean mean mean D50 mean mean
1 Left LN+ VMAT 5.2 6.6 9.9 4.4 4.1 0.2 0.2 n.a. n.a.

AP/PA 7.9 13.3 14.6* 14.7y 6.0 6.0 3.6
2 Left LN+ VMAT 4.4 9.2 10.4* 13.0y 5.7 0.5 0.4 n.a. n.a.

AP/PA 7.2 13.0 14.4* 14.7y 6.7 11.0� 13.5�
3 Left LN+ VMAT 3.8 8.1 9.3 11.2y 4.8 0.5 0.4 n.a. n.a.

AP/PA 7.9 12.0 14.4* 13.7y 3.9 0.7 0.5
4 Left LN+ VMAT 3.0 8.4 10.9* 9.9 4.7 0.6 0.3 n.a. n.a.

AP/PA 3.3 12.2 14.4* 14.5y 5.2 3.5 1.1
9 Left LN- VMAT 3.1 7.8 10.5* 8.6 2.9 0.2 0.2 n.a. n.a.

AP/PA 11.7 14.0 14.9* 14.7y 5.5 3.3 1.1
13 Left LN+ VMAT 4.5 7.6 9.9 5.4 4.9 0.4 0.2 0.2 0.3

AP/PA 5.5 11.8 14.6* 7.1 5.3 1.1 0.5 1.2 0.8
14 Left LN+ VMAT 2.5 9.3 12.8* 12.2y 4.8 0.5 0.3 0.1 0.1

AP/PA 1.3 11.9 14.5* 14.1y 4.3 1.9 0.7 0.8 0.2
16 Left LN+ VMAT 5.2 7.0 13.6* 7.9 7.7 1.5 0.9 n.a. n.a.

AP/PA 11.0 12.2 14.7* 12.8y 10.3 7.5 7.0�
17 Left LN+ VMAT 4.1 6.9 9.1 3.8 4.6 0.4 0.3 0.5 0.1

AP/PA 5.6 11.3 14.4* 6.7 3.8 1.2 0.5 0.9 0.7
19 Left LN+ VMAT 2.8 9.2 7.5 8.0 5.0 0.5 0.4 n.a. n.a.

AP/PA 3.7 12.2 14.2* 12.9y 4.8 2.2 0.8
5 Right LN+ VMAT 5.2 7.4 10.1* 1.8 6.3 0.3 0.3 0.2 0.2

AP/PA 8.5 11.3 13.3* 0.9 10.1 1.0 0.5 1.0 1.0
6 Right LN- VMAT 2.4 4.1 5.2 1.3 8.8 1.4 0.9 0.5 1.0

AP/PA 2.1 3.7 3.7 0.7 13.6 7.2 7.2� 0.9 12.0§
7 Right LN- VMAT 1.7 6.9 3.1 0.6 7.4 0.1 0.2 0.1 0.2

AP/PA 2.8 8.8 3.5 0.5 8.9 0.3 0.3 0.3 1.2
8 Right LN+ VMAT 4.5 5.9 4.9 0.7 4.1 0.1 0.1 n.a. n.a.

AP/PA 5.1 8.6 6.6 0.5 8.8 0.2 0.3
10 Right LN+ VMAT 3.9 7.7 6.5 1.0 3.9 0.1 0.2 n.a. n.a.

AP/PA 6.5 9.5 6.3 0.8 8.3 0.3 0.3
11 Right LN- VMAT 2.4 6.4 1.1 0.8 6.6 0.1 0.1 n.a. n.a.

AP/PA 2.4 9.6 2.3 0.4 11.8 0.4 0.3
12 Right LN+ VMAT 3.2 5.0 1.9 1.5 6.6 4.5 2.5 1.0 3.3

AP/PA 1.0 7.2 1.9 0.5 9.3 7.2 6.6� 0.9 1.7
15 Right LN+ VMAT 3.9 7.0 4.3 3.7 8.6 1.6 0.7 n.a. n.a.

AP/PA 3.3 9.8 4.9 0.9 13.0 6.0 4.0
18 Right LN- VMAT 2.6 6.5 9.7 0.9 4.1 0.1 0.1 n.a. n.a.

AP/PA 3.0 9.0 11.0* 0.5 8.3 0.2 0.1
20 Right LN+ VMAT 4.3 7.9 5.5 1.8 7.2 0.4 0.3 0.3 0.2

AP/PA 5.9 10.0 4.6 0.9 9.6 1.1 0.5 0.9 1.0

All clinically relevant differences between VMAT and AP/PA are in bold.
* Indicates that the mean dose to the tail of the pancreas is � 10.0 Gy.
y Indicates that the mean dose to the spleen is � 10.0 Gy.
� Indicates that the mean dose of the heart is � 10.0 Gy or the D50 is � 5.0 Gy.
§ Indicates that the mean dose to the mammary gland is � 10.0 Gy.
Abbreviations: Gy, Gray; OARs, organs at risk; LN, lymph node involvement; VMAT, Volumetric-Modulated Arc Therapy; AP/PA, Anterior-Posterior/Posterior-Anterior photon
beam radiotherapy; n.a., not applicable.
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compared to 30% using VMAT. Therefore, VMAT might lower the
risk of functional asplenia and, subsequently, may restrict the need
for immunization or prophylactic antibiotics in patients with a left-
sided renal tumor [21].

This radiotherapy treatment plan comparison highlights that,
even though the mean dose reduction to the OARs for the whole
group was limited to 3.0 Gy, the estimated benefit for individual
patients can be clinically relevant. Current data on late toxicity
often originates from patient cohorts treated with higher RT doses,
meaning that the dose–response relationship for lower doses has
not been fully understood for most OARs. As a result, the clinical
benefit of 3, 5 or more Grays by a rotational IMRT technique for
flank irradiation using a PD of 14.4 Gy remains unclear for the kid-
neys, intestines and liver based on the current evidence available.
More benefit of rotational IMRT techniques is expected for children
with high-risk renal tumors who receive a PD of 25.2 Gy, since the
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dose constraints for the contralateral kidney, intestines and liver
will also become relevant [2].

While this study has shown the potential benefits of VMAT and
highly conformal target volumes, some disadvantages of this
approach may exist. Firstly, a recent multicenter international
exercise on highly conformal flank target volume delineation
showed that the variability among clinicians is a matter of concern
and results in an underestimation of the area at risk in more than
half of the delineations [40]. To assess the impact of inter-clinician
variability on locoregional control in a multicenter setting, the
SIOP-RTSG will organize a prospective observational study using
centralized review of the highly conformal target volumes and
dose distribution before onset of radiotherapy. Secondly, although
the use of VMAT vs. AP/PA hardly makes any difference in irradia-
tion time, it is true that daily online imaging easily adds ± 5 min
compared to daily positioning using surface markers and laser



Fig. 2. The amount of total body volume in percentage (left y-axis) and milliliter (right y-axis) receiving a specific radiotherapy dose (x-axis, relative percentage of the
prescribed dose with absolute dose is shown) (n = 20). Symbols depict the group mean irradiated TBV for the AP/PA treatment plans (circles) and the VMAT treatment plans
(squares). Error bars represent 95% confidence interval. Abbreviations: mL, milliliter; VMAT, Volumetric-Modulated Arc Therapy; AP/PA, Anterior-Posterior/Posterior-Anterior
photon beam radiotherapy.
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lines only. This may increase the risk of intrafraction movement
and missing of the target area. For this reason, children are immo-
bilized in a supine position using a vacuummattress and only chil-
dren with proven compliance will be treated without anesthesia.
By this approach, it was previously demonstrated by pre- and
post-treatment imaging that intrafraction uncertainties are
reduced to a minimum [41,42]. Thirdly, at this time, it could be
argued that the benefit of the new approach for flank irradiation
may be disproportional to the time and effort for radiation oncol-
ogists to generate and execute highly conformal treatment plans.
In the near future, it is expected that treatment preparation time
will be reduced with the introduction of artificial intelligence
methods enabling auto-contouring of all abdominal organs at risk
and ultimately standard flank target volumes as well [43]. Finally,
it is hypothesized that rotational IMRT techniques like VMAT may
increase the risk of a subsequent malignant neoplasm (SMN) com-
pared to conventional RT techniques due to an increase in low dose
irradiated volume [44–47]. Indeed, in the current analysis, the TBV
receiving up to 10% of the PD (i.e. ~ 2 Gy) was increased by VMAT.
However, for higher doses, a VMAT dose distribution becomes
increasingly superior to an AP/PA dose distribution, leading to a
significantly lower integral dose in the TBV and even reduces the
TBV receiving 90% of the PD by>50%. Since SMN are mainly
observed in intermediate to high dose RT areas, the benefit from
the reduction of high dose irradiation could even outweigh the
slight increase of low dose to a larger volume [31,48–50]. Although
the dose–response relationship for induction of secondary cancers
has been widely debated, there are no validated models yet avail-
able to predict the absolute reduction of risk [48]. Recent studies
have shown that a further dose reduction to the abdominal organs
can also be obtained by the use of proton therapy [51,52]. Never-
theless, respecting time to onset of radiotherapy per protocol,
but also technical issues like diaphragmatic motion and tissue den-
sity changes, remain challenges for referral for proton therapy on a
routine base.
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In conclusion, this radiotherapy treatment plan comparison
demonstrates that, for a prescribed dose of 14.4 Gy, Volumetric-
Modulated Arc Therapy with target volumes adapted to the post-
operative situation can achieve a potential clinical benefit over
conventional target volumes with Anterior-Posterior/Posterior-An
terior photon beams in 60% of the cases by preventing dose con-
straint violation of the pancreas, spleen, heart or the mammary
buds. Implementing highly conformal flank radiotherapy tech-
niques in clinic demands a prospective follow-up with focus on
loco-regional control and registration of radiotherapy-related
morbidity.
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