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INTRODUCTION 
 

HCC, as the most common type of liver cancer, has 

become one of the main causes of cancer-related death, 

and it is also a global health problem that has attracted 

widespread attention [1, 2]. Due to the lack of obvious 

clinical manifestations of early HCC, most patients are 

already in advanced stages when the first symptom 

appears, and thus they miss the chance of radical 

resection [3, 4]. Although great progress has been made 
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ABSTRACT 
 

Background: The competing endogenous RNAs (ceRNAs) hypothesis has received increasing attention as a novel 
explanation for tumorigenesis and cancer progression. However, there is still a lack of comprehensive analysis 
of the circular RNA (circRNA)-long non-coding RNA (lncRNA)-miRNA-mRNA ceRNA network in hepatocellular 
carcinoma (HCC). 
Methods: RNA sequencing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) 
database were employed to identify Differentially Expressed mRNAs (DEmRNAs), DElncRNAs, and DEcircRNAs 
between HCC and normal tissues. Candidates were identified to construct networks through a comprehensive 
bioinformatics strategy. A prognostic mRNA signature was established based on data from TCGA database and 
validated using data from the GEO database. Then, the HCC prognostic circRNA-lncRNA-miRNA-mRNA ceRNA 
network was established. Finally, the expression and function of an unexplored hub gene, deoxythymidylate 
kinase (DTYMK), was explored through data mining. The results were examined using clinical samples and in 
vitro experiments. 
Results: We constructed a prognostic signature with seven target mRNAs by univariate, lasso and 
multivariate Cox regression analyses, which yielded 1, 3 and 5-year AUC values of 0.797, 0.733 and 0.721, 
respectively, indicating its sensitivity and specificity in the prognosis of HCC. Moreover, the prognostic 
signature could be validated in GSE14520. The prognostic ceRNA network of 21 circRNAs, 15 lncRNAs,  
5 miRNAs, and 7 mRNAs was established according to the targeting relationship between 7 hub mRNAs and 
other RNAs. Our experiment results indicated that the depletion of DTYMK inhibited liver cancer cell 
proliferation and invasion. 
Conclusions: The network revealed in this study may help comprehensively elucidate the ceRNA mechanisms 
driving HCC, and provide novel candidate biomarkers for evaluating the prognosis of HCC. 
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in the diagnosis and therapeutic techniques of HCC, the 

recurrence-free survival (RFS) and overall survival 

(OS) in patients with HCC are still relatively short [5, 

6]. In addition, owing to the lack of comprehensive 

understanding about the complex disease process and 

molecular interactions in HCC, there is no effective 

biomarker for prognosis in clinic. Therefore, it is 

urgent to find potential biomarkers and new targets to 

predict the OS and RFS of HCC patients, so as to 

improve the prognosis and guide individualized 

treatment. 

 

In 2011, some researchers proposed the ceRNA 

activity, which can unify the transcriptome and form a 

large-scale regulatory RNA network. They described a 

complicated post-transcriptional regulatory network, in 

which circRNAs, lncRNAs and other RNAs can 

compete with miRNAs and act as natural miRNA 

sponges by virtue of sharing no less than one miRNA 

response element (MRE). Since these noncoding 

RNAs (ncRNAs), and protein-coding mRNAs can 

combine with miRNAs through MRE, they can 

compete with miRNAs and participate in the 

regulation of this complex network [7, 8]. Many 

studies have found that ceRNA regulation can have an 

important impact on the occurrence and development 

of HCC [9–11]. Thus, these networks could be used to 

gain insight into complex gene interactions and 

identify potential biomarkers to diagnose and treat 

HCC. 

 

The RNA sequencing data of TCGA or GEO database 

can provide circRNA, miRNA and mRNA data of 

various cancers, which can be an excellent resource for 

data mining and biological discovery [12]. Based on 

these public databases, integrative ceRNA regulatory 

networks were constructed to explore more accurate 

prognostic markers in numerous studies. For HCC, 

prognostic lncRNA-miRNA-mRNA [4, 8] and 

circRNA-miRNA-mRNA [13] ceRNA networks have 

been published. However, there is no research 

simultaneously including lncRNAs and circRNAs in the 

ceRNA network of HCC. 

 

In the current research, TCGA and GEO databases are 

used to identify DEmRNA, DElncRNA and 

DEcircRNA between HCC and normal tissues, so as to 

ensure the accuracy and repeatability of the analysis 

results. The target miRNAs of DEcircRNAs and 

DElncRNAs were respectively predicted and crossed to 

obtain common miRNAs and their target mRNAs. 

Then, a prognostic mRNA signature was established 

using the data from the TCGA database and 
successfully validated in GSE14520. The DTYMK hub 

mRNA in this model was screened for further research 

and validated as a potential biomarker. 

MATERIALS AND METHODS 
 

Data retrieval and processing 

 

We downloaded RNA-seq profiles of HCC patients from 

TCGA database. The circRNA microarray GSE94508 and 

GSE97332 (GPL19978, gilent-069978 Arraystar Human 

CircRNA microarray V1) datasets were collected from the 

GEO dataset. GSE94508 includes 5 adjacent nontumor 

tissues and 5 tumor tissues. GSE97332 contains 7 

adjacent nontumor tissues and 7 tumor tissues. The 

lncRNA expression profile of GSE138178 comes from 

the GPL21827 platform (Agilent-079487 Arraystar 

human LncRNA microarray V4), which contains 49 pairs 

of HCC tissue and adjacent non-tumor tissue samples. 

The “limma” package in R software was applied to screen 

DEcircRNAs, DElncRNAs and DEmiRNAs between 

HCC samples and adjacent normal samples. We identified 

the significant DEcircRNA in GSE94508 and GSE97332 

profiles (p <0.01 and |LogFC|> 2). The thresholds of 

|LogFC| >1 and p < 0.05 were used to screen the 

significantly DEmRNAs and DElncRNAs on the TCGA-

LIHC database. Then, the same standard was applied to 

analyze lncRNA data from GEO microassay GSE138178. 

 

Prediction of targeting relationship 

 

The CircInteractome database was used to predict the 

DEcircRNAs targeting miRNAs (circ-pre-miRNAs) 

[14]. MiRcode database was used to predict the target 

miRNAs of DElncRNAs. The target mRNAs of 

miRNAs were obtained from the TargetScan, 

miRTarBase, and miRDB databases [15–17]. In order to 

improve the reliability of the results, we only selected 

those miRNA-mRNA relationship pairs that overlap in 

all three databases for further research. These 

interaction relationship pairs were visualized by the 

Cytoscape software [18]. 

 

Prognostic model construction 

 

In order to determine the relationship between the 

patients' mRNA expression and OS, univariate Cox 

proportional hazard regression analysis, the lasso penalty 

Cox analysis and multiple Cox regression analysis were 

carried out, and a prognostic model was constructed. The 

survminer R package was used to calculate the optimal 

cut-off value, and then the patients were divided into 

high- and low-risk cohorts. By using survival R package, 

the Kaplan-Meier survival curve (KM curve) could be 

used to compare prognostic significance. 

 

Validation of the prognostic model 

 

The prognostic capacity of the risk score was analyzed 

through univariate and multivariate Cox regression 
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analysis. GSE14520 datasets were downloaded to 

verify the prognostic characteristics of this signature. 

Next, by using the KM curve and ROC curve, the 

predictive value of prognostic gene signature could be 

tested. 

 

Gene set enrichment analysis (GSEA) 

 

The gene sets of “h.all.v7.1.symbols.gmt [cancer 

hallmarks], c5. all. v7.1. symbols. gmt [gene ontology 

(GO) term] and c6.all.v7.1.symbols.gmt [oncogenic 

signatures]” from the Molecular Signatures Database 

were analyzed using the software GSEA 4.0.3 [19]. In 

addition, HCC samples were divided into high and low 

DTYMK expression groups according to the median of 

DTYMK expression value, and analyzed by GSEA. The 

statistical significance was based on the threshold of P < 

0.05 and FDR (false discovery rate) q < 0.05. 

 

HCCDB, human protein atlas and GEPIA 

 

The HCCDB database (http://lifeome.net/database/ 

hccdb) is an open-access online resource that contains 

thousands of clinical samples data from multiple HCC 

datasets [20]. In HCCDB, we analyzed the expression 

of DTYMK in HCC across multiple datasets. The 

Human Protein Atlas (HPA) (https://www.proteinatlas. 

org) is a publicly available interactive website tool that 

contains gene expression and protein levels data [21]. 

GEPIA is an interactive web that includes 8,587 normal 

and 9,736 tumors samples [22]. We used these tools to 

analyze the protein levels of DTYMK expressed and 

survival curves, including RFS and OS. 

 

Sample collection, cell culture, and transfection 

 

The 47 pairs of HCC tissues and paracancer normal 

tissues were obtained from the Hepatic Surgery 

Center of Tongji Hospital. This study was approved 

by the Medical Ethics Committee of Tongji Hospital. 

MHCC-97H [97H] and HepG2 [G2] were purchased 

from China Center for Type Culture Collection 

(CCTCC, China) and cultured in DMEM (Gibico, 

USA) supplemented with 10% fetal bovine serum 

(FBS) at 37° C in 5% CO2. Small interfering RNA 

(siRNA) and the corresponding negative control 

(siNC) were purchased from Ribobio (Guangzhou, 

China). 97H and G2 cells were transfected with 

siDTYMK or siNC by using Lipofectamine 2000 

(Thermo Fisher Scientific, USA) following the 

manufacturer’s protocol. 

 

Quantitative real-time PCR 

 

Total RNA was extracted from HCC patient tissues and 

cells using TRIzol Reagent (Life Technologies, USA) 

and reverse transcription was performed using the 

PrimeScript® RT reagent Kit (Takara Bio, Japan). 

Quantitative RT-PCR (qRT-PCR) was performed on a 

CFX Connect ™ Real-Time PCR Detection System 

(Bio-Rad, USA) with SYBR Green Supermix kit 

(Takara Bio, Japan) according to the manufacture’s 

instruction. The primer sequences were listed as 

follows: 

 

DTYMK(forward):5′-CCGGTTCCCGGAAAGATCAA 

C-3′; 

 

DTYMK(reverse):5′- TCCCAGCGATTTGCAGAAAA 

A-3′. 

 

Cell proliferation assay and EdU assay 

 

We performed the Cell Counting Kit-8 (CCK-8) assay 

to examine cell proliferation. The transfected cells were 

seeded into a 96-well plate at a density of 1000 

cells/well. We measured cell viability through the CCK-

8 system (Beyotime, China). For EdU assay, 97H and 

G2 cells were stained using a EdU assay kit (RiboBio, 

China) following to its instructions. After that, a 

fluorescence microscope was used to take pictures, with 

3 fields randomly selected for each slide. Lastly, the 

number of EdU-positive cells was counted and 

quantified. Regarding the colony formation experiment, 

about 1000-2000 cells were seeded in each well of the 

6-well plate, allowing cells to grow until visible 

colonies were formed. 

 

Transwell migration and wound healing assays 

 

HCC cells were suspended in 250 μ L of serum-free 

medium and inserted them into upper chamber of a 24-

well Transwell plate (Corning, MA, USA), and the 

lower chamber was injected with culture medium 

containing 10% FBS. The transwell chamber was paved 

with Matrigel coating (2 mg/ml) and DMEM for 

invasion assays and paved without matrigel mix for 

migration assays. For the wound-healing closure assay, 

97H and G2 cells were cultured in 6-well-plates, linear 

wounds were scratched with a 10 μL pipette tip. The 

wound-healing closure was observed and taken 

photographs under Microscope (Nikon Digital Eclipse 

C1 system; magnification, x10; Nikon Corporation, 

Tokyo, Japan). 

 

Cell cycle analysis 

 

97H and G2 cells were fixed overnight at 4° C in 75% 

ethanol. Next, we washed away the ethanol using PBS, 
and incubated the cells with PI and RNase A. After 

incubating them for 30 mins at 37° C, cell cycle was 

measured by flow cytometry. 

http://lifeome.net/database/hccdb
http://lifeome.net/database/hccdb
https://www.proteinatlas.org/
https://www.proteinatlas.org/


 

www.aging-us.com 15993 AGING 

RESULTS 
 

Identification of DElncRNAs, DEcircRNAs and 

DEmRNAs 

 

Two circRNA microarray datasets (GSE94508 and 

GSE97332) were analysed, and the DEcircRNAs 

between HCC tumor samples and adjacent normal 

tissues were screened with the criteria |LogFC| > 2 and 

p < 0.01. We identified 143 DEcircRNAs (93 up-

regulated and 50 down-regulated) in the GSE97332 

profile, and 758 DEcircRNAs (326 up-regulated and 

432 down-regulated) in the GSE94508 profile (Figure 

1A). From these two datasets, we screened out a total of 

49 overlapping DEcircRNAs for further research 

(Figure 1B). From the TCGA-LIHC dataset, 5171 

DEmRNAs (4064 up-regulated and 1107 down-

regulated) were obtained using the criteria |LogFC| > 1 

and p < 0.05 (Figure 1C). Then, the same standard was 

applied to analyze lncRNA data from the GSE138178 

dataset and TCGA. A total of 515 DElncRNAs (212 up-

regulated and 303 down-regulated) in the GSE138178 

 

 
 

Figure 1. Identification of differential genes. (A) Heatmap of DEcircRNAs from GEO databases. (B) Venn diagram of the intersection of 

DEcircRNAs. (C) Volcano maps of DEmRNAs from TCGA. (D) Volcano maps of DElncRNAs from GSE138178. (E) Volcano maps of DElncRNAs 
from TCGA. (F) Venn diagram of the intersection of DElncRNAs. 
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profile (Figure 1D), as well as 3752 DElncRNAs (3228 

up-regulated and 524 down-regulated) in TCGA (Figure 

1E) were identified. Intersection analysis of the two 

datasets identified 147 DElncRNAs, including 106 with 

upregulated and 41 with downregulated expression 

(Figure 1F). 

 

Prediction of miRNAs targeted by both DElncRNAs 

and DEcircRNAs 

 

A flow chart for the creation of common predicted 

miRNAs was presented in Figure 2A. We predicted the 

target miRNAs of 147 DElncRNAs through the 

miRcode database. Then, the interaction between the 

147 DElncRNAs and 196 miRNAs was obtained. After 

searching the CircInteractome database, we identified 

49 DEcircRNAs and the targeting 292 miRNAs with 

mutual interaction ability. The miRNAs targeted by 

DEcircRNAs and DElncRNAs were crossed to obtain 

24 common miRNAs as competitive binding targets, 

revealing the connection between circRNAs (Figure 2B) 

and lncRNAs (Figure 2C). 

 

Prediction of DEmRNAs targeted by miRNAs and 

screening for hub mRNAs 

 

We identified target genes of the common 24 miRNAs 

by selecting mRNAs shared by miRTarBase, 

TargetScan, and miRDB database. 759 mRNAs were 

predicted by all three databases. Then, these candidate 

target mRNAs and above-mentioned 5171 DEmRNAs 

were further intersected to obtain 116 hub mRNAs 

(Figure 2D). Figure 3 presents the relationship 

between 116 hub mRNAs and 24 common miRNAs 

(Figure 2E). 

 

Construction of the prognostic model 

 

Univariate Cox regression was performed and a total of 

57 OS-related genes were identified. Then, lasso-

penalized Cox analysis was used to further narrow the 

hub mRNAs (Figure 3A) and 13 hub mRNAs were 

identified (Figure 3B). After stepwise multivariate Cox 

regression analysis, 7 mRNAs were finally selected to 

establish a prognostic model. The seven genes identified 

were karyopherin subunit alpha 2 (KPNA2), DTYMK, 

fibroblast growth factor 9 (FGF9), angiopoietin 2 

(ANGPT2), PLAG1 zinc finger (PLAG1), fibronectin 

type III domain containing 4 (FNDC4) and 

carboxypeptidase A4 (CPA4). The risk score = 

(0.31119 * expression level of KPNA2) + (0.36809* 

expression level of DTYMK) + (0.16367 *expression 

level of FGF9) + (0.16669 * expression level of 
ANGPT2) + (0.10887 * expression level of PLAG1) + 

(0.17781 * expression level of FNDC4) + (0.09789 * 

expression level of CPA4). 

Then, we calculated the risk score of each sample based 

on the seven-gene, and used the Survminer R package to 

find the best cut-off value (Figure 3C). We used the KM 

curve and ROC curve to assess the prognostic capacity 

of the seven-gene signature. The KM curves of the two 

groups were significantly different (P<0.0001; Figure 

3D). The prognostic ability of the seven-gene signature 

can be evaluated based on the ROC curves. The AUCs 

for 1-year, 3-year, and 5-year OS were 0.797, 0.733, 

and 0.721, respectively (Figure 3E), indicating that the 

prognostic model was with high sensitivity and 

specificity. 

 

Performance evaluation of the prognostic model 

 

The independent predictive value of the prognostic 

model was assessed by the Cox regression analyses in 

patients from TCGA-LIHC dataset, and the results 

showed that the pathological stage and risk score had 

prognostic value (Figure 4A). The risk score of the 

prognostic model was identified as an independent 

prognostic factor after multivariate Cox regression 

analysis (Figure 4B). 

 

In addition, we tested the prognostic model for patients 

in GSE14520. According to the optimal cut-off value, 

the dataset was divided into high-risk and low-risk 

groups (Figure 4C). The OS of patients in the high-risk 

group was significantly poorer than that of the patients 

in the low-risk group, which was consistent with the 

results of the TCGA cohort (P = 0.0034, Figure 4D). 

The AUCs of the risk score for the 1-year, 3-year and 5-

year OS prediction were 0.642, 0.637 and 0.603, 

respectively (Figure 4E). 

 

Gene set enrichment analysis 

 

We performed GSEA to analyze HCC patients data in 

TCGA-LIHC dataset in order to explore the molecular 

mechanism of the prognostic signature. The results of 

HCC hallmarks indicated that the high-risk group was 

significantly enriched in 13 terms, mainly involved in 

cell cycle, metabolism process (glycolysis, protein 

secretion), P53 pathway, DNA repair, 

PI3K/AKT/mTOR signaling so on (Figure 5A). In the 

high-risk group with prognostic signature, several GO 

terms were significantly enriched, mainly involved in 

metabolism process, RNA transport, DNA repair, cell 

cycle, nucleosome assembly, and protein modification 

(Figure 5B), which were consistent with the hallmarks 

analysis results. Besides, oncogenic signatures analysis 

indicated that 4 oncological signatures including 

granule cell neuron precursors (GCNP), Rb-P107, E2F 
Transcription Factor 1 (E2F1), and Early serum 

response (CSR) were enriched in high-risk group 

(Figure 5C). 
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Figure 2. Prediction of common targeted miRNAs and their targeted DEmRNAs. (A) Flow chart of common pre-miRNAs prediction. 
(B) The relationship between DEcircRNAs and targeted miRNAs. (C) The relationship between DElncRNAs and targeted miRNAs. (D) Venn 
diagram of the intersection of circ-pre-miRNAs and lnc-pre-miRNAs. (E) The relationship between the common miRNAs and their targeted 
DEmRNAs. 
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Figure 3. Development the prognostic model. (A, B) Lasso regression analysis results. The trajectory of each independent variable, the 

horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the 
independent variable. The tuning parameter (λ) was calculated based on the partial likelihood deviance with ten-fold cross validation. The 
dotted vertical lines are drawn at the optimal values by minimum criteria and 1-SE criteria. (C) The risk scores distribution, survival status, and 
gene expression patterns of patients in high and low-risk groups. The dot presents patient status ranked by the increasing risk score. The X 
axis is patient number and Y axis is survival time. (D) Kaplan–Meier survival curve of two groups. (E) The time-dependent ROC curves analyses 
of two groups. 
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Figure 4. Validation of the prognostic model. (A) Forrest plot of the univariate Cox regression analysis in TCGA. (B) Forrest plot of the 
multivariate Cox regression analysis in TCGA. (C) The risk scores distribution, survival status, and gene expression patterns of HCC patients in 
GSE14520. The dot presents patient status ranked by the increasing risk score. The X axis is patient number and Y axis is survival time. (D) 
Kaplan–Meier survival curve of two groups in GSE14520. (E) The time-dependent ROC curves analyses of two groups in GSE14520. 
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Figure 5. Gene set enrichment analyses between high and low risk group in TCGA. (A) The top ten significantly enriched cancer 

hallmarks in high-risk group. (B) The significantly enriched GO terms in high-risk group. (C) The significantly enriched oncological signatures in 
high-risk group. 



 

www.aging-us.com 15999 AGING 

Bioinformatics analysis of DTYMK in HCC 

 

In the HCCDB, the expression level of DTYMK in HCC 

was much higher than that in corresponding 

paracancerous tissue in most datasets (9/12) (Figure 6A). 

By examining the DTYMK protein level in HPA, we 

found that the immunohistochemical staining of HCC 

tissue was also higher than that of adjacent normal tissues 

(Figure 6B). Next, we analyzed the correlation between 

DTYMK mRNA expression and clinicopathological 

parameters in TCGA. Tumor stage (Figure 6C) and tumor 

grade (Figure 6D) were found to be highly correlated with 

the mRNA expression level of DTYMK in HCC patients, 

indicating high DTYMK expression probably associated 

with poor clinical characteristics. Then we found that high 

DTYMK expression is significantly associated with worse 

OS (Figure 6E, p = 1.4e-05) and RFS (Figure 6F, p = 

0.0011) in HCC patients. Finally, the KEGG pathway 

analysis showed that significant genes differentially 

expressed related to DTYMK were mainly enriched in 

base excision repair, purine metabolism, pyrimidine 

metabolism, spliceosome and DNA replication 

(Supplementary Table 1). 

 

Validation of the expression and function of the hub 

gene DTYMK 

 

To confirm the in silico results, we measured the 

expression of DTYMK in HCC specimens. It was found 

that DTYMK was upregulated in HCC specimens in the 

Tongji cohort (Figure 7A, 7B and Supplementary 

Figure 1). We then confirmed the knockdown levels of 

DTYMK by western blot and PCR analysis (Figure 7C, 

7D). As expected, CCK-8 assays demonstrated that 

silencing DTYMK significantly decreased the 

proliferation of 97H and G2 cells (Figure 7D). 

Moreover, the EdU assay also suggested a decrease of 

proliferation ability in 97H and G2 cells after DTYMK 

silencing (Figure 7E). Furthermore, interference with 

DTYMK expression inhibited colony formation (Figure 

7G), while the results of transwell experiments showed 

that the migration and invasion rates of 97H and G2 

cells transfected with siRNA were significantly lower 

than that of the control group (Figure 8A, 8B). 

Accordingly, silencing DTYMK also significantly 

suppressed wound healing in 97H and G2 cells (Figure 

8C). After DTYMK silencing, the proportions of 97H 

and G2 cells in the G0/G1 phase increased, while that in 

S-phase significantly decreased, indicating widespread 

cell cycle arrest (Figure 8D). 

 

Construction of the prognostic circRNA-lncRNA-

miRNA-mRNA ceRNA network in HCC 

 

As the above-mentioned relationships in the ceRNA 

network, it was predicted that the 7 hub mRNAs of the 

prognostic model can interact with 5 miRNAs, which 

could in turn interact with 21 circRNAs and 15 

lncRNAs. Finally, a prognostic circRNA-lncRNA-

miRNA-mRNA ceRNA network containing 7 mRNAs, 

5 miRNAs, 21 circRNAs and 15 lncRNAs was 

constructed (Figure 9). 

 

DISCUSSION 
 

HCC is a refractory disease with high morbidity and 

mortality worldwide. Although surgical resection can 

improve the prognosis of some HCC patients, there are 

still many patients who cannot tolerate current 

treatments [2]. Moreover, the small number of useful 

biomarkers makes it challenging to diagnose HCC at an 

early stage and predict therapeutic effects [5]. 

Therefore, exploring the biology and novel prognostic 

biomarkers of HCC may provide clinicians new tools to 

treat the disease. 

 

The hypothesis of a ceRNA network postulates that 

circRNAs, lncRNAs, mRNAs, and other types of RNAs 

compete for binding to miRNAs by sharing MREs, 

thereby regulating each other's expression and affecting 

tumorigenesis and cancer progression [23]. The ceRNA 

regulatory network can better explain the interaction 

among a variety of RNA types at the genetic level. 

Some researches have explored and discussed the role 

of ceRNAs in tumor prognosis and pathogenesis of 

several cancers. The lncRNA CRNDE acting as a miR-

181a-5p sponge was found to regulate the progression 

and chemoresistance of colorectal cancer through 

modulating the activity of Wnt/β-catenin signaling [24]. 

The circular RNA ZFR regulates PTEN through sponge 

miR-130a/miR-107, which can inhibit the proliferation 

of gastric cancer cells, induce cell cycle arrest and 

promote cell apoptosis [25]. LncRNA GAS6-AS2 

promotes the proliferation and metastasis of bladder 

cancer cells with a mechanism in which GAS6-AS2 

may function as a ceRNA by directly sponging miR-298 

to regulate the CDK9 expression [26]. Bai et al. 

constructed a ceRNA network composed of lncRNAs, 

miRNAs, and mRNAs according to their mutual 

targeting relationships, and used the lncRNAs of the 

ceRNA network to build a prognostic lncRNA model 

for HCC [4]. In another study, Wang et al. established a 

ceRNA network based on 6 circRNAs, 11 miRNAs, and 

114 mRNAs to explore a circRNA signature related to 

HCC [27]. However, these studies only explored the 

role of either lncRNA-miRNA-mRNA or circRNA-

miRNA-mRNA networks in HCC, and there has been 

no comprehensive simultaneous screening of circRNAs, 

lncRNAs, miRNAs, and mRNAs to construct a 

prognostic ceRNA network for HCC. In this study, we 

comprehensively analyzed the transcriptome data in  

the TCGA and GEO databases and established the 
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Figure 6. Bioinformatics analysis of DTYMK in HCC. (A) Gene expression profiles of DTYMK in the HCCDB database. (B) Representative 

immunohistochemistry (IHC) images from the HPA with the DTYMK antibody. (C) The expression level of DTYMK was positively correlated 
with tumor stage in HCC patients. (D) The expression level of DTYMK was positively correlated with tumor grade in HCC patients. (E) Overall 
survival analysis of DTYMK in GEPIA. (F) Disease free survival analysis of DTYMK in GEPIA. *** represents p < 0.001, ** represents P < 0.01. 
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prognostic circRNA-lncRNA-miRNA-mRNA ceRNA 

network of HCC. 

 

In addition, 116 hub mRNAs were screened, after which 

Lasso, univariate, and multivariate Cox analyses were 

performed to construct a prognostic model for HCC. 

The seven genes KPNA2, DTYMK, FGF9, ANGPT2, 

PLAG1, FNDC4 and CPA4 were finally selected to 

construct the prognostic model. The AUC values of the 

prognostic model for predicting the 1, 3 and 5-year 

survival were 0.797, 0.733 and 0.721, respectively, 

indicating that the signature had a good performance in 

survival prediction. Subsequently, we not only proved 

that the seven-gene signature was an independent 

prognostic factor for HCC patients, but also verified its 

survival predictive ability using the external HCC 

cohort in the GEO database. All these results indicate 

that the risk model can serve as a useful prognostic 

predictor for HCC patients. Therefore, the seven-gene 

signature can provide insights into biological aspects of 

HCC and may be a useful guide for individualized 

management of the disease. 

 

Five hub genes in the prognostic signature (KPNA2, 

PLAG1, FGF9, ANGPT2 and CPA4) are already 

known to have a role in HCC. KPNA2 has been linked 

to cancer in many studies, including HCC. In lung 

adenocarcinoma, patients with elevated KPNA2 

 

 
 

Figure 7. Validation of DTYMK’s expression and function. (A) The expression levels of DTYMK in HCC and adjacent noncancer tissues 

were evaluated by Western blot (n=47). (B) Statistical analysis of relative DTYMK levels in HCC tissues compared to normal tissue controls (n= 
47). (C, D) Transfection efficiency was verified after transfection of siDTYMK or negative control siRNA. (E) HCC cell viability was evaluated 
with CCK-8 assays. (F) EdU assay showed change of proliferative rate after transfection with siDTYMK. (G) The number of HCC cell colonies 
was reduced after transfection with siDTYMK. *** represents p < 0.001, ** represents P < 0.01, * represents P < 0.05. 
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expression level had worse prognosis [28]. High 

KPNA2 expression is positively correlated with tumor 

differentiation, vascular invasion, and staging in HCC 

[29]. Furthermore, it was reported that PLAG1 is a 

candidate oncogene and could be a critical mediator of 

the effects of KPNA2 in malignant diseases. A recent 

study proved that KPNA2 plays an essential role in the 

nuclear import of PLAG1 and could be a prognostic 

 

 
 

Figure 8. (A, B) Transwell assays were used to detect HCC cells invasion and migration. (C) Effects of DTYMK knockdown on HCC cell 

migration, as evaluated by wound healing assay. (D) Cell cycle was arrested in G0/G1 phase after transfection with siDTYMK in HCC cells. *** 
represents p < 0.001, ** represents P < 0.01, * represents P < 0.05. 
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predictor for HCC patients [30]. It has been reported 

that FGF9 can promote the carcinogenicity and 

sorafenib resistance of HCC cells, and the 

overexpression of FGF9 is related to the poor prognosis 

of HCC patients [31]. ANGPT2 has been found to have 

an important influence on angiogenesis and therapy 

resistance. Recent studies indicated that exosomal 

ANGPT2 secreted by HCC cells can induce tumor 

angiogenesis via a novel pathway that is different from 

the classic ANGPT2/Tie2 pathway, and blocking 

ANGPT2 is a promising therapeutic strategy for HCC 

[32]. CPA4, a member of the metallo-carboxypeptidase 

family, is overexpressed in a variety of cancers. It has 

been implicated that CPA4 leads to a poor prognosis by 

regulating tumor proliferation and the expression of 

stem cell characteristics, and can be used as a potential 

therapeutic target for HCC patients [33]. The biological 

functions in HCC of the two other hub genes identified 

in the signature, FNDC4 and DTYMK, have not yet 

been elucidated. We finally chose DTYMK for deeper 

exploration. DTYMK is a nuclear-encoded 

deoxythymidylate kinase, which can catalyze the 

phosphorylation of deoxy TMP to deoxy TDP. In the 

HCCDB and HPA database, we detected that DTYMK 

was overexpressed in cancerous tissues at both the 

protein and mRNA levels. Additionally, DTYMK 

expression correlated with histologic grade, and tumor 

stage. We subsequently conducted Kaplan-Meier 

analysis in the TCGA-LIHC cohort and found that 

patients with high DTYMK expression in cancerous 

tissues had shorter OS and RFS. Therefore, DTYMK 

can be a potential clinical biomarker for HCC. 

 

The GSEA results presented that the significantly 

differentially expressed genes related to DTYMK are 

mainly enriched in base excision repair, purine 

metabolism, pyrimidine metabolism, spliceosome and 

DNA replication, indicating that DTYMK may affect 

 

 
 

Figure 9. Prognostic circRNA-lncRNA-miRNA-mRNA ceRNA Network in HCC. 
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the occurrence of HCC. In addition, we have verified 

the role of DTYMK in hepatoma cell lines, and the 

results were consistent with the conclusions of the in 
silico analysis of data in the public databases. 

 

The most of the 15 hub lncRNAs in the prognostic 

ceRNA network are relevant for various cancers, such 

as lung adenocarcinoma, breast cancer, colorectal 

cancer, and especially HCC. The results showed that 

lncRNA MAGI2-AS3 can recruit KDM1A and promote 

demethylation of RACGAP1 promoter to prevent the 

development of HCC [34]. The lncRNA DIO3OS was 

shown to prevent the development of HCC by 

disrupting the Hedgehog pathway and sponging miR-

328 [35]. Among the circRNAs in the prognostic 

ceRNA network, hsa_circ_0005785, hsa_circ_0091570 

and hsa_circ_0072088 were shown to have an important 

influence in the biological processes of HCC [36–38]. 

In summary, the prognostic ceRNA network identified 

in this study not only contains a series of ncRNAs with 

unequivocal functions in HCC but also potential 

unexplored ncRNAs requiring deeper exploration. 

 

However, current research still has some limitations. No 

in vivo and further in vitro experiments were performed 

to verify the function of DTYMK in HCC. Additionally, 

the role of some hub ncRNAs in the prognostic ceRNA 

network should be verified in future experiments. 

 

CONCLUSIONS 
 

A prognostic circRNA-lncRNA-miRNA-mRNA ceRNA 

network for HCC was constructed for the first time, and 

a seven-gene signature was identified and validated in 

TCGA and GEO. One hub gene in the prognostic 

signature, DTYMK, was identified as a novel potential 

biomarker for HCC through data mining and 

experiments. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. The expression levels of DTYMK in HCC and adjacent noncancer tissues were evaluated by western 
blot. 
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Supplementary Table 
 

Supplementary Table 1. Gene set enrichment analyses of DTYMK. 

Terms enriched in low risk group      

NAME SIZE ES NES NOM p-val FDR q-val 

C2 KEGG (24 terms)      

KEGG_SPLICEOSOME 126 0.775081 2.135403 0 0.001998 

KEGG_DNA_REPLICATION 36 0.860379 2.12395 0 0.00212 

KEGG_PYRIMIDINE_METABOLISM 98 0.662451 2.165589 0 0.002664 

KEGG_PURINE_METABOLISM 155 0.584109 2.170445 0 0.002771 

KEGG_CELL_CYCLE 124 0.691622 2.101745 0 0.002836 

KEGG_HOMOLOGOUS_RECOMBINATION 28 0.793349 2.077105 0 0.003134 

KEGG_BASE_EXCISION_REPAIR 33 0.795473 2.175527 0 0.005543 

KEGG_OOCYTE_MEIOSIS 112 0.596855 2.028667 0 0.007171 

KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION 85 0.593121 2.003857 0 0.010455 

KEGG_PROTEASOME 44 0.762751 1.98 0 0.012702 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 0.707281 1.965285 0 0.015007 

KEGG_RNA_DEGRADATION 55 0.678917 1.953 0 0.016233 

KEGG_MISMATCH_REPAIR 23 0.781214 1.942946 0 0.017833 

KEGG_VIBRIO_CHOLERAE_INFECTION 54 0.578596 1.914598 0 0.02124 

KEGG_N_GLYCAN_BIOSYNTHESIS 46 0.646307 1.916532 0.003984 0.022681 

KEGG_RNA_POLYMERASE 29 0.709808 1.892586 0 0.023505 

KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 38 0.645813 1.892655 0 0.024914 

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 132 0.602973 1.871809 0 0.028213 

KEGG_HUNTINGTONS_DISEASE 166 0.56755 1.86452 0.008016 0.028414 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 43 0.585295 1.850774 0.003922 0.031407 

KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 70 0.529559 1.856896 0.003953 0.031773 

KEGG_BASAL_TRANSCRIPTION_FACTORS 35 0.625064 1.826115 0.005988 0.03617 

KEGG_LYSOSOME 121 0.543795 1.829145 0.003945 0.036872 

KEGG_ENDOCYTOSIS 181 0.508121 1.798864 0.001883 0.045734 

 


