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Abstract. Identifying species interactions and detecting when ecological communities are
structured by them is an important problem in ecology and biogeography. Ecologists have
developed specialized statistical hypothesis tests to detect patterns indicative of community-
wide processes in their field data. In this respect, null model approaches have proved particu-
larly popular. The freedom allowed in choosing the null model and statistic to construct a
hypothesis test leads to a proliferation of possible hypothesis tests from which ecologists can
choose to detect these processes. Here, we point out some serious shortcomings of a popular
approach to choosing the best hypothesis for the ecological problem at hand that involves
benchmarking different hypothesis tests by assessing their performance on artificially con-
structed data sets. Terminological errors concerning the use of Type I and Type II errors that
underlie these approaches are discussed. We argue that the key benchmarking methods pro-
posed in the literature are not a sound guide for selecting null hypothesis tests, and further, that
there is no simple way to benchmark null hypothesis tests. Surprisingly, the basic problems
identified here do not appear to have been addressed previously, and these methods are still
being used to develop and test new null models and summary statistics, from quantifying com-
munity structure (e.g., nestedness and modularity) to analyzing ecological networks.

Key words: benchmarking; community structure; null models; power; robustness; Type I error; Type II
error.

INTRODUCTION

A long-standing debate in biogeography concerns the
composition of ecological communities and the identifi-
cation of species interactions that might structure them
(Cody and Diamond 1975, Gotelli 1999, Weiher and
Keddy 1999). As a result, ecologists have developed spe-
cialized statistical tools that test for the presence of pat-
terns indicative of community-wide processes, such as
interspecific competition, in their field data. Null model
approaches have proved particularly popular (Gotelli
and Graves 1996) and, over the last 20 years, have been
applied in thousands of published studies. Given the
plethora of possible null models, Gotelli (2000) and
Ulrich and Gotelli (2010) have devised a benchmarking
procedure for choosing the most appropriate model for
a given ecological application. Here, we argue that the
benchmarking methods they propose are problematic
and do not yield an appropriate yardstick for selecting a
null hypothesis test.

We focus on ecological community data in the form of
an abundance matrix. The entries of such a matrix, aij,
represent the abundance of species i at sample site j as
quantified by either counts of observations of individu-
als, or their densities. Each row in the matrix represents
the abundances of a species at different sites. Columns
represent the different focal communities or different
sites. The entire abundance matrix represents the meta-
community of species at the sampled sites. Summing up
the elements along row i gives the abundance of species i
across all sites, and variability in the row sums may indi-
cate that some species colonize sites better than others.
Similarly, summing the entries of the jth column gives
the total species abundance at site j, and variability in
the column sums may indicate that some sites or focal
communities are colonized more easily, or that they can
support greater species richness. The distributions of the
row and column sums are important defining features of
a metacommunity (Connor and Simberloff 1979).
A number of null model algorithms have been devel-

oped to generate random simulated abundance matrices
that are by design unstructured, in that the process by
which abundances of each species at each site are allo-
cated do not involve any species interaction or other
community structure. Often a great deal of thought has
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been given to defining what is meant by random in this
context, and devising tests to ensure that these metacom-
munities are truly random (Stone and Roberts 1990,
1992, Artzy-Randrup and Stone 2005). Some null model
algorithms generate matrices subject to realistic con-
straints (specific to the null hypothesis under considera-
tion) and are thus able to simulate key features or
constraints that may occur in real data, without incorpo-
rating any ecological mechanisms related to species
interaction that we suspect might result in community
structure. Using a null model, it is then possible to statis-
tically test whether a given data set is unstructured as
regards species interactions, while taking into account
nonrandom features that might occur for other ecologi-
cal reasons. Rejection of the null hypothesis suggests the
presence of a nonrandom structuring process beyond
those incorporated in the null model.
Null model algorithms typically begin with an input

reference matrix, or “observed” matrix, from which the
various constraints are calculated. The algorithm is then
able to generate matrices that are random samples from
the ensemble of all possible matrices satisfying these con-
straints. For example, a widely applied null model gener-
ates an ensemble of random abundance matrices whose
row sums are all fixed to the values of a given (observed)
abundance matrix. This ensures that the pattern of species
abundances in the observed metacommunity (e.g., result-
ing from variation in colonization abilities) are preserved
in all the simulated metacommunities generated by the
null model. Thus, all random metacommunities are com-
pletely unstructured, at least over and above the deliber-
ately imposed observed row sum constraints. Other null
models impose the constraint that only column sums of
the random metacommunities are kept fixed to observed
values. Still other null models fix both row and column
constraints or allow only a small variability in them.
Ulrich and Gotelli (2010), henceforth referred to as

U&G, propose a total of 14 different null models for cre-
ating unstructured abundance matrices, which are essen-
tially randomization algorithms. In addition to these 14
null models, U&G propose six statistics to measure com-
munity structure. From these, it is possible to create
14 9 6 = 84 hypothesis tests to detect structure in abun-
dance data, by coupling a null model and a statistic. A
key goal of U&G is to develop a benchmarking test that
evaluates the performance of these different hypothesis
tests, making it possible to choose the best option. Here,
we critically discuss their benchmarking procedure and
find it unsuitable for ranking the different hypothesis
tests. We argue that, instead of U&G’s scoring method,
researchers should choose null models primarily based
on biological considerations, while possibly also taking
into account power and robustness to assumption viola-
tions relevant to their specific system (Heeren and
D’Agostino 1987, Lehmann and Romano 2005, Ladau
2008, Ladau and Schwager 2008).
Since the benchmarking methods developed in U&G

are mostly extensions of those developed by Gotelli

(2000) for presence–absence data and are suggested as a
general procedure to benchmark null hypothesis tests for
other aspects of community structure, e.g., nestedness
and modularity (Ulrich and Gotelli 2007, 2013, Gotelli
and Ulrich 2012), much of our criticism applies also to
these other studies, to which we collectively refer as
UGG. Despite their shortcomings, the main ideas pre-
sented in UGG are being taken up not only in many
areas of basic ecological research (e.g., Peres-Neto et al.
2001, Feeley 2003, Chaves and Anez 2004, Mouillot
et al. 2005, Kembel and Hubbell 2006, Lavender et al.
2016, Lyons et al. 2016, McNickle et al. 2018), but also
policy-oriented studies (Kobza et al 2004, Semmens
et al. 2010, Schmidlin et al. 2012, Tulloch et al. 2018)
and even studies of the microbiome (Li et al. 2018).
Moreover, these same criticisms apply also to new
benchmarking methods for testing structure in ecologi-
cal networks (Vaughan et al. 2018). Surprisingly, the
basic problems discussed here do not appear to have
been addressed previously, yet their relevance could be
of crucial importance for all these related studies.

REVIEW OF BASIC CONCEPTS

As an aid for the ensuing discussion, it is helpful to
briefly review fundamental concepts regarding hypothe-
sis tests (for more details, see Sokal and Rohlf 1995). A
hypothesis test is a statistical tool to choose between
competing hypotheses, the null (and usually simpler)
hypothesis H0 and an alternative Ha (often left unspeci-
fied). The process involves evaluating a statistic, T, that
is, a function of the observed data, and determining
whether its value is exceptional, under the assumption
that the null hypothesis H0 is true. One then asks, under
the null hypothesis H0, what is the probability of observ-
ing a sample for which the value of the statistic is at least
as extreme as that observed? This probability is the P
value of the data. The experimenter then rejects the null
hypothesis if the P value is smaller than a preselected
cut-off value, a, referred to as the significance level of
the test, and fails to reject it otherwise. Thus, a hypothe-
sis test consists of a null hypothesis H0, a test statistic T,
and a significance level a. Importantly, the null hypothe-
sis must imply a specific distribution for the statistic T,
which may be calculated analytically or evaluated
numerically.
A Type I error, or false positive, occurs when the null

hypothesis H0 is rejected despite being true. The rate at
which H0 is rejected when the test is applied to null data
(i.e., data generated by the null hypothesis) is by defini-
tion 100 9 a percent, and referred to as the Type I error
rate (or false positive rate). The significance level is typi-
cally set at a = 0.05 or 0.10, corresponding to Type I
error rates of 5% and 10%, respectively.
Similarly, Type II errors, or false negatives, occur

when H0 is not rejected, even though the alternative Ha

is true. The probability of a false negative is denoted by
b, and the probability of correctly rejecting H0, 1 � b, is
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termed the power of the test and reflects its ability to
detect an alternative hypothesis. It is difficult to put
much faith in a test having low power since, when such a
test fails to reject H0, it might well be because the test
was simply not very sensitive.
Given a null hypothesis, we usually first choose the

significance level a and then (if the alternative hypothe-
sis allows) we measure b for various test statistics. This
allows a comparison between various hypothesis tests
(composed of a null model, a test statistic, and a fixed a)
differing only in their test statistic. By design, null
hypothesis tests constructed in this manner have the
same Type I error rate (determined by a), regardless of
which statistic is used. We then choose the statistic that
yields the lowest Type II error rate, i.e., the highest
power.

BENCHMARKING NULL HYPOTHESIS TESTS

Henceforth, we focus on the main question motivating
UGG: How should one choose the best null hypothesis
test for detecting species interactions that might affect
the structure of a metacommunity (e.g., causing species
aggregation or segregation)? Two fundamental questions
arise. (1) All else being equal, what would this metacom-
munity look like without species interspecific interac-
tions? (2) What feature is the most appropriate for
identifying processes that create community structure?
Answering the first question corresponds to choosing

a null model representing the absence of species interac-
tions. In situations in which species differences (e.g.,
demographic parameters or trophic levels) are unimpor-
tant, and species can be considered functionally equiva-
lent, this can be addressed using neutral models of
community assembly (Bell 2005, Gotelli and McGill
2006). The second question corresponds to the choice of
a test statistic for detecting such interspecific interac-
tions. When a null model has been chosen, it is simple to
compare tests differing only in their test statistics (when
power can be estimated). UGG’s main contribution is a
proposed method to answer both questions at once, i.e.,
to compare tests differing in both their null hypotheses
and statistics. We refer to such a comparison procedure
as benchmarking.
The novelty of benchmarking is in deciding on the

best null model for helping identify species interactions.
Selecting such a null model would na€ıvely require testing
several null models against data about what the meta-
community of interest would look like without species
interactions. But such data are usually absent (because if
we knew that species interactions haven’t shaped our
data, we would not be seeking a hypothesis test for iden-
tifying species interactions). Given this difficulty in null
model selection, a successful benchmarking procedure
would be extremely useful.
U&G present 14 null model algorithms and 6 statis-

tics, giving rise to 84 different null hypothesis tests. But
how should a researcher choose which is the most

appropriate test? The approach recommended by U&G
is as follows.
U&G use another (15th) algorithm to create a set of

reference "unstructured test matrices,” a collection of
manufactured abundance matrices representing syn-
thetic metacommunities with no interactions between
species. The test matrices have row sums with a prede-
fined log-normal distribution (because the log-normal
distribution of abundance data is one of ecology’s best-
documented scaling laws; Preston 1962a, b, McGill et al.
2006). However, they are constructed carefully to ensure
there is no hidden mechanism that creates species segre-
gation or aggregation. (More precisely, U&G use two
pools of unstructured test matrices, which they denote
MR and MS, respectively, that are constructed using
slightly different algorithms; however, this does not
affect our argument below. Gotelli (2000) uses four dif-
ferent algorithms to generate test matrices.) U&G also
construct a set of structured test matrices by manipulat-
ing the unstructured test matrices to make species artifi-
cially aggregated or segregated.
U&G then apply the 84 null hypothesis tests to the

sets of unstructured and structured test matrices and
suggest a two-step benchmarking procedure to assess
their performance. First, they select the four null hypoth-
esis tests that reject the null hypothesis for the fewest
number of unstructured test matrices. They then score
this subset of tests using the proportion of the structured
test matrices for which the null hypothesis was rejected.
We henceforth focus on the first step of UGG’s bench-
marking procedure, that is, of the 84 null hypothesis
tests, selecting the one that rejects the least number of
unstructured matrices is considered to be the best test.

PROBLEMS WITH UGG'S BENCHMARKING METHOD

In this section, we highlight problems with U&G’s
benchmarking methodology. Before highlighting the
main conceptual problem and its repercussions, we
address a terminological issue that obscures the overall
underlying logic.

Problem 1: confusion between Type I errors and power
(terminological)

UGG define the "Type I error rate" of a null model as
the proportion of unstructured test matrices that it
rejects. This definition is nonstandard and imprecise,
because the test matrices used to calculate this rejection
rate are created using an algorithm different from the
null model randomization algorithms U&G analyze.
These unstructured test matrices are therefore not “null”
with respect to any of the 84 null hypothesis tests U&G
propose, despite being constructed so as to reflect no
species interactions and having log-normal abundance
distributions. Indeed, U&G find that, for each and every
null model they examine, there is a statistic with which
the rejection rate for the unstructured test matrices is
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much >5% (see table 1 in U&G). This indicates that each
of the null models tested differs from the algorithm used
to generate the unstructured test matrices in some way
that relates to species co-occurrence (because the statis-
tics used were selected in order to detect patterns in co-
occurrence). This could not occur if the unstructured
test matrices were truly null (with respect to any one of
the null models used), because by definition, when
a = 0.05, exactly 5% of all null matrices are rejected.
Because the unstructured test matrices are generated

by an algorithm different from the null model, the quan-
tity that UGG measure is the frequency at which the null
hypothesis correctly rejects the unstructured matrices.
Thus, UGG measure the power of the various hypothesis
tests (1 � b), yet refer to it as the Type I error rate. (In
making the power calculation, the implied alternative
hypothesis is that the data were generated from the algo-
rithm that created the unstructured test matrices.) Refer-
ring to the rejection of the unstructured test matrices as
“Type I errors” is a confusing and nonstandard use of a
common technical term.
We emphasize that U&G are well aware of their non-

standard use of terminology. They write that “[a]lthough
the formal definition of a Type I error is incorrect rejec-
tion of a true null hypothesis, we use [a different] opera-
tional definition here of rejection of H0 on a set of
appropriate [unstructured] test matrices created by ran-
dom sampling from a log-normal distribution” (U&G:
3386). Nonetheless, the distinction between their “opera-
tional definition” and the standard one is downplayed or
obscured throughout, leading to the impression that true
Type I and II error rates are really being measured.
Treating the unstructured test matrices as if they were

null can be thought of as simply keeping the idea of what
“null” means imprecise, i.e., that “null” means conform-
ing to some idea of being “unstructured.” This is prob-
lematic because communities can be unstructured in
many different ways, as is evidenced by the many possi-
ble null models U&G benchmark, all of which create
abundance matrices that could, in principle, be consid-
ered unstructured. Using the term “null” in this way
introduces a vagueness that is similar to that entailed by
calling something “random”: random numbers can be
generated using many different distributions, but sam-
ples from a normal and a uniform distribution look very
different from one another. The particulars of the ran-
dom process can matter quite a bit, and similarly, so can
the particulars of what it means to be “unstructured.”

Problem 2: Using a particular null model to benchmark
others (conceptual)

The following important problem we raise is concep-
tual. Contrary to standard procedure, U&G do not
assume a particular null model and compare different
statistics. Instead, they compare entire hypothesis tests,
that is, statistics and null models taken together as a
unit. But in selecting a hypothesis test, UGG also select

a null model. It is therefore natural to ask, is the null
hypothesis selected by U&G’s benchmarking procedure
our best guess for a model of the true processes shaping
this metacommunity, excluding the (possible) effects of
species interactions? We argue that the answer is no.
Because this issue has gone unnoticed for almost two
decades, we present two different arguments to support
this claim.

Argument 1.—The forces shaping different metacommu-
nities may well differ, so we expect that testing for spe-
cies interactions in different metacommunities will often
require using different null models. To decide which of,
say, two such “guesses” better describes a metacommu-
nity, one must study the metacommunity in question,
not which of these two null models better describes a
data set generated by a third model of metacommunities
without species interactions. For example, the question
of whether or not to use a null model in which column
sums are constrained translates to a question about the
ecological system being studied: is there an ecological
reason why some of the sites being studied support more
species than others (e.g., because they are more readily
colonized)? Note also that while empirically studying
what a metacommunity might look like in the absence of
interspecific interactions (which is a counterfactual
proposition) is often unfeasible, this does not detract
from our logical argument.
In essence, UGG’s benchmarking process is analo-

gous to comparing apples and oranges by using plums
as a reference. This can lead us to choose the model that
most resembles that used to generate the test matrices
(see our second argument below), and to choose a statis-
tic with low sensitivity to the differences between the null
models being benchmarked and the one that is used to
do the benchmarking (see Problem 4).

Argument 2.—U&G’s benchmarking procedure is
biased to choose the matrix randomization algorithm
that “most resembles” the algorithm used to generate the
unstructured test matrices. Indeed, U&G write: “these
analyses are [. . .] optimized for their performance on the
set of matrices that we created by random sampling from
a log-normal distribution of species abundances.” U&G
consider the unstructured test-matrix generation algo-
rithm to be a good model of real unstructured ecological
metacommunities; as such, the null hypothesis tests are
scored based on their performance on these unstruc-
tured test matrices.
However, U&G’s test-matrix generation algorithm is

composed of two distinct parts: (1) a procedure for gen-
erating log-normal and uniform species and site abun-
dance distributions (respectively); and, (2) a
“randomization algorithm” used to allocate fractions of
these log-normally distributed abundances to particular
entries in the matrix. And although the log-normal dis-
tribution of species abundances is well-supported in
many ecological applications, U&G’s choice of
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algorithm for distributing these species abundances
across sites (i.e., columns) is not empirically supported.
Note that the species abundances of U&G’s test

matrices being log-normally distributed does not imply
that the test-matrix randomization algorithm is better-
justified than other null models (i.e., randomization
algorithms) U&G propose. To see this, observe that dif-
ferent randomization algorithms that preserve row sums
can be applied to a particular empirically derived abun-
dance matrix with log-normally distributed species abun-
dances. Matrices generated in this way will still have a
log-normal abundance distribution, and the process used
to generate them is not necessarily more or less “natural”
than the one U&G use to generate the unstructured test
matrices.
The following argument illustrates the circularity of

benchmarking null models based on their performance
on the unstructured test matrices generated from a pro-
cedure that is not empirically supported. Because the
test-matrix randomization algorithm is not "better" or
more natural than the null models (that is, randomiza-
tion algorithms) being benchmarked, it could be consid-
ered a 15th possible null model, which we refer to as
RTEST. It is then possible to construct hypothesis tests
based on this new randomization algorithm (e.g., by
combining it with each of the six statistics of U&G, simi-
lar to the 14 null model algorithms U&G benchmarked).
We are then faced with two possibilities. If we believe

the test-matrix randomization algorithm RTEST is prefer-
able to the 14 null models benchmarked by U&G, then
there is no reason to consider the other null models; we
need only choose between null hypothesis tests con-
structed by pairing RTEST with one of the six statistics
proposed by U&G. In this case, we can then fix the sig-
nificance level a and choose the statistic that yields the
best power. However, if we are uncertain whether RTEST

is better than the 14 null models suggested by U&G,
then RTEST should also be benchmarked and compared
against the other 14 null models. But if we do so, the
unstructured test matrices will be rejected at a rate of
exactly a for any statistic chosen (because RTEST was
used to create them). Thus, U&G’s benchmarking pro-
cedure would be biased in favor of selecting RTEST.
In other words, there is no need to run the test on 14

randomization algorithms if we already know which is
best. If we do not a priori know the best randomization
algorithm to use, then we want a selection criterion that
is not biased in favor of one or another randomization
algorithm, a quality that UGG’s benchmarking method-
ology lacks. (Replacing RTEST with another randomiza-
tion algorithm to generate unstructured test matrices
will similarly result in a benchmarking procedure that
favors this new randomization algorithm.)
Last, we note that this problem is essentially the same

criticism that U&G have toward other studies. They
write (U&G:3385) “A [different] approach is to specify a
mechanistic colonization model that does not include
species interactions, such as the neutral model (Bell

2005), and then use that model to create random
matrices that can be used to evaluate null model proce-
dures (Ulrich 2004). The disadvantage of this method is
that the test is narrowly optimized for one particular
mechanistic model, and there is no logical reason that
this model should have priority.” We agree, but also
extend this criticism to U&G’s model for generating
test matrices.

Problem 3: A null hypothesis test cannot be “prone to
Type I errors” (terminological)

UGG state that some tests are more prone to Type I
errors and therefore not very effective. However, for a
given significance level a, a test cannot be more or less
prone to Type I errors, because the Type I error rate is
by definition exactly 100 9 a percent (but see the sec-
tion Robustness: overview). The number of rejected
matrices in a set of N matrices generated using the null
model is binomially distributed with parameters N and
a. As such, the true Type I error rate as a score for differ-
ent tests is uninformative because any difference between
the theoretical and observed rejection rates results from
the stochastic nature of generating matrices using the
null model, not the choice of statistic or null model.

Problem 4: Benchmarking encourages low power
(conceptual)

Since the power of the test to correctly reject the null
hypothesis when confronted with the unstructured test
matrices is mislabeled as the Type I error (see Problem
1), UGG would like it to be around the a level they have
set, and are thus ensuring a very low power by setting
1 � b = 0.05 (0.1 in Gotelli 2000). A power of 5%
means that in practice, the hypothesis test will not be
able to distinguish between its null model and the alter-
native model generating the unstructured test matrices;
for 95% of the unstructured test matrices, the test will
incorrectly fail to reject the null hypothesis. Experi-
menters invariably strive to design a test with high power,
so that if the null hypothesis H0 is not true, they will
most likely know about it. This cannot happen when the
power is set at 1 � b = 0.05. Moreover, as we show in a
sequence of examples in Appendix S1, seeking a statistic
that is “blind” to the differences between a null model
and a particular alternative model (qualitatively similar
to the null model) can lead to choosing a statistic that
has low power to distinguish other alternative models
that are qualitatively very different from the null.

BEYOND BENCHMARKING

Having established that the benchmarking methods
proposed by UGG are not a sound guide to selecting a
hypothesis test, how should one choose from a set of
hypothesis tests? Unfortunately, there is no simple
answer. No single null hypothesis test is appropriate in
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all ecological contexts; rather, the null hypothesis and
statistic should be selected on a case-by-case basis, based
on the specific characteristics of the system being stud-
ied. Here, we outline some suggestions for factors that
should be taken into account in this process. Most of
these have been identified long ago (see, for example,
Weiher and Keddy 1999), but bear repeating given the
widespread use of UGG’s benchmarking procedure for
justifying null model selection, rather than ecological
considerations.
As mentioned, different ecological contexts will

require different null models. In particular, whether or
not to incorporate row and column constraints has been
a source of debate for decades (e.g., Stone and Roberts
1990, Weiher and Keddy 1999, Gotelli 2000). For exam-
ple, row sums should in many cases be constrained
because they reflect differences in vagility or colonizing
ability. But if species are closely related, competition
might influence the row sums themselves, and a species
might be more common than another simply because it
arrived or evolved first. As noted by Fox (1999), this
issue is linked to the Narcissus effect, whereby “[s]am-
pling from a post-competition pool underestimates the
role of competition, since its effect is already reflected in
the pool” (Colwell and Winkler 1984).
Similar care should also be given to choosing a statis-

tic that is sensitive to the ways in which we expect species
interactions to manifest in the ecological metacommu-
nity being studied. One important difficulty is that infer-
ences based on statistics that are designed to measure
the same structural property are sometimes contradic-
tory, even when using hypothesis tests with identical null
models (Stone and Roberts, 1992, Gotelli and Ulrich
2012, Strona and Fattorini 2014). This suggests that
intuitions about both how to measure different meta-
community properties (e.g., segregation, aggregation,
nestedness, turnover, and modularity) and the relation-
ships between them can be misleading. Using process-
based models of metacommunity formation that allow
the properties in question to be tuned (in contrast to the
matrix randomization algorithms proposed by UGG)
can help evaluate whether and how different statistics
reflect these structural properties.
When the null model has been chosen, and an alterna-

tive model of metacommunity structure in the presence
of species interactions is available, measuring a test’s
power to discern between the null and alternative
hypotheses is informative. If several statistics seem plau-
sible for detecting species interactions, the power of the
resulting tests is a natural measure for ranking them. It
also is particularly desirable that a test be unbiased, i.e.,
that it correctly rejects the null hypothesis more often
than it does incorrectly (Lehmann and Romano 2005).
Any null model we select, however biologically plausi-

ble, will be a caricature of reality. Consequently, it is also
important to see whether or not a test might still be ro-
bust to certain deviations from its hypotheses. Robust-
ness testing, reviewed next, is a powerful framework, but

is unfortunately underused in ecology. We also briefly
discuss approaches outside the null hypothesis testing
paradigm in Appendix S2.

Robustness: overview

Testing for robustness is a modern statistical proce-
dure (Lehmann and Romano 2005, Ladau 2008, Ladau
and Schwager 2008) that requires considering scenarios
whereby the null model’s underlying assumptions might
not be satisfied, but the null hypothesis being tested still
is. For example, a common procedure for testing that the
mean of a data set is 0, is the Z test. However, Z tests
rely on the additional assumption that the data are nor-
mally distributed. The normality assumption, however,
is independent of the null hypothesis we wish to test—
that the data have mean 0—and the result of the Z test
does not indicate whether or not this additional assump-
tion is satisfied. In general, the experimental data sets
satisfy such additional assumptions (e.g., normality)
only approximately, or not at all. In such cases, the prob-
ability of rejection of the null hypothesis could be larger
or smaller than the significance level of the test, even
though the data set satisfies the null hypothesis being
tested (e.g., mean 0). Only in this context is it meaningful
to say that the test is prone to Type I errors (Heeren and
D’Agostino 1987, Huber 1996).
Null hypothesis tests are said to be robust if the

observed (nominal) Type I error rates are maintained
close to the preselected significance level a when some
assumptions of the null model are violated (e.g., Heeren
and D’Agostino 1987, Sullivan and D’Agostino 1992).
In this context of testing robustness, even though the full
assumptions of the null model are not met, we continue
to describe the rejection of data satisfying the null
hypothesis as Type I errors. For example, the two-sample
t test (for equality of means; see Sokal and Rohlf 1995)
is based on the assumption that the observations are
derived from normal distributions of equal variance and
there are sufficiently many samples. However, it has been
shown that this test is robust to nonnormality, small
sample size, and in some situations, unequal variances of
the sample distributions (see Sullivan and D’Agostino
1992). Thus, verifying the robustness of a hypothesis test
to violations of some of its assumptions helps us know
that our inferences from the test may still be valid, even
when we cannot guarantee that some of the test’s
assumptions hold for our experimental data.
Note that UGG’s benchmarking process is not a test

of robustness. A test of robustness aims to measure the
effects of gradual and controlled changes in the individ-
ual assumptions of a model (Sullivan and D’Agostino
1992, Lehmann and Romano 2005). Instead, UGG
check whether the rejection rates of the tests are substan-
tially changed when the entire null model is altered, com-
paring all the null models under consideration to an
essentially unrelated model that is based on vastly differ-
ent assumptions. This is why, when confronting the
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hypothesis tests with the unstructured test matrices,
UGG find the rejection rates for some of the tests to be
high (sometimes even 100%). Moreover, to use robust-
ness for comparing different models, one must check the
robustness of these algorithms to identical assumption
violations. Thus, comparing the proportions of test
matrices rejected is unfair because the assumption viola-
tions that transform each of the tested models into the
test-matrix generation algorithm are different.

Suggestions for robustness testing in ecology

When exploring the effects of violations of the basic
assumptions of hypothesis tests, it is imperative to
clearly state what these assumptions are, which of these
are being violated, and how. No less importantly, the
biological reasons for the interest in the violation of
assumptions should be stated. Because many scenarios
of assumption violations are not biologically relevant, or
not relevant to the experiment in question, there is no
need to make general statements as to the robustness or
bias of tests for any assumption violation (which is no
simple task). While Ladau’s framework for systemati-
cally studying the effects of various violations of
assumptions on a myriad of tests is very useful, his dis-
appointment in not finding an all-purpose universally
robust (and unbiased) test is unwarranted. The results of
his study may be used by researchers to choose which
test is relevant for their particular study design. We
emphasize that this requires researchers to be intimately
familiar with both the biological systems studied and the
statistical methods involved. Unfortunately, many ecolo-
gists will likely find Ladau (2008) inaccessible due to the
heavy technical jargon and terse description of the math-
ematical methods.
As an example, suppose that after careful considera-

tion of her study system, a researcher has opted to use a
model with fixed zeros (i.e., species absences), fixed row
sums, and column probabilities proportional to sums (a
minor variation on the model ITR in U&G), and an
appropriate statistic (selected, for instance, based on a
power analysis). One might expect the conditions of
fixed row sums and fixed zeroes to fluctuate somewhat
in biological data, even though, in principle, these are
the constraints relevant to this study system. At the very
least, random errors in measurements of these con-
straints would arise due to sampling. Thus, it would be
useful for the researcher explore how robust the test is to
gradually increasing fluctuations in the row sums, or in
the locations of zeros in the abundance matrix. She
could then estimate these fluctuations empirically from
the experimental data (sampling errors could also be
evaluated) and assess the relevance and reliability of the
inferences made using this hypothesis test.
UGG and Ladau test a plethora of null models

against an alternative model that is often structurally
very different from the null models being benchmarked.
Instead, we suggest future research into more standard

tests of robustness. This would involve evaluating the
robustness of specific null hypothesis tests to “gentler”
changes in their underlying assumptions (ideally the
magnitude of the deviation from the null hypothesis can
be turned up or down using an appropriate parameter).
This is a promising area of research that UGG and
Ladau (2008) seem to be moving toward.
Two final caveats are that the robustness of a test is

not an excuse for sloppy modelling or experimental set-
ups, and that robustness should not be the sole criterion
by which we choose our tests. Robust tests using unreal-
istic models or uninformative statistics are not superior
to non-robust tests with realistic, biologically relevant
models and statistics. Additionally, when choosing
between models for explaining a particular phe-
nomenon, the ability to explain other patterns may and
should also be used as a gauge of a model’s viability.

CONCLUSION

UGG address the question of how to detect structure
in an ecological metacommunity by suggesting a method
for benchmarking null hypothesis tests by comparing the
results of null hypothesis tests (differing in their null
models and statistics) when confronted with a data set
constructed using a null model different from all those
tested. Though the goal of UGG is worthwhile, their
suggested solution suffers from various statistical and
methodological problems, the most important of which
is that comparing tests with different null models on a
set of artificially constructed test matrices does not
inform us which null model better describes a particular
real ecological metacommunity. The reasons this prob-
lem has heretofore gone unnoticed are likely confusion
and vagueness relating to the concepts of randomness,
null models, and Type I errors.
Choosing a hypothesis test is a real concern for ecolo-

gists in particular and scientists in general, and there is
much confusion about how to do so throughout the lit-
erature. A simple prescription does not exist, but neither
do we expect one to appear, due to the broad terms in
which the problem is posed. U&G and especially Gotelli
(2000) are correct to stress that there is no “all-purpose”
test to use, and that sound judgment should be used
when constructing a hypothesis test: “Ecologists need to
move beyond the idea that there is a single “one-size-fits-
all” null model that is appropriate. Rather, the null
model and index should be chosen based on the kind of
data [. . .] collected and the question being asked”
(Gotelli 2000).
In the previous section, we outlined general guidelines

for selecting and evaluating hypothesis tests to detect
community structure. The selection of a null hypothesis
test must not be based on trying to choose a null model
(i.e., randomization algorithm) and statistic such that
the statistic’s distribution on data generated by the null
model is similar to the same statistic’s distribution on
some other reference model. Instead, it should be
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grounded in intimate knowledge of the study system and
thoughtful scrutiny of the biological, ecological and sta-
tistical considerations involved. If a sensible model for
the alternative hypothesis is available, the power of a test
to detect the alternative can inform the selection of a test
statistic (statistics resulting in higher power are better).
Tests that are biased (i.e., reject the null hypothesis
incorrectly more often than they do correctly) should be
avoided. Since “all models are wrong” (Box 1976), it is
also worthwhile to evaluate a hypothesis test’s robust-
ness (i.e., its performance under biologically plausible
violations of some of its basic assumptions). Note, how-
ever, that few guidelines are available for testing robust-
ness of ecological null models (see Ladau 2008, Ladau
and Schwager 2008). This challenging area requires
future research to mature, and to make these tests more
accessible to ecologists.
Last, the confusion we highlight surrounding null

model selection in general, and Type I errors in par-
ticular, suggests to us a real and pressing need to
better train ecology graduates in statistics. In general,
the current state-of-the-art statistical software is
extremely powerful and readily accessible, but with-
out a deep understanding of the theory involved, it
is all too easily misused.
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